Project
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
SymMatrix.cxx
Go to the documentation of this file.
1// Copyright 2019-2020 CERN and copyright holders of ALICE O2.
2// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders.
3// All rights not expressly granted are reserved.
4//
5// This software is distributed under the terms of the GNU General Public
6// License v3 (GPL Version 3), copied verbatim in the file "COPYING".
7//
8// In applying this license CERN does not waive the privileges and immunities
9// granted to it by virtue of its status as an Intergovernmental Organization
10// or submit itself to any jurisdiction.
11
13
14#include <iostream>
15
16#include <TClass.h>
17#include <TMath.h>
19#include "Framework/Logger.h"
20
21using namespace o2::fwdalign;
22
24
26Int_t SymMatrix::fgCopyCnt = 0;
27
28//___________________________________________________________
30 : fElems(nullptr),
31 fElemsAdd(nullptr)
32{
33 fSymmetric = kTRUE;
34 fgCopyCnt++;
35}
36
37//___________________________________________________________
39 : MatrixSq(),
40 fElems(nullptr),
41 fElemsAdd(nullptr)
42{
43 fNrows = 0;
44 fNrowIndex = fNcols = fRowLwb = size;
45 fElems = new Double_t[fNcols * (fNcols + 1) / 2];
46 fSymmetric = kTRUE;
47 Reset();
48 fgCopyCnt++;
49}
50
51//___________________________________________________________
53 : MatrixSq(src),
54 fElems(nullptr),
55 fElemsAdd(nullptr)
56{
57 fNrowIndex = fNcols = src.GetSize();
58 fNrows = 0;
59 fRowLwb = src.GetSizeUsed();
60 if (fNcols) {
61 int nmainel = fNcols * (fNcols + 1) / 2;
62 fElems = new Double_t[nmainel];
63 nmainel = src.fNcols * (src.fNcols + 1) / 2;
64 memcpy(fElems, src.fElems, nmainel * sizeof(Double_t));
65 if (src.GetSizeAdded()) { // transfer extra rows to main matrix
66 Double_t* pnt = fElems + nmainel;
67 int ncl = src.GetSizeBooked() + 1;
68 for (int ir = 0; ir < src.GetSizeAdded(); ir++) {
69 memcpy(pnt, src.fElemsAdd[ir], ncl * sizeof(Double_t));
70 pnt += ncl;
71 ncl++;
72 }
73 }
74 } else {
75 fElems = nullptr;
76 }
77 fElemsAdd = nullptr;
78 fgCopyCnt++;
79}
80
81//___________________________________________________________
83{
84 Clear();
85 if (--fgCopyCnt < 1 && fgBuffer) {
86 delete fgBuffer;
87 fgBuffer = nullptr;
88 }
89}
90
91//___________________________________________________________
93{
94 if (this != &src) {
95 TObject::operator=(src);
96 if (GetSizeBooked() != src.GetSizeBooked() && GetSizeAdded() != src.GetSizeAdded()) {
97 // recreate the matrix
98 if (fElems) {
99 delete[] fElems;
100 }
101 for (int i = 0; i < GetSizeAdded(); i++) {
102 delete[] fElemsAdd[i];
103 }
104 delete[] fElemsAdd;
105
106 fNrowIndex = src.GetSize();
107 fNcols = src.GetSize();
108 fNrows = 0;
109 fRowLwb = src.GetSizeUsed();
110 fElems = new Double_t[GetSize() * (GetSize() + 1) / 2];
111 int nmainel = src.GetSizeBooked() * (src.GetSizeBooked() + 1);
112 memcpy(fElems, src.fElems, nmainel * sizeof(Double_t));
113 if (src.GetSizeAdded()) { // transfer extra rows to main matrix
114 Double_t* pnt = fElems + nmainel; //*sizeof(Double_t);
115 int ncl = src.GetSizeBooked() + 1;
116 for (int ir = 0; ir < src.GetSizeAdded(); ir++) {
117 ncl += ir;
118 memcpy(pnt, src.fElemsAdd[ir], ncl * sizeof(Double_t));
119 pnt += ncl; //*sizeof(Double_t);
120 }
121 }
122
123 } else {
124 memcpy(fElems, src.fElems, GetSizeBooked() * (GetSizeBooked() + 1) / 2 * sizeof(Double_t));
125 int ncl = GetSizeBooked() + 1;
126 for (int ir = 0; ir < GetSizeAdded(); ir++) { // dynamic rows
127 ncl += ir;
128 memcpy(fElemsAdd[ir], src.fElemsAdd[ir], ncl * sizeof(Double_t));
129 }
130 }
131 }
132 return *this;
133}
134
135//___________________________________________________________
137{
138 if (GetSizeUsed() != src.GetSizeUsed()) {
139 LOG(error) << "Matrix sizes are different";
140 return *this;
141 }
142 for (int i = 0; i < GetSizeUsed(); i++) {
143 for (int j = i; j < GetSizeUsed(); j++) {
144 (*this)(j, i) += src(j, i);
145 }
146 }
147 return *this;
148}
149
150//___________________________________________________________
152{
153 if (GetSizeUsed() != src.GetSizeUsed()) {
154 LOG(error) << "Matrix sizes are different";
155 return *this;
156 }
157 for (int i = 0; i < GetSizeUsed(); i++) {
158 for (int j = i; j < GetSizeUsed(); j++) {
159 (*this)(j, i) -= src(j, i);
160 }
161 }
162 return *this;
163}
164
165//___________________________________________________________
166void SymMatrix::Clear(Option_t*)
167{
168 if (fElems) {
169 delete[] fElems;
170 fElems = nullptr;
171 }
172
173 if (fElemsAdd) {
174 for (int i = 0; i < GetSizeAdded(); i++) {
175 delete[] fElemsAdd[i];
176 }
177 delete[] fElemsAdd;
178 fElemsAdd = nullptr;
179 }
180 fNrowIndex = fNcols = fNrows = fRowLwb = 0;
181}
182
183//___________________________________________________________
185{
186 Int_t nel = 0;
187 for (int i = GetSizeUsed(); i--;) {
188 for (int j = i + 1; j--;) {
189 if (!IsZero(GetEl(i, j))) {
190 nel++;
191 }
192 }
193 }
194 return 2. * nel / ((GetSizeUsed() + 1) * GetSizeUsed());
195}
196
197//___________________________________________________________
198void SymMatrix::Print(Option_t* option) const
199{
200 printf("Symmetric Matrix: Size = %d (%d rows added dynamically), %d used\n", GetSize(), GetSizeAdded(), GetSizeUsed());
201 TString opt = option;
202 opt.ToLower();
203 if (opt.IsNull()) {
204 return;
205 }
206 opt = "%";
207 opt += 1 + int(TMath::Log10(double(GetSize())));
208 opt += "d|";
209 for (Int_t i = 0; i < GetSizeUsed(); i++) {
210 printf(opt, i);
211 for (Int_t j = 0; j <= i; j++) {
212 printf("%+.3e|", GetEl(i, j));
213 }
214 printf("\n");
215 }
216}
217
218//___________________________________________________________
219void SymMatrix::MultiplyByVec(const Double_t* vecIn, Double_t* vecOut) const
220{
221 for (int i = GetSizeUsed(); i--;) {
222 vecOut[i] = 0.0;
223 for (int j = GetSizeUsed(); j--;) {
224 vecOut[i] += vecIn[j] * GetEl(i, j);
225 }
226 }
227}
228
229//___________________________________________________________
231{
232 int sz = GetSizeUsed();
233 if (sz != right.GetSizeUsed()) {
234 LOG(error) << "Matrix sizes are different";
235 return kFALSE;
236 }
237 if (!fgBuffer || fgBuffer->GetSizeUsed() != sz) {
238 delete fgBuffer;
239 fgBuffer = new SymMatrix(*this);
240 } else {
241 (*fgBuffer) = *this;
242 }
243
244 for (int i = sz; i--;) {
245 for (int j = i + 1; j--;) {
246 double val = 0.;
247 for (int k = sz; k--;) {
248 val += fgBuffer->GetEl(i, k) * right.GetEl(k, j);
249 }
250 SetEl(i, j, val);
251 }
252 }
253
254 return kTRUE;
255}
256
257//___________________________________________________________
259{
260 if (!fgBuffer || fgBuffer->GetSizeUsed() != GetSizeUsed()) {
261 delete fgBuffer;
262 fgBuffer = new SymMatrix(*this);
263 } else {
264 (*fgBuffer) = *this;
265 }
266
267 SymMatrix& mchol = *fgBuffer;
268
269 for (int i = 0; i < GetSizeUsed(); i++) {
270 Double_t* rowi = mchol.GetRow(i);
271 for (int j = i; j < GetSizeUsed(); j++) {
272 Double_t* rowj = mchol.GetRow(j);
273 double sum = rowj[i];
274 for (int k = i - 1; k >= 0; k--) {
275 if (rowi[k] && rowj[k]) {
276 sum -= rowi[k] * rowj[k];
277 }
278 }
279 if (i == j) {
280 if (sum <= 0.0) { // not positive-definite
281 LOG(debug) << "The matrix is not positive definite [" << sum
282 << "]: Choleski decomposition is not possible";
283 // Print("l");
284 return nullptr;
285 }
286 rowi[i] = TMath::Sqrt(sum);
287 } else {
288 rowj[i] = sum / rowi[i];
289 }
290 }
291 }
292 return fgBuffer;
293}
294
295//___________________________________________________________
297{
298 SymMatrix* mchol = DecomposeChol();
299 if (!mchol) {
300 LOG(error) << "Failed to invert the matrix";
301 return kFALSE;
302 }
303
304 InvertChol(mchol);
305 return kTRUE;
306}
307
308//___________________________________________________________
310{
311 Double_t sum;
312 SymMatrix& mchol = *pmchol;
313
314 // Invert decomposed triangular L matrix (Lower triangle is filled)
315 for (int i = 0; i < GetSizeUsed(); i++) {
316 mchol(i, i) = 1.0 / mchol(i, i);
317 for (int j = i + 1; j < GetSizeUsed(); j++) {
318 Double_t* rowj = mchol.GetRow(j);
319 sum = 0.0;
320 for (int k = i; k < j; k++) {
321 if (rowj[k]) {
322 double& mki = mchol(k, i);
323 if (mki) {
324 sum -= rowj[k] * mki;
325 }
326 }
327 }
328 rowj[i] = sum / rowj[j];
329 }
330 }
331
332 // take product of the inverted Choleski L matrix with its transposed
333 for (int i = GetSizeUsed(); i--;) {
334 for (int j = i + 1; j--;) {
335 sum = 0;
336 for (int k = i; k < GetSizeUsed(); k++) {
337 double& mik = mchol(i, k);
338 if (mik) {
339 double& mjk = mchol(j, k);
340 if (mjk) {
341 sum += mik * mjk;
342 }
343 }
344 }
345 (*this)(j, i) = sum;
346 }
347 }
348}
349
350//___________________________________________________________
351Bool_t SymMatrix::SolveChol(Double_t* b, Bool_t invert)
352{
353 Int_t i, k;
354 Double_t sum;
355
356 SymMatrix* pmchol = DecomposeChol();
357 if (!pmchol) {
358 LOG(debug) << "SolveChol failed";
359 // Print("l");
360 return kFALSE;
361 }
362 SymMatrix& mchol = *pmchol;
363
364 for (i = 0; i < GetSizeUsed(); i++) {
365 Double_t* rowi = mchol.GetRow(i);
366 for (sum = b[i], k = i - 1; k >= 0; k--) {
367 if (rowi[k] && b[k]) {
368 sum -= rowi[k] * b[k];
369 }
370 }
371 b[i] = sum / rowi[i];
372 }
373
374 for (i = GetSizeUsed() - 1; i >= 0; i--) {
375 for (sum = b[i], k = i + 1; k < GetSizeUsed(); k++) {
376 if (b[k]) {
377 double& mki = mchol(k, i);
378 if (mki) {
379 sum -= mki * b[k];
380 }
381 }
382 }
383 b[i] = sum / mchol(i, i);
384 }
385
386 if (invert) {
387 InvertChol(pmchol);
388 }
389 return kTRUE;
390}
391
392//___________________________________________________________
393Bool_t SymMatrix::SolveCholN(Double_t* bn, int nRHS, Bool_t invert)
394{
395 int sz = GetSizeUsed();
396 Int_t i, k;
397 Double_t sum;
398
399 SymMatrix* pmchol = DecomposeChol();
400 if (!pmchol) {
401 LOG(debug) << "SolveChol failed";
402 // Print("l");
403 return kFALSE;
404 }
405 SymMatrix& mchol = *pmchol;
406
407 for (int ir = 0; ir < nRHS; ir++) {
408 double* b = bn + ir * sz;
409
410 for (i = 0; i < sz; i++) {
411 Double_t* rowi = mchol.GetRow(i);
412 for (sum = b[i], k = i - 1; k >= 0; k--) {
413 if (rowi[k] && b[k]) {
414 sum -= rowi[k] * b[k];
415 }
416 }
417 b[i] = sum / rowi[i];
418 }
419
420 for (i = sz - 1; i >= 0; i--) {
421 for (sum = b[i], k = i + 1; k < sz; k++) {
422 if (b[k]) {
423 double& mki = mchol(k, i);
424 if (mki) {
425 sum -= mki * b[k];
426 }
427 }
428 }
429 b[i] = sum / mchol(i, i);
430 }
431 }
432
433 if (invert) {
434 InvertChol(pmchol);
435 }
436 return kTRUE;
437}
438
439//___________________________________________________________
440Bool_t SymMatrix::SolveChol(TVectorD& b, Bool_t invert)
441{
442 return SolveChol((Double_t*)b.GetMatrixArray(), invert);
443}
444
445//___________________________________________________________
446Bool_t SymMatrix::SolveChol(Double_t* brhs, Double_t* bsol, Bool_t invert)
447{
448 memcpy(bsol, brhs, GetSizeUsed() * sizeof(Double_t));
449 return SolveChol(bsol, invert);
450}
451
452//___________________________________________________________
453Bool_t SymMatrix::SolveChol(const TVectorD& brhs, TVectorD& bsol, Bool_t invert)
454{
455 bsol = brhs;
456 return SolveChol(bsol, invert);
457}
458
459//___________________________________________________________
460void SymMatrix::AddRows(int nrows)
461{
462 if (nrows < 1) {
463 return;
464 }
465 Double_t** pnew = new Double_t*[nrows + fNrows];
466 for (int ir = 0; ir < fNrows; ir++) {
467 pnew[ir] = fElemsAdd[ir]; // copy old extra rows
468 }
469 for (int ir = 0; ir < nrows; ir++) {
470 int ncl = GetSize() + 1;
471 pnew[fNrows] = new Double_t[ncl];
472 memset(pnew[fNrows], 0, ncl * sizeof(Double_t));
473 fNrows++;
474 fNrowIndex++;
475 fRowLwb++;
476 }
477 delete[] fElemsAdd;
478 fElemsAdd = pnew;
479}
480
481//___________________________________________________________
483{
484 // if additional rows exist, regularize it
485 if (fElemsAdd) {
486 delete[] fElems;
487 for (int i = 0; i < fNrows; i++) {
488 delete[] fElemsAdd[i];
489 }
490 delete[] fElemsAdd;
491 fElemsAdd = nullptr;
492 fNcols = fRowLwb = fNrowIndex;
493 fElems = new Double_t[GetSize() * (GetSize() + 1) / 2];
494 fNrows = 0;
495 }
496 if (fElems) {
497 memset(fElems, 0, GetSize() * (GetSize() + 1) / 2 * sizeof(Double_t));
498 }
499}
500
501//___________________________________________________________
502/*
503void SymMatrix::AddToRow(Int_t r, Double_t* valc, Int_t* indc, Int_t n)
504{
505 // for (int i=n;i--;) {
506 // (*this)(indc[i],r) += valc[i];
507 // }
508 // return;
509
510 double* row;
511 if (r >= fNrowIndex) {
512 AddRows(r - fNrowIndex + 1);
513 row = &((fElemsAdd[r - fNcols])[0]);
514 } else {
515 row = &fElems[GetIndex(r, 0)];
516 }
517
518 int nadd = 0;
519 for (int i = n; i--;) {
520 if (indc[i] > r) {
521 continue;
522 }
523 row[indc[i]] += valc[i];
524 nadd++;
525 }
526 if (nadd == n) {
527 return;
528 }
529
530 // add to col>row
531 for (int i = n; i--;) {
532 if (indc[i] > r)
533 (*this)(indc[i], r) += valc[i];
534 }
535}
536*/
537
538//___________________________________________________________
539Double_t* SymMatrix::GetRow(Int_t r)
540{
541 if (r >= GetSize()) {
542 int nn = GetSize();
543 AddRows(r - GetSize() + 1);
544 LOG(debug) << Form("create %d of %d\n", r, nn);
545 return &((fElemsAdd[r - GetSizeBooked()])[0]);
546 } else {
547 return &fElems[GetIndex(r, 0)];
548 }
549}
550
551//___________________________________________________________
552int SymMatrix::SolveSpmInv(double* vecB, Bool_t stabilize)
553{
554 Int_t nRank = 0;
555 int iPivot;
556 double vPivot = 0.;
557 double eps = 1e-14;
558 int nGlo = GetSizeUsed();
559 bool* bUnUsed = new bool[nGlo];
560 double *rowMax, *colMax = nullptr;
561 rowMax = new double[nGlo];
562
563 if (stabilize) {
564 colMax = new double[nGlo];
565 for (Int_t i = nGlo; i--;) {
566 rowMax[i] = colMax[i] = 0.0;
567 }
568 for (Int_t i = nGlo; i--;) {
569 for (Int_t j = i + 1; j--;) {
570 double vl = TMath::Abs(Query(i, j));
571 if (IsZero(vl)) {
572 continue;
573 }
574 if (vl > rowMax[i]) {
575 rowMax[i] = vl; // Max elemt of row i
576 }
577 if (vl > colMax[j]) {
578 colMax[j] = vl; // Max elemt of column j
579 }
580 if (i == j) {
581 continue;
582 }
583 if (vl > rowMax[j]) {
584 rowMax[j] = vl; // Max elemt of row j
585 }
586 if (vl > colMax[i]) {
587 colMax[i] = vl; // Max elemt of column i
588 }
589 }
590 }
591
592 for (Int_t i = nGlo; i--;) {
593 if (!IsZero(rowMax[i])) {
594 rowMax[i] = 1. / rowMax[i]; // Max elemt of row i
595 }
596 if (!IsZero(colMax[i])) {
597 colMax[i] = 1. / colMax[i]; // Max elemt of column i
598 }
599 }
600 }
601
602 for (Int_t i = nGlo; i--;) {
603 bUnUsed[i] = true;
604 }
605
606 if (!fgBuffer || fgBuffer->GetSizeUsed() != GetSizeUsed()) {
607 delete fgBuffer;
608 fgBuffer = new SymMatrix(*this);
609 } else {
610 (*fgBuffer) = *this;
611 }
612
613 if (stabilize) {
614 for (int i = 0; i < nGlo; i++) { // Small loop for matrix equilibration (gives a better conditioning)
615 for (int j = 0; j <= i; j++) {
616 double vl = Query(i, j);
617 if (!IsZero(vl)) {
618 SetEl(i, j, TMath::Sqrt(rowMax[i]) * vl * TMath::Sqrt(colMax[j])); // Equilibrate the V matrix
619 }
620 }
621 for (int j = i + 1; j < nGlo; j++) {
622 double vl = Query(j, i);
623 if (!IsZero(vl)) {
624 fgBuffer->SetEl(j, i, TMath::Sqrt(rowMax[i]) * vl * TMath::Sqrt(colMax[j])); // Equilibrate the V matrix
625 }
626 }
627 }
628 }
629 for (Int_t j = nGlo; j--;) {
630 fgBuffer->DiagElem(j) = TMath::Abs(QueryDiag(j)); // save diagonal elem absolute values
631 }
632 for (Int_t i = 0; i < nGlo; i++) {
633 vPivot = 0.0;
634 iPivot = -1;
635
636 for (Int_t j = 0; j < nGlo; j++) { // First look for the pivot, ie max unused diagonal element
637 double vl;
638 if (bUnUsed[j] && (TMath::Abs(vl = QueryDiag(j)) > TMath::Max(TMath::Abs(vPivot), eps * fgBuffer->QueryDiag(j)))) {
639 vPivot = vl;
640 iPivot = j;
641 }
642 }
643
644 if (iPivot >= 0) { // pivot found
645 nRank++;
646 bUnUsed[iPivot] = false; // This value is used
647 vPivot = 1.0 / vPivot;
648 DiagElem(iPivot) = -vPivot; // Replace pivot by its inverse
649 //
650 for (Int_t j = 0; j < nGlo; j++) {
651 for (Int_t jj = 0; jj < nGlo; jj++) {
652 if (j != iPivot && jj != iPivot) { // Other elements (!!! do them first as you use old matV[k][j]'s !!!)
653 double& r = j >= jj ? (*this)(j, jj) : (*fgBuffer)(jj, j);
654 r -= vPivot * (j > iPivot ? Query(j, iPivot) : fgBuffer->Query(iPivot, j)) * (iPivot > jj ? Query(iPivot, jj) : fgBuffer->Query(jj, iPivot));
655 }
656 }
657 }
658
659 for (Int_t j = 0; j < nGlo; j++) {
660 if (j != iPivot) { // Pivot row or column elements
661 (*this)(j, iPivot) *= vPivot;
662 (*fgBuffer)(iPivot, j) *= vPivot;
663 }
664 }
665 } else { // No more pivot value (clear those elements)
666 for (Int_t j = 0; j < nGlo; j++) {
667 if (bUnUsed[j]) {
668 vecB[j] = 0.0;
669 for (Int_t k = 0; k < nGlo; k++) {
670 (*this)(j, k) = 0.;
671 if (j != k) {
672 (*fgBuffer)(j, k) = 0;
673 }
674 }
675 }
676 }
677 break; // No more pivots anyway, stop here
678 }
679 }
680
681 if (stabilize) {
682 for (Int_t i = 0; i < nGlo; i++) {
683 for (Int_t j = 0; j < nGlo; j++) {
684 double vl = TMath::Sqrt(colMax[i]) * TMath::Sqrt(rowMax[j]); // Correct matrix V
685 if (i >= j) {
686 (*this)(i, j) *= vl;
687 } else {
688 (*fgBuffer)(j, i) *= vl;
689 }
690 }
691 }
692 }
693 for (Int_t j = 0; j < nGlo; j++) {
694 rowMax[j] = 0.0;
695 for (Int_t jj = 0; jj < nGlo; jj++) { // Reverse matrix elements
696 double vl;
697 if (j >= jj) {
698 vl = (*this)(j, jj) = -Query(j, jj);
699 } else {
700 vl = (*fgBuffer)(j, jj) = -fgBuffer->Query(j, jj);
701 }
702 rowMax[j] += vl * vecB[jj];
703 }
704 }
705
706 for (Int_t j = 0; j < nGlo; j++) {
707 vecB[j] = rowMax[j]; // The final result
708 }
709
710 delete[] bUnUsed;
711 delete[] rowMax;
712 if (stabilize) {
713 delete[] colMax;
714 }
715
716 return nRank;
717}
int32_t i
uint32_t j
Definition RawData.h:0
ClassImp(SymMatrix)
Fast symmetric matrix (from AliROOT) with dynamically expandable size.
std::ostringstream debug
static Bool_t IsZero(Double_t x, Double_t thresh=1e-64)
Definition MatrixSq.h:134
virtual Int_t GetSize() const
Definition MatrixSq.h:39
virtual Double_t Query(Int_t rown, Int_t coln) const
Definition MatrixSq.h:44
Bool_t fSymmetric
is the matrix symmetric? Only lower triangle is filled
Definition MatrixSq.h:145
virtual Double_t QueryDiag(Int_t rc) const
Definition MatrixSq.h:48
Fast symmetric matrix with dynamically expandable size.
Definition SymMatrix.h:38
SymMatrix()
default constructor
Definition SymMatrix.cxx:29
SymMatrix & operator-=(const SymMatrix &src)
minus operator
Int_t GetSizeUsed() const
Definition SymMatrix.h:58
static Int_t fgCopyCnt
matrix copy counter
Definition SymMatrix.h:216
void Print(const Option_t *option="") const override
print itself
int SolveSpmInv(double *vecB, Bool_t stabilize=kTRUE)
Obtain solution of a system of linear equations with symmetric matrix and the inverse (using 'singula...
~SymMatrix() override
destructor
Definition SymMatrix.cxx:82
Double_t ** fElemsAdd
Elements (rows) added dynamicaly.
Definition SymMatrix.h:213
void SetEl(Int_t row, Int_t col, Double_t val)
Definition SymMatrix.h:209
Bool_t SolveChol(Double_t *brhs, Bool_t invert=kFALSE)
Solves the set of n linear equations A x = b.
void MultiplyByVec(const Double_t *vecIn, Double_t *vecOut) const override
fill vecOut by matrix*vecIn
Int_t GetSize() const override
Definition SymMatrix.h:57
Float_t GetDensity() const override
get fraction of non-zero elements
Double_t DiagElem(Int_t r) const override
Definition SymMatrix.h:77
static SymMatrix * fgBuffer
buffer for fast solution
Definition SymMatrix.h:215
Double_t * fElems
Elements booked by constructor.
Definition SymMatrix.h:212
Int_t GetSizeAdded() const
Definition SymMatrix.h:60
SymMatrix & operator=(const SymMatrix &src)
assignment operator
Definition SymMatrix.cxx:92
Bool_t InvertChol()
Invert matrix using Choleski decomposition.
SymMatrix * DecomposeChol()
Return a matrix with Choleski decomposition.
Double_t GetEl(Int_t row, Int_t col) const
Definition SymMatrix.h:208
Bool_t SolveCholN(Double_t *bn, int nRHS, Bool_t invert=kFALSE)
Solves the set of n linear equations A x = b; this version solve multiple RHSs at once.
virtual Int_t GetIndex(Int_t row, Int_t col) const
Definition SymMatrix.h:222
void Clear(Option_t *option="") override
clear dynamic part
void Reset() override
Double_t * GetRow(Int_t r)
get pointer on the row
Int_t GetSizeBooked() const
Definition SymMatrix.h:59
void AddRows(int nrows=1)
add empty rows
SymMatrix & operator+=(const SymMatrix &src)
add operator
Bool_t Multiply(const SymMatrix &right)
multiply from the right
float sum(float s, o2::dcs::DataPointValue v)
Definition dcs-ccdb.cxx:39
GLenum src
Definition glcorearb.h:1767
GLsizeiptr size
Definition glcorearb.h:659
GLdouble GLdouble right
Definition glcorearb.h:4077
GLboolean GLboolean GLboolean b
Definition glcorearb.h:1233
GLuint GLfloat * val
Definition glcorearb.h:1582
GLboolean r
Definition glcorearb.h:1233
GLboolean invert
Definition glcorearb.h:543
LOG(info)<< "Compressed in "<< sw.CpuTime()<< " s"
o2::InteractionRecord ir(0, 0)