44 fNrowIndex = fNcols = fRowLwb =
size;
45 fElems =
new Double_t[fNcols * (fNcols + 1) / 2];
59 fRowLwb =
src.GetSizeUsed();
61 int nmainel = fNcols * (fNcols + 1) / 2;
62 fElems =
new Double_t[nmainel];
63 nmainel =
src.fNcols * (
src.fNcols + 1) / 2;
64 memcpy(
fElems,
src.fElems, nmainel *
sizeof(Double_t));
65 if (
src.GetSizeAdded()) {
66 Double_t* pnt =
fElems + nmainel;
67 int ncl =
src.GetSizeBooked() + 1;
68 for (
int ir = 0;
ir <
src.GetSizeAdded();
ir++) {
69 memcpy(pnt,
src.fElemsAdd[
ir], ncl *
sizeof(Double_t));
95 TObject::operator=(
src);
106 fNrowIndex =
src.GetSize();
107 fNcols =
src.GetSize();
109 fRowLwb =
src.GetSizeUsed();
111 int nmainel =
src.GetSizeBooked() * (
src.GetSizeBooked() + 1);
112 memcpy(
fElems,
src.fElems, nmainel *
sizeof(Double_t));
113 if (
src.GetSizeAdded()) {
114 Double_t* pnt =
fElems + nmainel;
115 int ncl =
src.GetSizeBooked() + 1;
116 for (
int ir = 0;
ir <
src.GetSizeAdded();
ir++) {
118 memcpy(pnt,
src.fElemsAdd[
ir], ncl *
sizeof(Double_t));
139 LOG(error) <<
"Matrix sizes are different";
154 LOG(error) <<
"Matrix sizes are different";
180 fNrowIndex = fNcols = fNrows = fRowLwb = 0;
188 for (
int j =
i + 1;
j--;) {
201 TString opt = option;
207 opt += 1 +
int(TMath::Log10(
double(
GetSize())));
211 for (Int_t
j = 0;
j <=
i;
j++) {
233 if (sz !=
right.GetSizeUsed()) {
234 LOG(error) <<
"Matrix sizes are different";
244 for (
int i = sz;
i--;) {
245 for (
int j =
i + 1;
j--;) {
247 for (
int k = sz; k--;) {
270 Double_t* rowi = mchol.
GetRow(
i);
272 Double_t* rowj = mchol.
GetRow(
j);
273 double sum = rowj[
i];
274 for (
int k =
i - 1; k >= 0; k--) {
275 if (rowi[k] && rowj[k]) {
276 sum -= rowi[k] * rowj[k];
281 LOG(
debug) <<
"The matrix is not positive definite [" <<
sum
282 <<
"]: Choleski decomposition is not possible";
286 rowi[
i] = TMath::Sqrt(
sum);
288 rowj[
i] =
sum / rowi[
i];
300 LOG(error) <<
"Failed to invert the matrix";
316 mchol(
i,
i) = 1.0 / mchol(
i,
i);
318 Double_t* rowj = mchol.
GetRow(
j);
320 for (
int k =
i; k <
j; k++) {
322 double& mki = mchol(k,
i);
324 sum -= rowj[k] * mki;
328 rowj[
i] =
sum / rowj[
j];
334 for (
int j =
i + 1;
j--;) {
337 double& mik = mchol(
i, k);
339 double& mjk = mchol(
j, k);
365 Double_t* rowi = mchol.
GetRow(
i);
366 for (
sum =
b[
i], k =
i - 1; k >= 0; k--) {
367 if (rowi[k] &&
b[k]) {
368 sum -= rowi[k] *
b[k];
377 double& mki = mchol(k,
i);
407 for (
int ir = 0;
ir < nRHS;
ir++) {
408 double*
b = bn +
ir * sz;
410 for (
i = 0;
i < sz;
i++) {
411 Double_t* rowi = mchol.
GetRow(
i);
412 for (
sum =
b[
i], k =
i - 1; k >= 0; k--) {
413 if (rowi[k] &&
b[k]) {
414 sum -= rowi[k] *
b[k];
420 for (
i = sz - 1;
i >= 0;
i--) {
421 for (
sum =
b[
i], k =
i + 1; k < sz; k++) {
423 double& mki = mchol(k,
i);
448 memcpy(bsol, brhs,
GetSizeUsed() *
sizeof(Double_t));
465 Double_t** pnew =
new Double_t*[nrows + fNrows];
466 for (
int ir = 0;
ir < fNrows;
ir++) {
469 for (
int ir = 0;
ir < nrows;
ir++) {
471 pnew[fNrows] =
new Double_t[ncl];
472 memset(pnew[fNrows], 0, ncl *
sizeof(Double_t));
487 for (
int i = 0;
i < fNrows;
i++) {
492 fNcols = fRowLwb = fNrowIndex;
544 LOG(
debug) << Form(
"create %d of %d\n",
r, nn);
559 bool* bUnUsed =
new bool[nGlo];
560 double *rowMax, *colMax =
nullptr;
561 rowMax =
new double[nGlo];
564 colMax =
new double[nGlo];
565 for (Int_t
i = nGlo;
i--;) {
566 rowMax[
i] = colMax[
i] = 0.0;
568 for (Int_t
i = nGlo;
i--;) {
569 for (Int_t
j =
i + 1;
j--;) {
570 double vl = TMath::Abs(
Query(
i,
j));
574 if (vl > rowMax[
i]) {
577 if (vl > colMax[
j]) {
583 if (vl > rowMax[
j]) {
586 if (vl > colMax[
i]) {
592 for (Int_t
i = nGlo;
i--;) {
594 rowMax[
i] = 1. / rowMax[
i];
597 colMax[
i] = 1. / colMax[
i];
602 for (Int_t
i = nGlo;
i--;) {
614 for (
int i = 0;
i < nGlo;
i++) {
615 for (
int j = 0;
j <=
i;
j++) {
618 SetEl(
i,
j, TMath::Sqrt(rowMax[
i]) * vl * TMath::Sqrt(colMax[
j]));
621 for (
int j =
i + 1;
j < nGlo;
j++) {
629 for (Int_t
j = nGlo;
j--;) {
632 for (Int_t
i = 0;
i < nGlo;
i++) {
636 for (Int_t
j = 0;
j < nGlo;
j++) {
646 bUnUsed[iPivot] =
false;
647 vPivot = 1.0 / vPivot;
650 for (Int_t
j = 0;
j < nGlo;
j++) {
651 for (Int_t jj = 0; jj < nGlo; jj++) {
652 if (
j != iPivot && jj != iPivot) {
653 double&
r =
j >= jj ? (*this)(
j, jj) : (*fgBuffer)(jj,
j);
659 for (Int_t
j = 0;
j < nGlo;
j++) {
661 (*this)(
j, iPivot) *= vPivot;
662 (*fgBuffer)(iPivot,
j) *= vPivot;
666 for (Int_t
j = 0;
j < nGlo;
j++) {
669 for (Int_t k = 0; k < nGlo; k++) {
672 (*fgBuffer)(
j, k) = 0;
682 for (Int_t
i = 0;
i < nGlo;
i++) {
683 for (Int_t
j = 0;
j < nGlo;
j++) {
684 double vl = TMath::Sqrt(colMax[
i]) * TMath::Sqrt(rowMax[
j]);
688 (*fgBuffer)(
j,
i) *= vl;
693 for (Int_t
j = 0;
j < nGlo;
j++) {
695 for (Int_t jj = 0; jj < nGlo; jj++) {
698 vl = (*this)(
j, jj) = -
Query(
j, jj);
702 rowMax[
j] += vl * vecB[jj];
706 for (Int_t
j = 0;
j < nGlo;
j++) {
Fast symmetric matrix (from AliROOT) with dynamically expandable size.
static Bool_t IsZero(Double_t x, Double_t thresh=1e-64)
virtual Int_t GetSize() const
virtual Double_t Query(Int_t rown, Int_t coln) const
Bool_t fSymmetric
is the matrix symmetric? Only lower triangle is filled
virtual Double_t QueryDiag(Int_t rc) const
Fast symmetric matrix with dynamically expandable size.
SymMatrix()
default constructor
SymMatrix & operator-=(const SymMatrix &src)
minus operator
Int_t GetSizeUsed() const
static Int_t fgCopyCnt
matrix copy counter
void Print(const Option_t *option="") const override
print itself
int SolveSpmInv(double *vecB, Bool_t stabilize=kTRUE)
Obtain solution of a system of linear equations with symmetric matrix and the inverse (using 'singula...
~SymMatrix() override
destructor
Double_t ** fElemsAdd
Elements (rows) added dynamicaly.
void SetEl(Int_t row, Int_t col, Double_t val)
Bool_t SolveChol(Double_t *brhs, Bool_t invert=kFALSE)
Solves the set of n linear equations A x = b.
void MultiplyByVec(const Double_t *vecIn, Double_t *vecOut) const override
fill vecOut by matrix*vecIn
Int_t GetSize() const override
Float_t GetDensity() const override
get fraction of non-zero elements
Double_t DiagElem(Int_t r) const override
static SymMatrix * fgBuffer
buffer for fast solution
Double_t * fElems
Elements booked by constructor.
Int_t GetSizeAdded() const
SymMatrix & operator=(const SymMatrix &src)
assignment operator
Bool_t InvertChol()
Invert matrix using Choleski decomposition.
SymMatrix * DecomposeChol()
Return a matrix with Choleski decomposition.
Double_t GetEl(Int_t row, Int_t col) const
Bool_t SolveCholN(Double_t *bn, int nRHS, Bool_t invert=kFALSE)
Solves the set of n linear equations A x = b; this version solve multiple RHSs at once.
virtual Int_t GetIndex(Int_t row, Int_t col) const
void Clear(Option_t *option="") override
clear dynamic part
Double_t * GetRow(Int_t r)
get pointer on the row
Int_t GetSizeBooked() const
void AddRows(int nrows=1)
add empty rows
SymMatrix & operator+=(const SymMatrix &src)
add operator
Bool_t Multiply(const SymMatrix &right)
multiply from the right
float sum(float s, o2::dcs::DataPointValue v)
GLboolean GLboolean GLboolean b
LOG(info)<< "Compressed in "<< sw.CpuTime()<< " s"
o2::InteractionRecord ir(0, 0)