16#include <fairlogger/Logger.h>
22template <
class InputType>
23Clusterizer<InputType>::Clusterizer(
double timeCut,
double timeMin,
double timeMax,
double gradientCut,
bool doEnergyGradientCut,
double thresholdSeedE,
double thresholdCellE) : mSeedList(), mInputMap(), mCellMask(), mTimeCut(timeCut), mTimeMin(timeMin), mTimeMax(timeMax), mGradientCut(gradientCut), mDoEnergyGradientCut(doEnergyGradientCut), mThresholdSeedEnergy(thresholdSeedE), mThresholdCellEnergy(thresholdCellE)
28template <
class InputType>
29Clusterizer<InputType>::Clusterizer() : mSeedList(), mInputMap(), mCellMask(), mTimeCut(0), mTimeMin(0), mTimeMax(0), mGradientCut(0), mDoEnergyGradientCut(false), mThresholdSeedEnergy(0), mThresholdCellEnergy(0)
34template <
class InputType>
35void Clusterizer<InputType>::initialize(
double timeCut,
double timeMin,
double timeMax,
double gradientCut,
bool doEnergyGradientCut,
double thresholdSeedE,
double thresholdCellE)
40 mGradientCut = gradientCut;
41 mDoEnergyGradientCut = doEnergyGradientCut;
42 mThresholdSeedEnergy = thresholdSeedE;
43 mThresholdCellEnergy = thresholdCellE;
47template <
class InputType>
51 if (!clusterInputs.size()) {
52 clusterInputs.emplace_back(mInputMap[
row][column]);
56 mCellMask[
row][column] = kTRUE;
59 constexpr int rowDiffs[4] = {-1, 0, 0, 1};
60 constexpr int colDiffs[4] = {0, -1, 1, 0};
61 for (
int dir = 0; dir < 4; dir++) {
62 if ((
row + rowDiffs[dir] < 0) || (
row + rowDiffs[dir] >=
NROWS)) {
65 if ((column + colDiffs[dir] < 0) || (column + colDiffs[dir] >=
NCOLS)) {
69 if (mInputMap[
row + rowDiffs[dir]][column + colDiffs[dir]].mInput) {
70 if (!mCellMask[
row + rowDiffs[dir]][column + colDiffs[dir]]) {
71 if (mDoEnergyGradientCut && (mInputMap[
row + rowDiffs[dir]][column + colDiffs[dir]].mInput->getEnergy() > mInputMap[
row][column].mInput->getEnergy() + mGradientCut)) {
74 if (not(TMath::Abs(mInputMap[
row + rowDiffs[dir]][column + colDiffs[dir]].mInput->getTimeStamp() - mInputMap[
row][column].mInput->getTimeStamp()) > mTimeCut)) {
75 getClusterFromNeighbours(clusterInputs,
row + rowDiffs[dir], column + colDiffs[dir]);
77 clusterInputs.emplace_back(mInputMap[
row + rowDiffs[dir]][column + colDiffs[dir]]);
85template <
class InputType>
89 auto cellIndex = mEMCALGeometry->GetCellIndex(input.getTower());
90 int nSupMod = std::get<0>(cellIndex);
92 auto phiEtaIndex = mEMCALGeometry->GetCellPhiEtaIndexInSModule(nSupMod, std::get<1>(cellIndex), std::get<2>(cellIndex), std::get<3>(cellIndex));
93 row = std::get<0>(phiEtaIndex);
94 column = std::get<1>(phiEtaIndex);
103 row += nSupMod / 2 * (24 + 1);
105 if (!mEMCALGeometry->IsDCALSM(nSupMod)) {
106 column += nSupMod % 2 * 48;
108 column += nSupMod % 2 * (48 + 1);
113template <
class InputType>
132 for (
auto iArr = 0; iArr <
NROWS; iArr++) {
133 mCellMask[iArr].fill(kFALSE);
134 mInputMap[iArr].fill({
nullptr, -1});
141 for (
int iIndex = 0; iIndex < inputArray.size(); iIndex++) {
143 auto& dig = inputArray[iIndex];
145 Float_t inputEnergy = dig.getEnergy();
148 if (inputEnergy < mThresholdCellEnergy || time > mTimeMax ||
time < mTimeMin) {
151 if (!mEMCALGeometry->CheckAbsCellId(dig.getTower())) {
157 int row = 0, column = 0;
158 getTopologicalRowColumn(dig,
row, column);
160 mInputMap[
row][column].mInput = inputArray.data() + iIndex;
161 mInputMap[
row][column].mIndex = iIndex;
162 mSeedList[nCells].energy = inputEnergy;
163 mSeedList[nCells].row =
row;
164 mSeedList[nCells].column = column;
169 std::sort(mSeedList.begin(), std::next(std::begin(mSeedList), nCells));
172 for (
int i = nCells - 1;
i >= 0;
i--) {
173 int row = mSeedList[
i].row, column = mSeedList[
i].column;
175 if (mCellMask[
row][column]) {
179 if (mSeedList[
i].energy <= mThresholdSeedEnergy) {
184 std::vector<InputwithIndex> clusterInputs;
185 getClusterFromNeighbours(clusterInputs,
row, column);
188 int inputIndexStart = mInputIndices.size();
189 for (
auto dig : clusterInputs) {
190 mInputIndices.emplace_back(dig.mIndex);
192 int inputIndexSize = mInputIndices.size() - inputIndexStart;
195 mFoundClusters.emplace_back(mInputMap[
row][column].mInput->getTimeStamp(), inputIndexStart, inputIndexSize);
197 LOG(
debug) << mFoundClusters.size() <<
"clusters found from " << nCells <<
" cells/digits (total=" << inputArray.size() <<
")-> ehs " << ehs <<
" (minE " << mThresholdCellEnergy <<
")";
Definition of the EMCAL clusterizer.
Meta class for recursive clusterizer.
void initialize(double timeCut, double timeMin, double timeMax, double gradientCut, bool doEnergyGradientCut, double thresholdSeedE, double thresholdCellE)
Initialize class member vars if not done in constructor.
void findClusters(const gsl::span< InputType const > &inputArray)
Find clusters based on a give input collection.
Clusterizer()
Default constructor.
constexpr unsigned int NCOLS
constexpr unsigned int NROWS
LOG(info)<< "Compressed in "<< sw.CpuTime()<< " s"