Project
Loading...
Searching...
No Matches
PipeRun4.cxx
Go to the documentation of this file.
1// Copyright 2019-2020 CERN and copyright holders of ALICE O2.
2// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders.
3// All rights not expressly granted are reserved.
4//
5// This software is distributed under the terms of the GNU General Public
6// License v3 (GPL Version 3), copied verbatim in the file "COPYING".
7//
8// In applying this license CERN does not waive the privileges and immunities
9// granted to it by virtue of its status as an Intergovernmental Organization
10// or submit itself to any jurisdiction.
11
15#include <TGeoCompositeShape.h>
16#include <TGeoCone.h>
17#include <TGeoPcon.h>
18#include <TGeoTorus.h>
19#include <TGeoTube.h>
20#include <TGeoEltu.h>
21#include <TVirtualMC.h>
22#include "TGeoManager.h" // for TGeoManager, gGeoManager
23#include "TGeoMaterial.h" // for TGeoMaterial
24#include "TGeoMedium.h" // for TGeoMedium
25#include "TGeoVolume.h" // for TGeoVolume
26#include <TGeoArb8.h> // for TGeoTrap
27#include <TGeoTrd1.h> // for TGeoTrap
28// force availability of assert
29#ifdef NDEBUG
30#undef NDEBUG
31#endif
32#include <cassert>
33
34//-------------------------------------------------------------------------
35// Beam pipe class for ALICE ITS3 & FOCAL upgrade
36// Imported from Pipe class
37// Original Authors:
38// F. Manso
39// A. Morsch
40// R. Tieulent
41// M. Sitta
42//-------------------------------------------------------------------------
43
44using namespace o2::passive;
45
46PipeRun4::~PipeRun4() = default;
48PipeRun4::PipeRun4(const char* name, const char* title, float rho, float thick)
49 : PassiveBase(name, title), mBePipeRmax(rho), mBePipeThick(thick)
50{
51}
52PipeRun4::PipeRun4(const PipeRun4& rhs) = default;
53
54PipeRun4& PipeRun4::operator=(const PipeRun4& rhs)
55{
56 // self assignment
57 if (this == &rhs) {
58 return *this;
59 }
60
61 // base class assignment
62 PassiveBase::operator=(rhs);
63
64 return *this;
65}
66
68{
69 createMaterials();
70 //
71 // Class describing the beam pipe geometry
72 //
73 float z, zsh, z0;
74 //
75 // Rotation Matrices
76 //
77 const float kDegRad = TMath::Pi() / 180.;
78 // Rotation by 180 deg
79 TGeoRotation* rot180 = new TGeoRotation("rot180", 90., 180., 90., 90., 180., 0.);
80 TGeoRotation* rotyz = new TGeoRotation("rotyz", 90., 180., 0., 180., 90., 90.);
81 TGeoRotation* rotxz = new TGeoRotation("rotxz", 0., 0., 90., 90., 90., 180.);
82 //
83
84 // Media
86 const TGeoMedium* kMedAir = matmgr.getTGeoMedium("PIPE_AIR");
87 const TGeoMedium* kMedAirNF = matmgr.getTGeoMedium("PIPE_AIR_NF");
88 const TGeoMedium* kMedAirHigh = matmgr.getTGeoMedium("PIPE_AIR_HIGH");
89
90 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
91 const TGeoMedium* kMedVacNF = matmgr.getTGeoMedium("PIPE_VACUUM_NF");
92 const TGeoMedium* kMedVacHC = matmgr.getTGeoMedium("PIPE_VACUUM_HC");
93 const TGeoMedium* kMedVacNFHC = matmgr.getTGeoMedium("PIPE_VACUUM_NFHC");
94
95 const TGeoMedium* kMedInsu = matmgr.getTGeoMedium("PIPE_INS_C0");
96
97 const TGeoMedium* kMedSteel = matmgr.getTGeoMedium("PIPE_INOX");
98 const TGeoMedium* kMedSteelNF = matmgr.getTGeoMedium("PIPE_INOX_NF");
99 const TGeoMedium* kMedSteelHC = matmgr.getTGeoMedium("PIPE_INOX_HC");
100 const TGeoMedium* kMedSteelNFHC = matmgr.getTGeoMedium("PIPE_INOX_NFHC");
101
102 const TGeoMedium* kMedBe = matmgr.getTGeoMedium("PIPE_BE");
103
104 const TGeoMedium* kMedCu = matmgr.getTGeoMedium("PIPE_CU");
105 const TGeoMedium* kMedCuNF = matmgr.getTGeoMedium("PIPE_CU_NF");
106 const TGeoMedium* kMedCuHC = matmgr.getTGeoMedium("PIPE_CU_HC");
107 const TGeoMedium* kMedCuNFHC = matmgr.getTGeoMedium("PIPE_CU_NFHC");
108
109 const TGeoMedium* kMedAlu2219 = matmgr.getTGeoMedium("PIPE_AA2219");
110 const TGeoMedium* kMedRohacell = matmgr.getTGeoMedium("PIPE_ROHACELL");
111 const TGeoMedium* kMedPolyimide = matmgr.getTGeoMedium("PIPE_POLYIMIDE");
112 const TGeoMedium* kMedAlBe = matmgr.getTGeoMedium("PIPE_AlBe");
113 const TGeoMedium* kMedCarbonFiber = matmgr.getTGeoMedium("PIPE_M55J6K");
114 const TGeoMedium* kMedTitanium = matmgr.getTGeoMedium("PIPE_TITANIUM");
115 const TGeoMedium* kMedAlu7075 = matmgr.getTGeoMedium("PIPE_AA7075");
116
117 // Top volume
118 TGeoVolume* top = gGeoManager->GetVolume("cave");
119 TGeoVolume* barrel = gGeoManager->GetVolume("barrel");
120 TGeoVolume* caveRB24 = gGeoManager->GetVolume("caveRB24");
121 //
122 //
124 // //
125 // The Central Vacuum system //
126 // //
128 //
129 //
130 // The ALICE central beam-pipe according to drawing LHCVC2C_0001
131 // Drawings of sub-elements:
132 //
133 // Pos 7 - Minimised Flange: LHCVFX_P0025
134 // Pos 6 - Standard Flange: STDVFUHV0009
135 // Pos 8 - Bellow: LHCVBX__0001
136 //
137 // Absolute z-coordinates -82.0 - 400.0 cm
138 // Total length: 482.0 cm
139 // It consists of 3 main parts:
140 // CP/2 The flange on the non-absorber side: 36.5 cm
141 // CP/1 The central Be pipe: 405.0 cm
142 // CP/3 The double-bellow and flange on the absorber side: 40.5 cm
143
144 //
145 /*
146 // Starting position in z
147 const float kCPz0 = -400.0;
148 // Length of the CP/1 section
149 const float kCP1Length = 405.0;
150 // Length of the CP/2 section
151 const float kCP2Length = 36.5;
152 // Length of the CP/3 section
153 const float kCP3Length = 40.5;
154 // Position of the CP/2 section
155 // const float kCP2pos = kCPz0 + kCP2Length / 2.;
156 // Position of the CP/3 section
157 const float kCP3pos = kCPz0 + kCP2Length + kCP1Length + kCP3Length/2.;
158 */
159
161 // Authors: F. Manso, R. Tieulent
162 // Drawings from C. Gargiulo :
163 // \\cern.ch\dfs\Workspaces\c\cgargiul\EXPERIMENT\ALICE\ALICE_MECHANICS\ALICE_DATA_PACKAGE\IN\DETECTORS\ITS_UPGRADE\1-DESIGN\3D_cad_model\R14_20140311_ALI\
164 //
165 //
166 // central beam pipe
167 //------------------- Pipe version 4.7 March 2014 -----------------------------
168 TGeoVolumeAssembly* beamPipeCsideSection = new TGeoVolumeAssembly("BeamPipeCsideSection");
169 // If user set Rmax=0/Thick=0 use defaults, else use user input
170 const float kBeryliumSectionOuterRadius = (mBePipeRmax > 0.) ? mBePipeRmax : 1.65;
171 const float kBeryliumSectionThickness = (mBePipeThick > 0.) ? mBePipeThick : 0.05;
172 float kBeryliumSectionZmax = 25.0;
173 float kBeryliumSectionZmin = -25.0;
174
175 const float kBellowSectionOuterRadius = 2.15;
176 const float kCSideBPSOuterRadius = 2.22;
177 const float kCSideBPSWallThickness = 0.15;
178 const float kBellowSectionZmax = -55.35;
179 const float kBellowOuterRadius = 2.8;
180 const float kFirstConeAngle = 15. * TMath::DegToRad();
181 const float kChangeThicknessAngle = 45. * TMath::DegToRad();
182 const float kCSideBPSLength = 3.53;
183 const float kDzFirstCone = (kCSideBPSOuterRadius - kBeryliumSectionOuterRadius) / TMath::Tan(kFirstConeAngle);
184 const float kReduceThicknessPartAfterBPSLength = 1.52;
185 const float kThinPartBeforeBellowLength = 1.025;
186
187 const float kDistanceBetweenBellows = 2.5;
188
189 const float kAdaptConeZmax = -77.43;
190 const float kAdaptConeZmin = -80.6;
191 const float kAdaptConeRmax = 3.0;
192 const float kFlangeRmax = 4.3;
193 const float kFlangeLength = 1.4;
194
195 const float kBellowPlieRadius = 0.17; // radius of bellow plies
196 const float kBellowPlieThickness = 0.03; // Thickness of bellow plies 300 microns
197 const int kNBellowConvolutions = 7;
198
199 const float kZ1 = kBeryliumSectionZmin; // z of Be - Al jonction on the C-side
200 const float kZ2 = kBellowSectionZmax + kDzFirstCone; // z of end of small diameter part (beginning of first cone before the bellow
201 const float kZ3 = kBellowSectionZmax + (kCSideBPSOuterRadius - kBellowSectionOuterRadius) / TMath::Tan(kFirstConeAngle); // z of End of first cone part with 0.8mm thickness
202 const float kZ4 = kBellowSectionZmax; // z of End of first Cone
203 const float kZ5 = kBellowSectionZmax - kCSideBPSLength; // z of End of Beam Pipe support section
204 const float kZ6 = kBellowSectionZmax - kCSideBPSLength - (kCSideBPSOuterRadius - kBellowSectionOuterRadius) / TMath::Tan(kChangeThicknessAngle); // z of End of Beam Pipe support section after reduction of thickness
205 const float kZ7 = kZ6 - kReduceThicknessPartAfterBPSLength; // Z of end of 800 microns section after Beam Pipe Support
206 const float kZ8 = kZ7 - (kBeryliumSectionThickness - kBellowPlieThickness) / TMath::Tan(kChangeThicknessAngle);
207 const float kZ9 = kZ7 - kThinPartBeforeBellowLength; // Z of the start of first bellow
208 const float kFirstBellowZmax = kZ9;
209
210 //---------------- Be pipe around the IP ----------
211 TGeoTube* berylliumTube =
212 new TGeoTube("IP_PIPEsh", kBeryliumSectionOuterRadius - kBeryliumSectionThickness, kBeryliumSectionOuterRadius,
213 (kBeryliumSectionZmax - kBeryliumSectionZmin) / 2);
214 TGeoVolume* voberylliumTube = new TGeoVolume("IP_PIPE", berylliumTube, kMedBe);
215 voberylliumTube->SetLineColor(kRed);
216
217 TGeoTube* berylliumTubeVacuum =
218 new TGeoTube("IP_PIPEVACUUMsh", 0., kBeryliumSectionOuterRadius, (kBeryliumSectionZmax - kBeryliumSectionZmin) / 2);
219 TGeoVolume* voberylliumTubeVacuum = new TGeoVolume("IP_PIPEMOTHER", berylliumTubeVacuum, kMedVac);
220 voberylliumTubeVacuum->AddNode(voberylliumTube, 1, gGeoIdentity);
221 voberylliumTubeVacuum->SetVisibility(0);
222 voberylliumTubeVacuum->SetLineColor(kGreen);
223
224 beamPipeCsideSection->AddNode(voberylliumTubeVacuum, 1,
225 new TGeoTranslation(0., 0., (kBeryliumSectionZmax + kBeryliumSectionZmin) / 2));
226
227 //---------------- Al tube ------------------
228 TGeoPcon* aluBeforeBellows = new TGeoPcon(0., 360., 9);
229 aluBeforeBellows->DefineSection(0, kZ9, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
230 aluBeforeBellows->DefineSection(1, kZ8, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
231 aluBeforeBellows->DefineSection(2, kZ7, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
232 aluBeforeBellows->DefineSection(3, kZ6, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
233 aluBeforeBellows->DefineSection(4, kZ5, kCSideBPSOuterRadius - kCSideBPSWallThickness, kCSideBPSOuterRadius);
234 aluBeforeBellows->DefineSection(5, kZ4, kCSideBPSOuterRadius - kCSideBPSWallThickness, kCSideBPSOuterRadius);
235 aluBeforeBellows->DefineSection(6, kZ3, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
236 aluBeforeBellows->DefineSection(7, kZ2, kBeryliumSectionOuterRadius - kBeryliumSectionThickness, kBeryliumSectionOuterRadius);
237 aluBeforeBellows->DefineSection(8, kZ1, kBeryliumSectionOuterRadius - kBeryliumSectionThickness, kBeryliumSectionOuterRadius);
238 TGeoVolume* voaluBeforeBellows = new TGeoVolume("aluBeforeBellows", aluBeforeBellows, kMedAlu2219);
239 voaluBeforeBellows->SetLineColor(kBlue);
240 beamPipeCsideSection->AddNode(voaluBeforeBellows, 1, gGeoIdentity);
241
242 TGeoPcon* aluBeforeBellowsVacuum = new TGeoPcon(0., 360., 7);
243 aluBeforeBellowsVacuum->DefineSection(0, kZ9, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
244 aluBeforeBellowsVacuum->DefineSection(1, kZ6, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
245 aluBeforeBellowsVacuum->DefineSection(2, kZ5, 0., kCSideBPSOuterRadius - kCSideBPSWallThickness);
246 aluBeforeBellowsVacuum->DefineSection(3, kZ4, 0., kCSideBPSOuterRadius - kCSideBPSWallThickness);
247 aluBeforeBellowsVacuum->DefineSection(4, kZ3, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
248 aluBeforeBellowsVacuum->DefineSection(5, kZ2, 0., kBeryliumSectionOuterRadius - kBeryliumSectionThickness);
249 aluBeforeBellowsVacuum->DefineSection(6, kZ1, 0., kBeryliumSectionOuterRadius - kBeryliumSectionThickness);
250 TGeoVolume* voaluBeforeBellowsVacuum = new TGeoVolume("aluBeforeBellowsVacuum", aluBeforeBellowsVacuum, kMedVac);
251 voaluBeforeBellowsVacuum->SetVisibility(1);
252 voaluBeforeBellowsVacuum->SetLineColor(kGreen);
253 voaluBeforeBellows->AddNode(voaluBeforeBellowsVacuum, 1, gGeoIdentity);
254 //-------------------------------------------------
255
256 float kBellowLength = kNBellowConvolutions * (4. * kBellowPlieRadius - 2. * kBellowPlieThickness);
257 // ------------------ First Bellow --------------------
258 TGeoVolume* vobellows1 =
259 makeBellowCside("bellows1", kNBellowConvolutions, kBellowSectionOuterRadius - kBeryliumSectionThickness,
260 kBellowOuterRadius, kBellowPlieRadius, kBellowPlieThickness);
261 beamPipeCsideSection->AddNode(
262 vobellows1, 1, new TGeoTranslation(0., 0., kFirstBellowZmax - kBellowLength / 2. - 2. * kBellowPlieRadius));
263 //------------------------------------------------------
264
265 const float kZ10 = kFirstBellowZmax - kBellowLength; // End of First bellow
266 const float kZ12 = kZ10 - kThinPartBeforeBellowLength;
267 const float kZ11 = kZ12 +
268 (kBeryliumSectionThickness - kBellowPlieThickness) /
269 TMath::Tan(kChangeThicknessAngle); // End of 300 microns thickness part after first bellow
270 const float kZ13 = kZ12 - kDistanceBetweenBellows;
271 const float kZ14 = kZ13 - (kBeryliumSectionThickness - kBellowPlieThickness) / TMath::Tan(kChangeThicknessAngle);
272 const float kZ15 = kZ14 - kThinPartBeforeBellowLength;
273 const float kSecondBellowZmax = kZ15;
274
275 //---------- Al tube between the bellows ----------
276 TGeoPcon* tube4 = new TGeoPcon(0., 360., 6);
277 tube4->DefineSection(0, kZ10, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
278 tube4->DefineSection(1, kZ11, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
279 tube4->DefineSection(2, kZ12, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
280 tube4->DefineSection(3, kZ13, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
281 tube4->DefineSection(4, kZ14, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
282 tube4->DefineSection(5, kZ15, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
283 TGeoVolume* votube4 = new TGeoVolume("votube4", tube4, kMedAlu2219);
284 votube4->SetLineColor(kBlue);
285 beamPipeCsideSection->AddNode(votube4, 1, gGeoIdentity);
286
287 TGeoTube* tube4Vacuum = new TGeoTube(0., kBellowSectionOuterRadius - kBeryliumSectionThickness, -(kZ15 - kZ10) / 2.);
288 TGeoVolume* votube4Vacuum = new TGeoVolume("tube4Vacuum", tube4Vacuum, kMedVac);
289 votube4Vacuum->SetVisibility(1);
290 votube4->AddNode(votube4Vacuum, 1, new TGeoTranslation(0., 0., (kZ10 + kZ15) / 2.));
291
292 // ------------------ Second Bellow --------------------
293 TGeoVolume* vobellows2 =
294 makeBellowCside("bellows2", kNBellowConvolutions, kBellowSectionOuterRadius - kBeryliumSectionThickness,
295 kBellowOuterRadius, kBellowPlieRadius, kBellowPlieThickness);
296 beamPipeCsideSection->AddNode(
297 vobellows2, 1, new TGeoTranslation(0., 0., kSecondBellowZmax - kBellowLength / 2. - 2. * kBellowPlieRadius));
298 // -----------------------------------------------------
299
300 const float kZ16 = kSecondBellowZmax - kBellowLength; // End of Second bellow
301 const float kZ18 = kZ16 - kThinPartBeforeBellowLength;
302 const float kZ17 = kZ18 +
303 (kBeryliumSectionThickness - kBellowPlieThickness) /
304 TMath::Tan(kChangeThicknessAngle); // End of 300 microns thickness part after first bellow
305 const float kZ19 = kAdaptConeZmax; // Start of the Adpation Cone
306 const float kZ20 = kAdaptConeZmin; // End of the Adpation Cone
307 const float kZ21 = kAdaptConeZmin - kFlangeLength; // End of the Flange
308
309 //----------- 15 deg Conical adaptator + flange ----------
310 TGeoPcon* adaptator = new TGeoPcon(0., 360., 7);
311 adaptator->DefineSection(0, kZ16, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
312 adaptator->DefineSection(1, kZ17, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
313 adaptator->DefineSection(2, kZ18, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
314 adaptator->DefineSection(3, kZ19, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
315 adaptator->DefineSection(4, kZ20, kBellowSectionOuterRadius - kBeryliumSectionThickness, kAdaptConeRmax);
316 adaptator->DefineSection(5, kZ20, kBellowSectionOuterRadius - kBeryliumSectionThickness, kFlangeRmax);
317 adaptator->DefineSection(6, kZ21, kBellowSectionOuterRadius - kBeryliumSectionThickness, kFlangeRmax);
318 TGeoVolume* voadaptator = new TGeoVolume("voadaptator", adaptator, kMedAlu2219);
319 voadaptator->SetLineColor(kBlue);
320 beamPipeCsideSection->AddNode(voadaptator, 1, gGeoIdentity);
321
322 TGeoPcon* adaptatorvide = new TGeoPcon(0., 360., 4);
323 adaptatorvide->DefineSection(0, kZ16, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
324 adaptatorvide->DefineSection(1, kZ19, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
325 adaptatorvide->DefineSection(2, kZ20, 0., kAdaptConeRmax - kBeryliumSectionThickness);
326 adaptatorvide->DefineSection(3, kZ21, 0., kAdaptConeRmax - kBeryliumSectionThickness);
327 TGeoVolume* voadaptatorvide = new TGeoVolume("voadaptatorvide", adaptatorvide, kMedVac);
328 voadaptatorvide->SetVisibility(1);
329 // voadaptatorvide->SetLineColor(kGreen);
330 voadaptator->AddNode(voadaptatorvide, 1, gGeoIdentity);
331 //------------------------------------------------------
332
333 barrel->AddNode(beamPipeCsideSection, 1, new TGeoTranslation(0., 30., 0.));
334
336 // Beam Pipe support F.M. 2021 rev 2023 //
338
339 // Beam Pipe Support
340 TGeoVolume* beamPipeSupport = new TGeoVolumeAssembly("BeamPipeSupport");
341 const float kBeamPipesupportZpos = kZ5;
342
343 // Dimensions :
344 const float kSupportXdim = 20.67;
345 const float kBeamPipeRingZdim = 3.6;
346 const float kVespelRmax = 2.3;
347 const float kVespelRmin = 2.22;
348 const float kBeampipeCarbonCollarRmin = 2.5;
349 const float kBeampipeCarbonCollarRmax = 2.7;
350 const float kFixationCarbonCollarRmin = 1.5;
351 const float kFixationCarbonCollarRmax = 1.7;
352 const float kFixationCarbonCollarDZ = 2.5;
353 const float kSkinThickness = 0.3;
354 const float kSkinXdim = 14.2;
355 const float kSkinYdim = 1.4;
356 const float kSkinZdim = kFixationCarbonCollarDZ;
357 const float kCarbonEarsXdim = 2.8;
358 const float kCarbonEarsYdimIn = 1.1;
359 const float kCarbonEarsYdimOut = 0.6;
360 const float kCarbonEarsZdim = kFixationCarbonCollarDZ;
361 const float kScrewDiameter = 0.4;
362 const float kScrewHeadHeight = 0.2;
363 const float kScrewHeadDiameter = 0.6;
364 const float kScrewPositionIn = 3.25;
365 const float kScrewPositionOut = 21.80;
366 const float kScrewThreadLength = 1.0;
367 const float holeSightDiameterOut = 0.60;
368 const float holeSightDiameterIn = 0.25;
369
370 // Support Bar
371 TGeoVolumeAssembly* supportBar = new TGeoVolumeAssembly("BPS_SupportBar");
372 TGeoBBox* carbonSkinBPS = new TGeoBBox("carbonSkinBPS", kSkinXdim / 2., kSkinYdim / 2., kSkinZdim / 2.);
373 TGeoBBox* foambarBPS = new TGeoBBox("foambarBPS", kSkinXdim / 2. - kSkinThickness, kSkinYdim / 2. - kSkinThickness,
374 kSkinZdim / 2. - kSkinThickness / 2.);
375 TGeoBBox* carbonEarsBPSin = new TGeoBBox("carbonEarsBPSin", kCarbonEarsXdim / 2., kCarbonEarsYdimIn / 2., kCarbonEarsZdim / 2.);
376 TGeoBBox* carbonEarsBPSout = new TGeoBBox("carbonEarsBPSout", kCarbonEarsXdim / 2., kCarbonEarsYdimOut / 2., kCarbonEarsZdim / 2.);
377
378 //===== building the main support bar in carbon ====
379 TGeoTranslation* tBP1 = new TGeoTranslation("tBP1", (kSkinXdim + kCarbonEarsXdim) / 2., -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.);
380 TGeoTranslation* tBP2 = new TGeoTranslation("tBP2", -(kSkinXdim + kCarbonEarsXdim) / 2., 0., 0.);
381 tBP1->RegisterYourself();
382 tBP2->RegisterYourself();
383
384 TGeoRotation* rotScrew = new TGeoRotation("rotScrew", 0., 90., 0.);
385 rotScrew->RegisterYourself();
386
387 TGeoTube* holeScrew = new TGeoTube("holeScrew", 0., kScrewDiameter / 2., kCarbonEarsYdimIn / 2. + 0.001);
388 TGeoTube* holeSight = new TGeoTube("holeSight", 0., holeSightDiameterOut / 2., kSkinZdim / 2. + 0.001);
389 TGeoTranslation* tHoleSight = new TGeoTranslation("tHoleSight", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - 6.55, 0., 0.);
390 tHoleSight->RegisterYourself();
391 double kXHoleIn = kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - kScrewPositionIn;
392 double kXHoleOut = kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - kScrewPositionOut;
393 TGeoCombiTrans* tHoleScrew1 = new TGeoCombiTrans("tHoleScrew1", kXHoleIn, -(kSkinYdim - kCarbonEarsYdimIn) / 2., -0.7, rotScrew);
394 TGeoCombiTrans* tHoleScrew2 = new TGeoCombiTrans("tHoleScrew2", kXHoleIn, -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.7, rotScrew);
395 TGeoCombiTrans* tHoleScrew3 = new TGeoCombiTrans("tHoleScrew3", kXHoleOut, -(kSkinYdim - kCarbonEarsYdimIn) / 2., -0.7, rotScrew);
396 TGeoCombiTrans* tHoleScrew4 = new TGeoCombiTrans("tHoleScrew4", kXHoleOut, -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.7, rotScrew);
397 tHoleScrew1->RegisterYourself();
398 tHoleScrew2->RegisterYourself();
399 tHoleScrew3->RegisterYourself();
400 tHoleScrew4->RegisterYourself();
401
402 TGeoCompositeShape* supportBarCarbon = new TGeoCompositeShape("BPS_supportBarCarbon", "(carbonSkinBPS-foambarBPS)+carbonEarsBPSin:tBP1-holeScrew:tHoleScrew1-holeScrew:tHoleScrew2+carbonEarsBPSout:tBP2-holeSight:tHoleSight-holeScrew:tHoleScrew3-holeScrew:tHoleScrew4");
403 TGeoVolume* supportBarCarbonVol = new TGeoVolume("BPS_supportBarCarbon", supportBarCarbon, kMedCarbonFiber);
404 supportBarCarbonVol->SetLineColor(kGray + 2);
405 supportBar->AddNode(supportBarCarbonVol, 1, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
406 TGeoRotation* rotBar1 = new TGeoRotation("rotBar1", 0., 180., 180.);
407 rotBar1->RegisterYourself();
408 TGeoCombiTrans* transBar1 = new TGeoCombiTrans("transBar1", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0, rotBar1);
409 transBar1->RegisterYourself();
410 supportBar->AddNode(supportBarCarbonVol, 2, transBar1);
411 //==================================================
412
413 //==== Adding the internal foam volumes ============
414 TGeoCompositeShape* foamVolume = new TGeoCompositeShape("foamVolume", "foambarBPS-holeSight:tHoleSight");
415 TGeoVolume* FoamVolume = new TGeoVolume("supportBarFoam", foamVolume, kMedRohacell);
416 FoamVolume->SetLineColor(kGreen);
417 TGeoRotation* rotBar2 = new TGeoRotation("rotBar2", 0., 0., 180.);
418 rotBar2->RegisterYourself();
419 TGeoCombiTrans* transBar2 = new TGeoCombiTrans("transBar2", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0, rotBar2);
420 transBar2->RegisterYourself();
421 supportBar->AddNode(FoamVolume, 1, transBar1);
422 supportBar->AddNode(FoamVolume, 2, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
423 //==================================================
424
425 //================= Screws ====================
426 TGeoVolumeAssembly* screw = new TGeoVolumeAssembly("screw");
427 TGeoTube* headScrew = new TGeoTube("headScrew", 0., kScrewHeadDiameter / 2., kScrewHeadHeight / 2.);
428 TGeoVolume* HeadScrew = new TGeoVolume("HeadScrew", headScrew, kMedTitanium);
429 HeadScrew->SetLineColor(kRed);
430 TGeoTube* threadScrew = new TGeoTube("threadScrew", 0., kScrewDiameter / 2., kCarbonEarsYdimIn / 2.);
431 TGeoVolume* ThreadScrew = new TGeoVolume("ThreadScrew", threadScrew, kMedTitanium);
432 ThreadScrew->SetLineColor(kRed);
433 screw->AddNode(HeadScrew, 1, new TGeoTranslation(0., 0., -(kCarbonEarsYdimIn + kScrewHeadHeight) / 2.));
434 screw->AddNode(ThreadScrew, 1);
435 TGeoCombiTrans* tScrew1 = new TGeoCombiTrans("transScrew1", kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., -0.7, rotScrew);
436 TGeoCombiTrans* tScrew2 = new TGeoCombiTrans("transScrew2", kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., 0.7, rotScrew);
437 TGeoCombiTrans* tScrew3 = new TGeoCombiTrans("transScrew3", -kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., -0.7, rotScrew);
438 TGeoCombiTrans* tScrew4 = new TGeoCombiTrans("transScrew4", -kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., 0.7, rotScrew);
439 tScrew1->RegisterYourself();
440 tScrew2->RegisterYourself();
441 tScrew3->RegisterYourself();
442 tScrew4->RegisterYourself();
443 supportBar->AddNode(screw, 1, tScrew1);
444 supportBar->AddNode(screw, 2, tScrew2);
445 supportBar->AddNode(screw, 3, tScrew3);
446 supportBar->AddNode(screw, 4, tScrew4);
447 //==============================================
448
449 // === Optical sights (assuming the same than the MFT ones) ===
450 TGeoVolumeAssembly* fixationSight = new TGeoVolumeAssembly("fixationSight");
451 TGeoTube* screwSight = new TGeoTube("screwSight", holeSightDiameterIn / 2., holeSightDiameterOut / 2., kScrewThreadLength / 2.);
452 TGeoVolume* ScrewSight = new TGeoVolume("ScrewSight", screwSight, kMedSteel);
453 ScrewSight->SetLineColor(kBlue);
454 double supportSightLength = 0.5;
455 TGeoTube* supportSight = new TGeoTube("supportSight", holeSightDiameterIn / 2., 1.4 / 2., supportSightLength / 2.);
456 TGeoVolume* SupportSight = new TGeoVolume("SupportSight", supportSight, kMedSteel);
457 SupportSight->SetLineColor(kBlue);
458 fixationSight->AddNode(ScrewSight, 1);
459 fixationSight->AddNode(SupportSight, 1, new TGeoTranslation(0., 0., (kScrewThreadLength + supportSightLength) / 2.));
460 SupportSight->SetVisibility(kTRUE);
461 fixationSight->SetVisibility(kTRUE);
462 TGeoTranslation* tSight1 = new TGeoTranslation("tSight1", 6.55, 0., (kSkinZdim - kScrewThreadLength) / 2.);
463 TGeoTranslation* tSight2 = new TGeoTranslation("tSight2", -6.55, 0., (kSkinZdim - kScrewThreadLength) / 2.);
464 tSight1->RegisterYourself();
465 tSight2->RegisterYourself();
466 supportBar->AddNode(fixationSight, 1, tSight1);
467 supportBar->AddNode(fixationSight, 2, tSight2);
468 // =====================
469
470 beamPipeSupport->AddNode(supportBar, 1);
471
472 //======================= Fixation to pipe ========================
473 TGeoTube* pipeSupportTubeCarbon = new TGeoTube(kBeampipeCarbonCollarRmin, kBeampipeCarbonCollarRmax, kFixationCarbonCollarDZ / 2.);
474 TGeoVolume* FixationToPipeVol = new TGeoVolume("FixationToPipe", pipeSupportTubeCarbon, kMedCarbonFiber);
475 FixationToPipeVol->SetLineColor(kGray + 2);
476 beamPipeSupport->AddNode(FixationToPipeVol, 1);
477 //==================================================================
478
479 //================ Beam Pipe Ring =================
480 TGeoVolumeAssembly* beamPipeRing = new TGeoVolumeAssembly("beamPipeRing");
481 TGeoTube* beamPipeRingCarbon = new TGeoTube(kVespelRmax, kBeampipeCarbonCollarRmin, kBeamPipeRingZdim / 2.);
482 TGeoVolume* beamPipeRingCarbonVol = new TGeoVolume("beamPipeRingCarbon", beamPipeRingCarbon, kMedCarbonFiber);
483 beamPipeRingCarbonVol->SetLineColor(kGray + 2);
484 beamPipeRing->AddNode(beamPipeRingCarbonVol, 1,
485 new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
486 TGeoTube* beamPipeRingVespel = new TGeoTube(kVespelRmin, kVespelRmax, (kBeamPipeRingZdim + 0.4) / 2.);
487 TGeoVolume* beamPipeRingVespelVol = new TGeoVolume("beamPipeRingVespel", beamPipeRingVespel, kMedPolyimide);
488 beamPipeRingVespelVol->SetLineColor(kGreen + 2);
489 beamPipeRing->AddNode(beamPipeRingVespelVol, 1,
490 new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
491 beamPipeSupport->AddNode(beamPipeRing, 1);
492 beamPipeSupport->SetVisibility(1);
493 beamPipeSupport->IsVisible();
494 //==================================================
495
496 //============ Wings (connecting the support bars to the cage support) ===============
497 TGeoVolumeAssembly* Wing = new TGeoVolumeAssembly("Wing");
498
499 // Tige
500 double lengthRod = 28.7 - 1.0 - 1.0 - 1.9; // sligtly decreased to accomodate to the fixation pieces
501 double diameterRod = 1.815; // sligtly increased to account of the two ends of the rod
502 double xRod = 22.1;
503 TGeoTube* Rod = new TGeoTube(0., diameterRod / 2., lengthRod / 2.);
504 TGeoVolume* rod = new TGeoVolume("rod", Rod, kMedAlu7075);
505 rod->SetLineColor(kGray);
506
507 // Connecteur Tige / Beam support
508 double lengthFixRod = 4.0;
509 double diameterFixRod = 3.0;
510 //---------------------------------------
511 TGeoTube* RodBracket = new TGeoTube("RodBracket", 0., diameterFixRod / 2., lengthFixRod / 2.);
512 TGeoBBox* BracketPlane = new TGeoBBox("BracketPlane", 3., 3., 3.);
513 TGeoTranslation* tBracketPlane = new TGeoTranslation("tBracketPlane", 0., 3. - kCarbonEarsYdimOut / 2., (lengthFixRod + 6.) / 2. - 2.6);
514 tBracketPlane->RegisterYourself();
515 TGeoCompositeShape* Bracket = new TGeoCompositeShape("Bracket", "RodBracket-BracketPlane:tBracketPlane");
516 TGeoVolume* bracket = new TGeoVolume("bracket", Bracket, kMedAlu7075);
517 //---------------------------------------
518
519 // Carbon box surrounding the aluminum rod
520 TGeoVolumeAssembly* carbonBox = new TGeoVolumeAssembly("carbonBox");
521 double eCarbonBox = 0.1;
522 double trdWidth = 8.6;
523 double trdLength = 11.05 - 1.0 - 0.6; // on each side to accomodate the bracket and TRDPlate
524 TGeoTrd1* trdOut = new TGeoTrd1("trdOut", 1.405 / 2, 6.632 / 2, trdLength / 2, trdWidth / 2);
525 TGeoTrd1* trdIn = new TGeoTrd1("trdIn", 1.405 / 2 - eCarbonBox, 6.632 / 2 - eCarbonBox, trdLength / 2 + eCarbonBox, trdWidth / 2 - eCarbonBox);
526 TGeoCompositeShape* trd = new TGeoCompositeShape("trd", "trdOut-trdIn");
527 TGeoVolume* TRD = new TGeoVolume("TRD", trd, kMedCarbonFiber);
528 TRD->SetLineColor(kGray);
529
530 // To close the carbon box
531 TGeoTrd1* trdPlate = new TGeoTrd1("trdPlate", 1.405 / 2, 6.632 / 2, 1.0 / 2, trdWidth / 2);
532 TGeoVolume* TRDPlate = new TGeoVolume("TDRPlate", trdPlate, kMedAlu7075);
533
534 // To connect on the main cage
535 TGeoBBox* plateBox = new TGeoBBox("plateBox", 7.5 / 2., 9.5 / 2., 1.9 / 2.);
536 TGeoBBox* removeBox = new TGeoBBox("removeBox", 2.1 / 2 + 0.0001, 2.5 / 2. + 0.0001, 1.9 / 2. + 0.0001);
537 TGeoTranslation* tRemove1 = new TGeoTranslation("tRemove1", (7.5 - 2.1) / 2, -(9.5 - 2.5) / 2, 0.);
538 TGeoTranslation* tRemove2 = new TGeoTranslation("tRemove2", -(7.5 - 2.1) / 2, -(9.5 - 2.5) / 2, 0.);
539 tRemove1->RegisterYourself();
540 tRemove2->RegisterYourself();
541
542 // Connectors Rod / Cage
543 TGeoCompositeShape* PlateBox = new TGeoCompositeShape("PlateBox", "plateBox-removeBox:tRemove1-removeBox:tRemove2");
544 TGeoVolume* PLATEBox = new TGeoVolume("PLATEBox", PlateBox, kMedAlu7075);
545
546 TGeoRotation* PlateRot = new TGeoRotation("PlateRot", 0., 0., 0.);
547 TGeoRotation* FrontRot = new TGeoRotation("FrontRot", 180., 90., 0.);
548 TGeoCombiTrans* tFrontCarbonBox = new TGeoCombiTrans("tFrontCarbonBox", 0., 0., 0., FrontRot);
549 PlateRot->RegisterYourself();
550 FrontRot->RegisterYourself();
551 tFrontCarbonBox->RegisterYourself();
552 TGeoCombiTrans* tTRDPlate = new TGeoCombiTrans("tTRDPlate", 0., 0., -(trdLength + 1.0) / 2, FrontRot);
553 tTRDPlate->RegisterYourself();
554 TRDPlate->SetLineColor(kGray + 2);
555 TGeoCombiTrans* tPlateBox = new TGeoCombiTrans("tPlateBox", 0., 0., -(trdLength + 1.9) / 2 - 1.0, PlateRot);
556 tPlateBox->RegisterYourself();
557 PLATEBox->SetLineColor(kGray);
558
559 double xyOut[16] = {0};
560 xyOut[0] = 3.316;
561 xyOut[1] = 4.3;
562 xyOut[2] = 0.7025;
563 xyOut[3] = -xyOut[1];
564 xyOut[4] = -xyOut[2];
565 xyOut[5] = -xyOut[1];
566 xyOut[6] = -xyOut[0];
567 xyOut[7] = xyOut[1];
568 //--------------
569 xyOut[8] = 1.3;
570 xyOut[9] = 1.3 - xyOut[1] + xyOut[8];
571 xyOut[10] = xyOut[8];
572 xyOut[11] = -xyOut[8] - xyOut[1] + xyOut[8];
573 xyOut[12] = -xyOut[8];
574 xyOut[13] = -xyOut[8] - xyOut[1] + xyOut[8];
575 xyOut[14] = -xyOut[8];
576 xyOut[15] = xyOut[8] - xyOut[1] + xyOut[8];
577 double ARB8Length = 15.35;
578 TGeoArb8* ARB8Out = new TGeoArb8("ARB8Out", ARB8Length / 2, xyOut);
579
580 double xyIn[16] = {0};
581 xyIn[0] = xyOut[0] - eCarbonBox;
582 xyIn[1] = xyOut[1] - eCarbonBox;
583 xyIn[2] = 0.7025 - eCarbonBox;
584 xyIn[3] = -xyIn[1];
585 xyIn[4] = -xyIn[2];
586 xyIn[5] = -xyIn[1];
587 xyIn[6] = -xyIn[0];
588 xyIn[7] = xyIn[1];
589 //--------------
590 xyIn[8] = xyOut[8] - eCarbonBox;
591 xyIn[9] = xyOut[8] - xyIn[1] + xyIn[8] - eCarbonBox;
592 xyIn[10] = xyIn[8];
593 xyIn[11] = -xyIn[8] - xyOut[1] + xyOut[8];
594 xyIn[12] = -xyIn[8];
595 xyIn[13] = -xyIn[8] - xyOut[1] + xyOut[8];
596 xyIn[14] = -xyIn[8];
597 xyIn[15] = xyIn[8] - xyOut[1] + xyOut[8];
598 TGeoArb8* ARB8In = new TGeoArb8("ARB8In", ARB8Length / 2 + 0.0001, xyIn);
599
600 TGeoCompositeShape* arb8 = new TGeoCompositeShape("arb8", "ARB8Out-ARB8In");
601 TGeoVolume* ARB8 = new TGeoVolume("ARB8", arb8, kMedCarbonFiber);
602 ARB8->SetLineColor(kGray);
603 TGeoRotation* RearRot = new TGeoRotation("RearRot", 0., 0., 0.);
604 TGeoCombiTrans* tRearCarbonBox = new TGeoCombiTrans("tRearCarbonBox", 0., 0., (ARB8Length + trdLength) / 2, RearRot);
605 RearRot->RegisterYourself();
606 tRearCarbonBox->RegisterYourself();
607 //===============================================================
608
609 carbonBox->AddNode(TRD, 1, tFrontCarbonBox);
610 carbonBox->AddNode(ARB8, 1, tRearCarbonBox);
611 carbonBox->AddNode(TRDPlate, 1, tTRDPlate);
612 carbonBox->AddNode(PLATEBox, 1, tPlateBox);
613
614 TGeoRotation* CarbonBoxRot1 = new TGeoRotation("CarbonBoxRot1", 90., 0., 0.);
615 double xCarbonBox = xRod + trdWidth / 2 - xyOut[8];
616 double zCarbonBox = -trdLength / 2 - ARB8Length - lengthFixRod + 1.3;
617 TGeoCombiTrans* tCarbonBox1 = new TGeoCombiTrans("tCarbonBox1", -xCarbonBox, 0., zCarbonBox, CarbonBoxRot1);
618 CarbonBoxRot1->RegisterYourself();
619 tCarbonBox1->RegisterYourself();
620 TGeoRotation* CarbonBoxRot2 = new TGeoRotation("CarbonBoxRot2", 270., 0., 0.);
621 TGeoCombiTrans* tCarbonBox2 = new TGeoCombiTrans("tCarbonBox2", xCarbonBox, 0., zCarbonBox, CarbonBoxRot2);
622 CarbonBoxRot2->RegisterYourself();
623 tCarbonBox2->RegisterYourself();
624
625 Wing->AddNode(rod, 1, new TGeoTranslation(xRod, 0., -(lengthRod / 2. + lengthFixRod) + 1.3));
626 Wing->AddNode(rod, 2, new TGeoTranslation(-xRod, 0., -(lengthRod / 2. + lengthFixRod) + 1.3));
627 bracket->SetLineColor(kGray);
628 Wing->AddNode(bracket, 1, new TGeoTranslation(xRod, 0., -lengthFixRod / 2. + 1.3));
629 Wing->AddNode(bracket, 2, new TGeoTranslation(-xRod, 0., -lengthFixRod / 2. + 1.3));
630 Wing->AddNode(carbonBox, 1, tCarbonBox1);
631 Wing->AddNode(carbonBox, 2, tCarbonBox2);
632
633 beamPipeSupport->AddNode(Wing, 1);
634 double mGlobalShift = 2.45; // to be closest to the first bellow according to Corrado blueprints
635 barrel->AddNode(beamPipeSupport, 1, new TGeoTranslation(0., 30, kBeamPipesupportZpos + kFixationCarbonCollarDZ / 2. - mGlobalShift));
636
638
640 // Side A section after Beryllium
641 // Authors: M.Sitta - 19 Sep 2014
642 // Drawings from C. Gargiulo :
643 // \\cern.ch\dfs\Workspaces\c\cgargiul\EXPERIMENT\ALICE\ALICE_MECHANICS\ALICE_DATA_PACKAGE\IN\DETECTORS\ITS_UPGRADE\1-DESIGN\0-IF_Control_Drawing\20140207_ICD_ITS_MFT_BP
645 TGeoVolumeAssembly* beamPipeAsideSection = new TGeoVolumeAssembly("BeamPipeAsideSection");
646 float kConicalBerilliumMinThickness = 0.08;
647 float kConicalBerilliumMaxThickness = 0.1;
648 float kFlangeZ = 483.75;
649 float kFlangeWidth = 2.74;
650 float kFlangeThickness = 4.3;
651 float kConicalBerylliumEnd = 473.3;
652 float kSupport1 = 178.6;
653 float kSupport2 = 471.3;
654 float kSupportWidth = 5.25;
655 float kPipeRadiusAtSupport1 = 2.2;
656 float kConicalBePipeEndOuterRadius = 3.0;
657
658 TGeoPcon* tube0 = new TGeoPcon(0., 360., 5);
659 tube0->DefineSection(0, kFlangeZ - kFlangeWidth / 2, kConicalBePipeEndOuterRadius - kConicalBerilliumMinThickness, kConicalBePipeEndOuterRadius);
660 tube0->DefineSection(1, kConicalBerylliumEnd, kConicalBePipeEndOuterRadius - kConicalBerilliumMinThickness, kConicalBePipeEndOuterRadius);
661 tube0->DefineSection(2, kSupport1 + kSupportWidth, kPipeRadiusAtSupport1 - kConicalBerilliumMinThickness, kPipeRadiusAtSupport1);
662 tube0->DefineSection(3, kSupport1, kPipeRadiusAtSupport1 - kConicalBerilliumMinThickness, kPipeRadiusAtSupport1);
663 tube0->DefineSection(4, kBeryliumSectionZmax, kBeryliumSectionOuterRadius - kConicalBerilliumMinThickness, kBeryliumSectionOuterRadius); // need a transition to kConicalBerilliumMaxThickness
664
665 TGeoPcon* tube0Mo = new TGeoPcon(0., 360., 5);
666 tube0Mo->DefineSection(0, kFlangeZ - kFlangeWidth / 2, 0., kConicalBePipeEndOuterRadius);
667 tube0Mo->DefineSection(1, kConicalBerylliumEnd, 0., kConicalBePipeEndOuterRadius);
668 tube0Mo->DefineSection(2, kSupport1 + kSupportWidth, 0, kPipeRadiusAtSupport1);
669 tube0Mo->DefineSection(3, kSupport1, 0, kPipeRadiusAtSupport1);
670 tube0Mo->DefineSection(4, kBeryliumSectionZmax, 0., kBeryliumSectionOuterRadius);
671
672 TGeoVolume* votube0 = new TGeoVolume("votube0", tube0, kMedBe);
673 votube0->SetLineColor(kRed);
674 TGeoVolume* votube0Mo = new TGeoVolume("votube0Mo", tube0Mo, kMedVac);
675 votube0Mo->AddNode(votube0, 1, gGeoIdentity);
676 votube0Mo->SetLineColor(kGreen);
677
678 beamPipeAsideSection->AddNode(votube0Mo, 1, gGeoIdentity);
679
680 // already defined in IT3
681 // TGeoVolume* beampipeSupportA1 = makeSupportBar("A1", kPipeRadiusAtSupport1 + 0.01, kPipeRadiusAtSupport1 + 0.38, 20.67, 14.25);
682 // beamPipeAsideSection->AddNode(beampipeSupportA1, 1, new TGeoTranslation(0., 0., kSupport1 + kSupportWidth / 2.));
683
684 // Length is approximate
685 TGeoVolume* beampipeSupportA2 = makeSupportBar("A2", kConicalBePipeEndOuterRadius, kConicalBePipeEndOuterRadius + 0.38, 44, 37.5);
686 beamPipeAsideSection->AddNode(beampipeSupportA2, 1, new TGeoTranslation(0., 0., kConicalBerylliumEnd + kSupportWidth / 2.));
687
688 TGeoPcon* Bolt1 = new TGeoPcon(0., 360, 8);
689 Bolt1->DefineSection(0, 0, 0, 0.5);
690 Bolt1->DefineSection(1, 0.515 - 0.01, 0, 0.5);
691 Bolt1->DefineSection(2, 0.515 - 0.01, 0, 0.25);
692 Bolt1->DefineSection(3, kFlangeWidth + 0.515 + 0.01, 0, 0.25);
693 Bolt1->DefineSection(4, kFlangeWidth + 0.515 + 0.01, 0, 0.5);
694 Bolt1->DefineSection(5, kFlangeWidth + 0.515 + 0.55, 0, 0.5);
695 Bolt1->DefineSection(6, kFlangeWidth + 0.515 + 0.55, 0, 0.25);
696 Bolt1->DefineSection(7, kFlangeWidth + 0.515 + 0.55 + 0.5, 0, 0.25);
697 Bolt1->SetName("BOLT");
698
699 TGeoVolume* volBolt1 = new TGeoVolume("volBolt1", Bolt1, kMedTitanium);
700 volBolt1->SetLineWidth(2);
701 volBolt1->SetLineColor(kRed);
702
703 TGeoTranslation* t1 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
704 t1->SetName("t1");
705 t1->RegisterYourself();
706 TGeoTranslation* t2 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
707 t2->SetName("t2");
708 t2->RegisterYourself();
709 TGeoTranslation* t3 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
710 t3->SetName("t3");
711 t3->RegisterYourself();
712 TGeoTranslation* t4 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
713 t4->SetName("t4");
714 t4->RegisterYourself();
715 TGeoTranslation* t5 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
716 t5->SetName("t5");
717 t5->RegisterYourself();
718 TGeoTranslation* t6 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
719 t6->SetName("t6");
720 t6->RegisterYourself();
721 TGeoTranslation* t7 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
722 t7->SetName("t7");
723 t7->RegisterYourself();
724 TGeoTranslation* t8 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
725 t8->SetName("t8");
726 t8->RegisterYourself();
727
728 TGeoVolumeAssembly* Bolts = new TGeoVolumeAssembly("Bolts");
729 Bolts->AddNode(volBolt1, 1, t1);
730 Bolts->AddNode(volBolt1, 2, t2);
731 Bolts->AddNode(volBolt1, 3, t3);
732 Bolts->AddNode(volBolt1, 4, t4);
733 Bolts->AddNode(volBolt1, 5, t5);
734 Bolts->AddNode(volBolt1, 6, t6);
735 Bolts->AddNode(volBolt1, 7, t7);
736 Bolts->AddNode(volBolt1, 8, t8);
737
738 beamPipeAsideSection->AddNode(Bolts, 1, gGeoIdentity);
739
740 TGeoTranslation* Tflange = new TGeoTranslation(0, 0, kFlangeZ);
741 Tflange->SetName("Tflange");
742 Tflange->RegisterYourself();
743
744 // Flange
745 TGeoTube* flange = new TGeoTube("voFlangeA1", kConicalBePipeEndOuterRadius + 0.01, kFlangeThickness, kFlangeWidth / 2.);
746
747 TGeoPcon* HoleF = new TGeoPcon("HoleF", 0., 360., 2);
748 HoleF->DefineSection(0, 0., 0, 0.25 + 0.01);
749 HoleF->DefineSection(1, 4.305, 0, 0.25 + 0.01);
750
751 // create the flange with holes for the titanium bolts
752 TGeoCompositeShape* FlangeWithHoles = new TGeoCompositeShape("voFlangeWithHoles", "((voFlangeA1:Tflange)-((voFlangeA1:Tflange)*(HoleF:t1+HoleF:t2+HoleF:t3+HoleF:t4+HoleF:t5+HoleF:t6+HoleF:t7+HoleF:t8)))");
753
754 TGeoVolume* volflange = new TGeoVolume("voFlangeHoles", FlangeWithHoles, kMedAlBe);
755 volflange->SetLineWidth(2);
756 volflange->SetLineColor(kGray);
757 beamPipeAsideSection->AddNode(volflange, 1, gGeoIdentity);
758
759 // -- Bellows on A side
760 float plieradiusA = 0.2; // radius of bellow plies
761 // ------------------ First Bellow --------------------
762 // Inner: 3.0 cm, outer 3.97 cm length 8.47 cm with 10 wiggles
763 TGeoVolume* vobellows1A = makeBellow("bellows1A", 10, 3.0, 3.97, plieradiusA, 0.03);
764 Float_t dU = (static_cast<TGeoTube*>(vobellows1A->GetShape()))->GetDZ();
765 beamPipeAsideSection->AddNode(vobellows1A, 1, new TGeoTranslation(0., 0., kFlangeZ + 2. * dU));
766 // Comments: removing 1/2 plie (see makeBellow): 0.31= 2*0.17-0.03 and 0.08: free space
767 Float_t pipeSmallDz = (dU - kFlangeWidth / 2.) / 2.;
768 TGeoTube* pipeSmall = new TGeoTube("pipeSmall", kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius, pipeSmallDz);
769 TGeoVolume* vopipeSmall = new TGeoVolume("voPipeSmall", pipeSmall, kMedAlu2219);
770 vopipeSmall->SetLineWidth(2);
771
772 TGeoTube* pipeSmallMo = new TGeoTube(0., kConicalBePipeEndOuterRadius, pipeSmallDz);
773 TGeoVolume* vopipeSmallMo = new TGeoVolume("voPipeSmallMo", pipeSmallMo, kMedVac);
774 vopipeSmallMo->SetLineColor(kGreen);
775 vopipeSmallMo->AddNode(vopipeSmall, 1, gGeoIdentity);
776
777 beamPipeAsideSection->AddNode(vopipeSmallMo, 1, new TGeoTranslation(0., 0., kFlangeZ + kFlangeWidth / 2. + pipeSmallDz));
778
779 // ------------------ Outer pipe after flange --------------------
780 // The end of the barrel volume is at 864.6 cm, after that we start with RB24 volume
781 Float_t pipeEndZ = 864.6;
782 Float_t pipeOutDz = (pipeEndZ - (kFlangeZ + 3. * dU)) / 2.;
783 TGeoTube* pipeOut = new TGeoTube(kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius, pipeOutDz);
784 TGeoVolume* OuterPIPE = new TGeoVolume("pipeOut", pipeOut, kMedAlu2219);
785
786 TGeoTube* pipeOutMo = new TGeoTube(0., kConicalBePipeEndOuterRadius, pipeOutDz);
787 TGeoVolume* OuterPIPEMo = new TGeoVolume("pipeOutMo", pipeOutMo, kMedVac);
788 OuterPIPEMo->AddNode(OuterPIPE, 1, gGeoIdentity);
789 beamPipeAsideSection->AddNode(OuterPIPEMo, 1, new TGeoTranslation(0., 0., pipeEndZ - pipeOutDz));
790 barrel->AddNode(beamPipeAsideSection, 1, new TGeoTranslation(0., 30., 0.));
791
792 //-------------------------------------------------
793
795 // //
796 // RB24/1 //
797 // //
799 //
800 //
801 // Drawing LHCVC2U_0001
802 // Copper Tube RB24/1 393.5 cm
803 // Warm module VMACA 18.0 cm
804 // Annular Ion Pump 35.0 cm
805 // Valve 7.5 cm
806 // Warm module VMABC 28.0 cm
807 // ================================
808 // 462.0 cm
809 //
810
811 // Copper Tube RB24/1
812 const float kRB24CuTubeL = 381.5;
813 const float kRB24cCuTubeL = 155.775 - 150.;
814 const float kRB24bCuTubeL = kRB24CuTubeL - kRB24cCuTubeL;
815 const float kRB24CuTubeRi = 5.8 / 2.;
816 const float kRB24CuTubeRo = 6.0 / 2.;
817 const float kRB24CuTubeFRo = 7.6;
818 const float kRB24CuTubeFL = 1.86;
819 const float kRB24CL = 2. * 597.9 - 150.;
820
821 //
822 // introduce cut at end of barrel 714.6m
823 //
824 // outside barrel
825 TGeoVolume* voRB24cCuTubeM = new TGeoVolume("voRB24cCuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB24cCuTubeL / 2.), kMedVacNFHC);
826 TGeoVolume* voRB24cCuTube = new TGeoVolume("voRB24cCuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB24cCuTubeL / 2.), kMedAlu2219);
827 voRB24cCuTubeM->AddNode(voRB24cCuTube, 1, gGeoIdentity);
828
829 // Air outside tube with higher transport cuts
830 TGeoVolume* voRB24CuTubeA = new TGeoVolume("voRB24CuTubeA", new TGeoTube(80., 81., kRB24bCuTubeL / 2.), kMedAirHigh);
831 voRB24CuTubeA->SetVisibility(0);
832
833 // Simplified DN 100 Flange
834 TGeoVolume* voRB24CuTubeF = new TGeoVolume("voRB24CuTubeF", new TGeoTube(kRB24CuTubeRo, kRB24CuTubeFRo, kRB24CuTubeFL / 2.), kMedSteelNF);
835
836 // Warm Module Type VMACA
837 // LHCVMACA_0002
838 //
839 // Pos 1 Warm Bellows DN100 LHCVBU__0012
840 // Pos 2 RF Contact D80 LHCVSR__0005
841 // Pos 3 Trans. Tube Flange LHCVSR__0065
842 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
843 // [Pos 5 Tension spring LHCVSR__0011]
844 //
845 //
846 //
847 // Pos1 Warm Bellows DN100
848 // Pos1.1 Bellows LHCVBU__0006
849 //
850 //
851 // Connection Tubes
852 // Connection tube inner r
853 const float kRB24B1ConTubeRin = 10.0 / 2.;
854 // Connection tube outer r
855 const float kRB24B1ConTubeRou = 10.3 / 2.;
856 // Connection tube length
857 const float kRB24B1ConTubeL = 2.5;
858 //
859 const float kRB24B1CompL = 16.375; // Length of the compensator
860 const float kRB24B1BellowRi = 10.25 / 2.; // Bellow inner radius
861 const float kRB24B1BellowRo = 11.40 / 2.; // Bellow outer radius
862 const int kRB24B1NumberOfPlies = 27; // Number of plies
863 const float kRB24B1BellowUndL = 11.00; // Length of undulated region
864 const float kRB24B1PlieThickness = 0.015; // Plie thickness
865
866 const float kRB24B1PlieRadius =
867 (kRB24B1BellowUndL + 2. * kRB24B1NumberOfPlies * kRB24B1PlieThickness) / (4. * kRB24B1NumberOfPlies + 2.);
868
869 const float kRB24B1ProtTubeThickness = 0.02; // Thickness of the protection tube
870 const float kRB24B1ProtTubeLength = 4.2; // Length of the protection tube
871
872 const float kRB24B1RFlangeL = 1.86; // Length of the flanges
873 const float kRB24B1RFlangeLO = 0.26; // Flange overlap
874 const float kRB24B1RFlangeRO = 11.18 / 2; // Inner radius at Flange overlap
875 const float kRB24B1RFlangeRou = 15.20 / 2.; // Outer radius of flange
876 const float kRB24B1RFlangeRecess = 0.98; // Flange recess
877 const float kRB24B1L = kRB24B1CompL + 2. * (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
878
880 //
881 // Bellow Section
882 TGeoVolume* voRB24B1Bellow = makeBellow("RB24B1", kRB24B1NumberOfPlies, kRB24B1BellowRi, kRB24B1BellowRo,
883 kRB24B1PlieRadius, kRB24B1PlieThickness);
884 voRB24B1Bellow->SetVisibility(0);
885 float newRB24B1BellowUndL = 2 * (static_cast<TGeoTube*>(voRB24B1Bellow->GetShape()))->GetDz();
886
887 //
888 // Bellow mother volume
889 TGeoPcon* shRB24B1BellowM = new TGeoPcon(0., 360., 12);
890 // Connection Tube and Flange
891 z = 0.;
892 shRB24B1BellowM->DefineSection(0, z, 0., kRB24B1RFlangeRou);
893 z += kRB24B1RFlangeLO;
894 shRB24B1BellowM->DefineSection(1, z, 0., kRB24B1RFlangeRou);
895 z = kRB24B1RFlangeL;
896 shRB24B1BellowM->DefineSection(2, z, 0., kRB24B1RFlangeRou);
897 shRB24B1BellowM->DefineSection(3, z, 0., kRB24B1ConTubeRou);
898 z = kRB24B1ConTubeL + kRB24B1RFlangeL - kRB24B1RFlangeRecess;
899 shRB24B1BellowM->DefineSection(4, z, 0., kRB24B1ConTubeRou);
900 // Plie
901 shRB24B1BellowM->DefineSection(5, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
902 z += newRB24B1BellowUndL;
903 shRB24B1BellowM->DefineSection(6, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
904 shRB24B1BellowM->DefineSection(7, z, 0., kRB24B1ConTubeRou);
905 // Connection Tube and Flange
906 z = kRB24B1L - shRB24B1BellowM->GetZ(3);
907 shRB24B1BellowM->DefineSection(8, z, 0., kRB24B1ConTubeRou);
908 shRB24B1BellowM->DefineSection(9, z, 0., kRB24B1RFlangeRou);
909 z = kRB24B1L - shRB24B1BellowM->GetZ(1);
910 shRB24B1BellowM->DefineSection(10, z, 0., kRB24B1RFlangeRou);
911 z = kRB24B1L - shRB24B1BellowM->GetZ(0);
912 shRB24B1BellowM->DefineSection(11, z, 0., kRB24B1RFlangeRou);
913
914 TGeoVolume* voRB24B1BellowM = new TGeoVolume("RB24B1BellowM", shRB24B1BellowM, kMedVacNF);
915 voRB24B1BellowM->SetVisibility(0);
916 //
917 // End Parts (connection tube)
918 TGeoVolume* voRB24B1CT = new TGeoVolume("RB24B1CT", new TGeoTube(kRB24B1ConTubeRin, kRB24B1ConTubeRou, kRB24B1ConTubeL / 2.), kMedSteelNF);
919 //
920 // Protection Tube
921 TGeoVolume* voRB24B1PT = new TGeoVolume(
922 "RB24B1PT", new TGeoTube(kRB24B1BellowRo, kRB24B1BellowRo + kRB24B1ProtTubeThickness, kRB24B1ProtTubeLength / 2.),
923 kMedSteelNF);
924
925 z = kRB24B1ConTubeL / 2. + (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
926
927 voRB24B1BellowM->AddNode(voRB24B1CT, 1, new TGeoTranslation(0., 0., z));
928 z += (kRB24B1ConTubeL / 2. + newRB24B1BellowUndL / 2.);
929 voRB24B1BellowM->AddNode(voRB24B1Bellow, 1, new TGeoTranslation(0., 0., z));
930 z += (newRB24B1BellowUndL / 2. + kRB24B1ConTubeL / 2);
931 voRB24B1BellowM->AddNode(voRB24B1CT, 2, new TGeoTranslation(0., 0., z));
932 z = kRB24B1ConTubeL + kRB24B1ProtTubeLength / 2. + 1. + kRB24B1RFlangeLO;
933 voRB24B1BellowM->AddNode(voRB24B1PT, 1, new TGeoTranslation(0., 0., z));
934 z += kRB24B1ProtTubeLength + 0.6;
935 voRB24B1BellowM->AddNode(voRB24B1PT, 2, new TGeoTranslation(0., 0., z));
936
937 // Pos 1/2 Rotatable Flange LHCVBU__0013
938 // Pos 1/3 Flange DN100/103 LHCVBU__0018
939 // The two flanges can be represented by the same volume
940 // Outer Radius (including the outer movable ring).
941 // The inner ring has a diameter of 12.04 cm
942
943 TGeoPcon* shRB24B1RFlange = new TGeoPcon(0., 360., 10);
944 z = 0.;
945 shRB24B1RFlange->DefineSection(0, z, 10.30 / 2., kRB24B1RFlangeRou);
946 z += 0.55; // 5.5 mm added for outer ring
947 z += 0.43;
948 shRB24B1RFlange->DefineSection(1, z, 10.30 / 2., kRB24B1RFlangeRou);
949 shRB24B1RFlange->DefineSection(2, z, 10.06 / 2., kRB24B1RFlangeRou);
950 z += 0.15;
951 shRB24B1RFlange->DefineSection(3, z, 10.06 / 2., kRB24B1RFlangeRou);
952 // In reality this part is rounded
953 shRB24B1RFlange->DefineSection(4, z, 10.91 / 2., kRB24B1RFlangeRou);
954 z += 0.15;
955 shRB24B1RFlange->DefineSection(5, z, 10.91 / 2., kRB24B1RFlangeRou);
956 shRB24B1RFlange->DefineSection(6, z, 10.06 / 2., kRB24B1RFlangeRou);
957 z += 0.32;
958 shRB24B1RFlange->DefineSection(7, z, 10.06 / 2., kRB24B1RFlangeRou);
959 shRB24B1RFlange->DefineSection(8, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
960 z += kRB24B1RFlangeLO;
961 shRB24B1RFlange->DefineSection(9, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
962
963 TGeoVolume* voRB24B1RFlange = new TGeoVolume("RB24B1RFlange", shRB24B1RFlange, kMedSteelNF);
964
965 z = kRB24B1L - kRB24B1RFlangeL;
966 voRB24B1BellowM->AddNode(voRB24B1RFlange, 1, new TGeoTranslation(0., 0., z));
967 z = kRB24B1RFlangeL;
968 voRB24B1BellowM->AddNode(voRB24B1RFlange, 2, new TGeoCombiTrans(0., 0., z, rot180));
969 //
970 // Pos 2 RF Contact D80 LHCVSR__0005
971 //
972 // Pos 2.1 RF Contact Flange LHCVSR__0003
973 //
974 TGeoPcon* shRB24B1RCTFlange = new TGeoPcon(0., 360., 6);
975 const float kRB24B1RCTFlangeRin = 8.06 / 2. + 0.05; // Inner radius
976 const float kRB24B1RCTFlangeL = 1.45; // Length
977
978 z = 0.;
979 shRB24B1RCTFlange->DefineSection(0, z, kRB24B1RCTFlangeRin, 8.20 / 2.);
980 z += 0.15;
981 shRB24B1RCTFlange->DefineSection(1, z, kRB24B1RCTFlangeRin, 8.20 / 2.);
982 shRB24B1RCTFlange->DefineSection(2, z, kRB24B1RCTFlangeRin, 8.60 / 2.);
983 z += 1.05;
984 shRB24B1RCTFlange->DefineSection(3, z, kRB24B1RCTFlangeRin, 8.60 / 2.);
985 shRB24B1RCTFlange->DefineSection(4, z, kRB24B1RCTFlangeRin, 11.16 / 2.);
986 z += 0.25;
987 shRB24B1RCTFlange->DefineSection(5, z, kRB24B1RCTFlangeRin, 11.16 / 2.);
988 TGeoVolume* voRB24B1RCTFlange = new TGeoVolume("RB24B1RCTFlange", shRB24B1RCTFlange, kMedCuNF);
989 z = kRB24B1L - kRB24B1RCTFlangeL;
990
991 voRB24B1BellowM->AddNode(voRB24B1RCTFlange, 1, new TGeoTranslation(0., 0., z));
992 //
993 // Pos 2.2 RF-Contact LHCVSR__0004
994 //
995 TGeoPcon* shRB24B1RCT = new TGeoPcon(0., 360., 3);
996 const float kRB24B1RCTRin = 8.00 / 2.; // Inner radius
997 const float kRB24B1RCTCRin = 8.99 / 2.; // Max. inner radius conical section
998 const float kRB24B1RCTL = 11.78; // Length
999 const float kRB24B1RCTSL = 10.48; // Length of straight section
1000 const float kRB24B1RCTd = 0.03; // Thickness
1001
1002 z = 0;
1003 shRB24B1RCT->DefineSection(0, z, kRB24B1RCTCRin, kRB24B1RCTCRin + kRB24B1RCTd);
1004 z = kRB24B1RCTL - kRB24B1RCTSL;
1005 // In the (VSR0004) this section is straight in (LHCVC2U_0001) it is conical ????
1006 shRB24B1RCT->DefineSection(1, z, kRB24B1RCTRin + 0.35, kRB24B1RCTRin + 0.35 + kRB24B1RCTd);
1007 z = kRB24B1RCTL - 0.03;
1008 shRB24B1RCT->DefineSection(2, z, kRB24B1RCTRin, kRB24B1RCTRin + kRB24B1RCTd);
1009
1010 TGeoVolume* voRB24B1RCT = new TGeoVolume("RB24B1RCT", shRB24B1RCT, kMedCuNF);
1011 z = kRB24B1L - kRB24B1RCTL - 0.45;
1012 voRB24B1BellowM->AddNode(voRB24B1RCT, 1, new TGeoTranslation(0., 0., z));
1013
1014 //
1015 // Pos 3 Trans. Tube Flange LHCVSR__0065
1016 //
1017 // Pos 3.1 Transition Tube D53 LHCVSR__0064
1018 // Pos 3.2 Transition Flange LHCVSR__0060
1019 // Pos 3.3 Transition Tube LHCVSR__0058
1020 TGeoPcon* shRB24B1TTF = new TGeoPcon(0., 360., 7);
1021 // Flange
1022 z = 0.;
1023 shRB24B1TTF->DefineSection(0, z, 6.30 / 2., 11.16 / 2.);
1024 z += 0.25;
1025 shRB24B1TTF->DefineSection(1, z, 6.30 / 2., 11.16 / 2.);
1026 shRB24B1TTF->DefineSection(2, z, 6.30 / 2., 9.3 / 2.);
1027 z += 0.55;
1028 shRB24B1TTF->DefineSection(3, z, 6.30 / 2., 9.3 / 2.);
1029 // Tube
1030 shRB24B1TTF->DefineSection(4, z, 6.30 / 2., 6.7 / 2.);
1031 z += 5.80;
1032 shRB24B1TTF->DefineSection(5, z, 6.30 / 2., 6.7 / 2.);
1033 // Transition Tube
1034 z += 3.75;
1035 shRB24B1TTF->DefineSection(6, z, 8.05 / 2., 8.45 / 2.);
1036 TGeoVolume* voRB24B1TTF = new TGeoVolume("RB24B1TTF", shRB24B1TTF, kMedSteelNF);
1037 z = 0.;
1038 voRB24B1BellowM->AddNode(voRB24B1TTF, 1, new TGeoTranslation(0., 0., z));
1039
1040 // Annular Ion Pump
1041 // LHCVC2U_0003
1042 //
1043 // Pos 1 Rotable Flange LHCVFX__0031
1044 // Pos 2 RF Screen Tube LHCVC2U_0005
1045 // Pos 3 Shell LHCVC2U_0007
1046 // Pos 4 Extruded Shell LHCVC2U_0006
1047 // Pos 5 Feedthrough Tube LHCVC2U_0004
1048 // Pos 6 Tubulated Flange STDVFUHV0021
1049 // Pos 7 Fixed Flange LHCVFX__0032
1050 // Pos 8 Pumping Elements
1051
1052 //
1053 // Pos 1 Rotable Flange LHCVFX__0031
1054 // pos 7 Fixed Flange LHCVFX__0032
1055 //
1056 // Mother volume
1057
1058 //
1059 // Length 35 cm
1060 // Flange 2 x 1.98 = 3.96
1061 // Tube = 32.84
1062 //==========================
1063 // 36.80
1064 // Overlap 2 * 0.90 = 1.80
1065
1066 const float kRB24IpRFD1 = 0.68; // Length of section 1
1067 const float kRB24IpRFD2 = 0.30; // Length of section 2
1068 const float kRB24IpRFD3 = 0.10; // Length of section 3
1069 const float kRB24IpRFD4 = 0.35; // Length of section 4
1070 const float kRB24IpRFD5 = 0.55; // Length of section 5
1071
1072 const float kRB24IpRFRo = 15.20 / 2.; // Flange outer radius
1073 const float kRB24IpRFRi1 = 6.30 / 2.; // Flange inner radius section 1
1074 const float kRB24IpRFRi2 = 6.00 / 2.; // Flange inner radius section 2
1075 const float kRB24IpRFRi3 = 5.84 / 2.; // Flange inner radius section 3
1076 const float kRB24IpRFRi4 = 6.00 / 2.; // Flange inner radius section 1
1077 const float kRB24IpRFRi5 = 10.50 / 2.; // Flange inner radius section 2
1078
1079 TGeoPcon* shRB24IpRF = new TGeoPcon(0., 360., 9);
1080 z0 = 0.;
1081 shRB24IpRF->DefineSection(0, z0, kRB24IpRFRi1, kRB24IpRFRo);
1082 z0 += kRB24IpRFD1;
1083 shRB24IpRF->DefineSection(1, z0, kRB24IpRFRi2, kRB24IpRFRo);
1084 z0 += kRB24IpRFD2;
1085 shRB24IpRF->DefineSection(2, z0, kRB24IpRFRi2, kRB24IpRFRo);
1086 shRB24IpRF->DefineSection(3, z0, kRB24IpRFRi3, kRB24IpRFRo);
1087 z0 += kRB24IpRFD3;
1088 shRB24IpRF->DefineSection(4, z0, kRB24IpRFRi3, kRB24IpRFRo);
1089 shRB24IpRF->DefineSection(5, z0, kRB24IpRFRi4, kRB24IpRFRo);
1090 z0 += kRB24IpRFD4;
1091 shRB24IpRF->DefineSection(6, z0, kRB24IpRFRi4, kRB24IpRFRo);
1092 shRB24IpRF->DefineSection(7, z0, kRB24IpRFRi5, kRB24IpRFRo);
1093 z0 += kRB24IpRFD5;
1094 shRB24IpRF->DefineSection(8, z0, kRB24IpRFRi5, kRB24IpRFRo);
1095
1096 TGeoVolume* voRB24IpRF = new TGeoVolume("RB24IpRF", shRB24IpRF, kMedSteel);
1097
1098 //
1099 // Pos 2 RF Screen Tube LHCVC2U_0005
1100 //
1101
1102 //
1103 // Tube
1104 float kRB24IpSTTL = 32.84; // Total length of the tube
1105 float kRB24IpSTTRi = 5.80 / 2.; // Inner Radius
1106 float kRB24IpSTTRo = 6.00 / 2.; // Outer Radius
1107 TGeoVolume* voRB24IpSTT = new TGeoVolume("RB24IpSTT", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTTL / 2.), kMedSteelNF);
1108 // Screen
1109 float kRB24IpSTCL = 0.4; // Lenth of the crochet detail
1110 // Length of the screen
1111 float kRB24IpSTSL = 9.00 - 2. * kRB24IpSTCL;
1112 // Rel. position of the screen
1113 float kRB24IpSTSZ = 7.00 + kRB24IpSTCL;
1114 TGeoVolume* voRB24IpSTS = new TGeoVolume("RB24IpSTS", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTSL / 2.), kMedSteelNF);
1115 //
1116 voRB24IpSTT->AddNode(voRB24IpSTS, 1, new TGeoTranslation(0., 0., kRB24IpSTSZ - kRB24IpSTTL / 2. + kRB24IpSTSL / 2.));
1117
1118 // Crochets
1119 // Inner radius
1120 float kRB24IpSTCRi = kRB24IpSTTRo + 0.25;
1121 // Outer radius
1122 float kRB24IpSTCRo = kRB24IpSTTRo + 0.35;
1123 // Length of 1stsection
1124 float kRB24IpSTCL1 = 0.15;
1125 // Length of 2nd section
1126 float kRB24IpSTCL2 = 0.15;
1127 // Length of 3rd section
1128 float kRB24IpSTCL3 = 0.10;
1129 // Rel. position of 1st Crochet
1130
1131 TGeoPcon* shRB24IpSTC = new TGeoPcon(0., 360., 5);
1132 z0 = 0;
1133 shRB24IpSTC->DefineSection(0, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1134 z0 += kRB24IpSTCL1;
1135 shRB24IpSTC->DefineSection(1, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1136 shRB24IpSTC->DefineSection(2, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1137 z0 += kRB24IpSTCL2;
1138 shRB24IpSTC->DefineSection(3, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1139 z0 += kRB24IpSTCL3;
1140 shRB24IpSTC->DefineSection(4, z0, kRB24IpSTTRo, kRB24IpSTTRo + 0.001);
1141 TGeoVolume* voRB24IpSTC = new TGeoVolume("RB24IpSTC", shRB24IpSTC, kMedSteel);
1142
1143 // Pos 3 Shell LHCVC2U_0007
1144 // Pos 4 Extruded Shell LHCVC2U_0006
1145 float kRB24IpShellL = 4.45; // Length of the Shell
1146 float kRB24IpShellD = 0.10; // Wall thickness of the shell
1147 float kRB24IpShellCTRi = 6.70 / 2.; // Inner radius of the connection tube
1148 float kRB24IpShellCTL = 1.56; // Length of the connection tube
1149 float kRB24IpShellCARi = 17.80 / 2.; // Inner radius of the cavity
1150 float kRB24IpShellCCRo = 18.20 / 2.; // Inner radius at the centre
1151
1152 TGeoPcon* shRB24IpShell = new TGeoPcon(0., 360., 7);
1153 z0 = 0;
1154 shRB24IpShell->DefineSection(0, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1155 z0 += kRB24IpShellCTL;
1156 shRB24IpShell->DefineSection(1, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1157 shRB24IpShell->DefineSection(2, z0, kRB24IpShellCTRi, kRB24IpShellCARi + kRB24IpShellD);
1158 z0 += kRB24IpShellD;
1159 shRB24IpShell->DefineSection(3, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1160 z0 = kRB24IpShellL - kRB24IpShellD;
1161 shRB24IpShell->DefineSection(4, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1162 shRB24IpShell->DefineSection(5, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1163 z0 = kRB24IpShellL;
1164 shRB24IpShell->DefineSection(6, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1165 TGeoVolume* voRB24IpShell = new TGeoVolume("RB24IpShell", shRB24IpShell, kMedSteel);
1166
1167 TGeoPcon* shRB24IpShellM = makeMotherFromTemplate(shRB24IpShell, 0, 6, kRB24IpShellCTRi, 13);
1168
1169 for (int i = 0; i < 6; i++) {
1170 z = 2. * kRB24IpShellL - shRB24IpShellM->GetZ(5 - i);
1171 float rmin = shRB24IpShellM->GetRmin(5 - i);
1172 float rmax = shRB24IpShellM->GetRmax(5 - i);
1173 shRB24IpShellM->DefineSection(7 + i, z, rmin, rmax);
1174 }
1175
1176 TGeoVolume* voRB24IpShellM = new TGeoVolume("RB24IpShellM", shRB24IpShellM, kMedVac);
1177 voRB24IpShellM->SetVisibility(0);
1178 voRB24IpShellM->AddNode(voRB24IpShell, 1, gGeoIdentity);
1179 voRB24IpShellM->AddNode(voRB24IpShell, 2, new TGeoCombiTrans(0., 0., 2. * kRB24IpShellL, rot180));
1180 //
1181 // Pos 8 Pumping Elements
1182 //
1183 // Anode array
1184 TGeoVolume* voRB24IpPE = new TGeoVolume("voRB24IpPE", new TGeoTube(0.9, 1., 2.54 / 2.), kMedSteel);
1185 float kRB24IpPEAR = 5.5;
1186
1187 for (int i = 0; i < 15; i++) {
1188 float phi = float(i) * 24.;
1189 float x = kRB24IpPEAR * TMath::Cos(kDegRad * phi);
1190 float y = kRB24IpPEAR * TMath::Sin(kDegRad * phi);
1191 voRB24IpShellM->AddNode(voRB24IpPE, i + 1, new TGeoTranslation(x, y, kRB24IpShellL));
1192 }
1193
1194 //
1195 // Warm Module Type VMABC
1196 // LHCVMABC_0002
1197 //
1198 //
1199 //
1200 // Flange 1.00
1201 // Central Piece 11.50
1202 // Bellow 14.50
1203 // End Flange 1.00
1204 //===================================
1205 // Total 28.00
1206 //
1207 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1208 // Pos 2 Trans. Tube Flange LHCVSR__0062
1209 // Pos 3 RF Contact D63 LHCVSR__0057
1210 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
1211 // [Pos 5 Tension spring LHCVSR__00239]
1212 //
1213
1214 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1215 // Pos 1.1 Right Body 2 Ports with Support LHCVBU__0014
1216 //
1217 // Tube 1
1218 const float kRB24VMABCRBT1Ri = 10.0 / 2.;
1219 const float kRB24VMABCRBT1Ro = 10.3 / 2.;
1220 const float kRB24VMABCRBT1L = 11.5;
1221 const float kRB24VMABCRBT1L2 = 8.;
1222 const float kRB24VMABCL = 28.375;
1223
1224 TGeoTube* shRB24VMABCRBT1 = new TGeoTube(kRB24VMABCRBT1Ri, kRB24VMABCRBT1Ro, kRB24VMABCRBT1L / 2.);
1225 shRB24VMABCRBT1->SetName("RB24VMABCRBT1");
1226 TGeoTube* shRB24VMABCRBT1o = new TGeoTube(0., kRB24VMABCRBT1Ro, kRB24VMABCRBT1L / 2.);
1227 shRB24VMABCRBT1o->SetName("RB24VMABCRBT1o");
1228 TGeoTube* shRB24VMABCRBT1o2 = new TGeoTube(0., kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L / 2.);
1229 shRB24VMABCRBT1o2->SetName("RB24VMABCRBT1o2");
1230 // Lower inforcement
1231 TGeoVolume* voRB24VMABCRBT12 = new TGeoVolume(
1232 "RB24VMABCRBT12", new TGeoTubeSeg(kRB24VMABCRBT1Ro, kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L2 / 2., 220., 320.),
1233 kMedSteelNF);
1234 //
1235 // Tube 2
1236 const float kRB24VMABCRBT2Ri = 6.0 / 2.;
1237 const float kRB24VMABCRBT2Ro = 6.3 / 2.;
1238 const float kRB24VMABCRBF2Ro = 11.4 / 2.;
1239 const float kRB24VMABCRBT2L = 5.95 + 2.; // 2. cm added for welding
1240 const float kRB24VMABCRBF2L = 1.75;
1241 TGeoTube* shRB24VMABCRBT2 = new TGeoTube(kRB24VMABCRBT2Ri, kRB24VMABCRBT2Ro, kRB24VMABCRBT2L / 2.);
1242 shRB24VMABCRBT2->SetName("RB24VMABCRBT2");
1243 TGeoTube* shRB24VMABCRBT2i = new TGeoTube(0., kRB24VMABCRBT2Ri, kRB24VMABCRBT2L / 2. + 2.);
1244 shRB24VMABCRBT2i->SetName("RB24VMABCRBT2i");
1245 TGeoCombiTrans* tRBT2 = new TGeoCombiTrans(-11.5 + kRB24VMABCRBT2L / 2., 0., 7.2 - kRB24VMABCRBT1L / 2., rotxz);
1246 tRBT2->SetName("tRBT2");
1247 tRBT2->RegisterYourself();
1248 TGeoCompositeShape* shRB24VMABCRBT2c = new TGeoCompositeShape("shRB24VMABCRBT2c", "RB24VMABCRBT2:tRBT2-RB24VMABCRBT1o");
1249 TGeoVolume* voRB24VMABCRBT2 = new TGeoVolume("shRB24VMABCRBT2", shRB24VMABCRBT2c, kMedSteelNF);
1250 // Flange
1251 // Pos 1.4 Flange DN63 LHCVBU__0008
1252 TGeoVolume* voRB24VMABCRBF2 =
1253 new TGeoVolume("RB24VMABCRBF2", new TGeoTube(kRB24VMABCRBT2Ro, kRB24VMABCRBF2Ro, kRB24VMABCRBF2L / 2.), kMedSteelNF);
1254 // DN63 Blank Flange (my best guess)
1255 TGeoVolume* voRB24VMABCRBF2B = new TGeoVolume("RB24VMABCRBF2B", new TGeoTube(0., kRB24VMABCRBF2Ro, kRB24VMABCRBF2L / 2.), kMedSteelNF);
1256 //
1257 // Tube 3
1258 const float kRB24VMABCRBT3Ri = 3.5 / 2.;
1259 const float kRB24VMABCRBT3Ro = 3.8 / 2.;
1260 const float kRB24VMABCRBF3Ro = 7.0 / 2.;
1261 const float kRB24VMABCRBT3L = 4.95 + 2.; // 2. cm added for welding
1262 const float kRB24VMABCRBF3L = 1.27;
1263 TGeoTube* shRB24VMABCRBT3 = new TGeoTube(kRB24VMABCRBT3Ri, kRB24VMABCRBT3Ro, kRB24VMABCRBT3L / 2);
1264 shRB24VMABCRBT3->SetName("RB24VMABCRBT3");
1265 TGeoTube* shRB24VMABCRBT3i = new TGeoTube(0., kRB24VMABCRBT3Ri, kRB24VMABCRBT3L / 2. + 2.);
1266 shRB24VMABCRBT3i->SetName("RB24VMABCRBT3i");
1267 TGeoCombiTrans* tRBT3 = new TGeoCombiTrans(0., 10.5 - kRB24VMABCRBT3L / 2., 7.2 - kRB24VMABCRBT1L / 2., rotyz);
1268 tRBT3->SetName("tRBT3");
1269 tRBT3->RegisterYourself();
1270 TGeoCompositeShape* shRB24VMABCRBT3c =
1271 new TGeoCompositeShape("shRB24VMABCRBT3c", "RB24VMABCRBT3:tRBT3-RB24VMABCRBT1o");
1272 TGeoVolume* voRB24VMABCRBT3 = new TGeoVolume("shRB24VMABCRBT3", shRB24VMABCRBT3c, kMedSteel);
1273 // Flange
1274 // Pos 1.4 Flange DN35 LHCVBU__0007
1275 TGeoVolume* voRB24VMABCRBF3 = new TGeoVolume("RB24VMABCRBF3", new TGeoTube(kRB24VMABCRBT3Ro, kRB24VMABCRBF3Ro, kRB24VMABCRBF3L / 2.), kMedSteelNF);
1276 //
1277 // Tube 4
1278 const float kRB24VMABCRBT4Ri = 6.0 / 2.;
1279 const float kRB24VMABCRBT4Ro = 6.4 / 2.;
1280 const float kRB24VMABCRBT4L = 6.6;
1281 TGeoTube* shRB24VMABCRBT4 = new TGeoTube(kRB24VMABCRBT4Ri, kRB24VMABCRBT4Ro, kRB24VMABCRBT4L / 2.);
1282 shRB24VMABCRBT4->SetName("RB24VMABCRBT4");
1283 TGeoCombiTrans* tRBT4 = new TGeoCombiTrans(0., -11. + kRB24VMABCRBT4L / 2., 7.2 - kRB24VMABCRBT1L / 2., rotyz);
1284 tRBT4->SetName("tRBT4");
1285 tRBT4->RegisterYourself();
1286 TGeoCompositeShape* shRB24VMABCRBT4c =
1287 new TGeoCompositeShape("shRB24VMABCRBT4c", "RB24VMABCRBT4:tRBT4-RB24VMABCRBT1o2");
1288 TGeoVolume* voRB24VMABCRBT4 = new TGeoVolume("shRB24VMABCRBT4", shRB24VMABCRBT4c, kMedSteelNF);
1289 TGeoCompositeShape* shRB24VMABCRB =
1290 new TGeoCompositeShape("shRB24VMABCRB", "RB24VMABCRBT1-(RB24VMABCRBT2i:tRBT2+RB24VMABCRBT3i:tRBT3)");
1291 TGeoVolume* voRB24VMABCRBI = new TGeoVolume("RB24VMABCRBI", shRB24VMABCRB, kMedSteelNF);
1292 //
1293 // Plate
1294 const float kRB24VMABCRBBx = 16.0;
1295 const float kRB24VMABCRBBy = 1.5;
1296 const float kRB24VMABCRBBz = 15.0;
1297
1298 // Relative position of tubes
1299 const float kRB24VMABCTz = 7.2;
1300 // Relative position of plate
1301 const float kRB24VMABCPz = 3.6;
1302 const float kRB24VMABCPy = -12.5;
1303
1304 TGeoVolume* voRB24VMABCRBP = new TGeoVolume(
1305 "RB24VMABCRBP", new TGeoBBox(kRB24VMABCRBBx / 2., kRB24VMABCRBBy / 2., kRB24VMABCRBBz / 2.), kMedSteelNF);
1306 //
1307 // Pirani Gauge (my best guess)
1308 //
1309 TGeoPcon* shRB24VMABCPirani = new TGeoPcon(0., 360., 15);
1310 // DN35/16 Coupling
1311 z = 0;
1312 shRB24VMABCPirani->DefineSection(0, z, 0.8, kRB24VMABCRBF3Ro);
1313 z += kRB24VMABCRBF3L; // 1.3
1314 shRB24VMABCPirani->DefineSection(1, z, 0.8, kRB24VMABCRBF3Ro);
1315 shRB24VMABCPirani->DefineSection(2, z, 0.8, 1.0);
1316 // Pipe
1317 z += 2.8;
1318 shRB24VMABCPirani->DefineSection(3, z, 0.8, 1.0);
1319 // Flange
1320 shRB24VMABCPirani->DefineSection(4, z, 0.8, 1.75);
1321 z += 1.6;
1322 shRB24VMABCPirani->DefineSection(5, z, 0.8, 1.75);
1323 shRB24VMABCPirani->DefineSection(6, z, 0.8, 1.0);
1324 z += 5.2;
1325 shRB24VMABCPirani->DefineSection(7, z, 0.8, 1.0);
1326 shRB24VMABCPirani->DefineSection(8, z, 0.8, 2.5);
1327 z += 2.0;
1328 shRB24VMABCPirani->DefineSection(9, z, 0.80, 2.50);
1329 shRB24VMABCPirani->DefineSection(10, z, 1.55, 1.75);
1330 z += 5.7;
1331 shRB24VMABCPirani->DefineSection(11, z, 1.55, 1.75);
1332 shRB24VMABCPirani->DefineSection(11, z, 0.00, 1.75);
1333 z += 0.2;
1334 shRB24VMABCPirani->DefineSection(12, z, 0.00, 1.75);
1335 shRB24VMABCPirani->DefineSection(13, z, 0.00, 0.75);
1336 z += 0.5;
1337 shRB24VMABCPirani->DefineSection(14, z, 0.00, 0.75);
1338 TGeoVolume* voRB24VMABCPirani = new TGeoVolume("RB24VMABCPirani", shRB24VMABCPirani, kMedSteelNF);
1339 //
1340 //
1341 //
1342
1343 //
1344 // Positioning of elements
1345 TGeoVolumeAssembly* voRB24VMABCRB = new TGeoVolumeAssembly("RB24VMABCRB");
1346 //
1347 voRB24VMABCRB->AddNode(voRB24VMABCRBI, 1, gGeoIdentity);
1348 // Plate
1349 voRB24VMABCRB->AddNode(voRB24VMABCRBP, 1,
1350 new TGeoTranslation(0., kRB24VMABCPy + kRB24VMABCRBBy / 2.,
1351 kRB24VMABCRBBz / 2. - kRB24VMABCRBT1L / 2. + kRB24VMABCPz));
1352 // Tube 2
1353 voRB24VMABCRB->AddNode(voRB24VMABCRBT2, 1, gGeoIdentity);
1354 // Flange Tube 2
1355 voRB24VMABCRB->AddNode(voRB24VMABCRBF2, 1, new TGeoCombiTrans(kRB24VMABCPy + kRB24VMABCRBF2L / 2., 0., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotxz));
1356 // Blank Flange Tube 2
1357 voRB24VMABCRB->AddNode(voRB24VMABCRBF2B, 1, new TGeoCombiTrans(kRB24VMABCPy - kRB24VMABCRBF2L / 2., 0., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotxz));
1358 // Tube 3
1359 voRB24VMABCRB->AddNode(voRB24VMABCRBT3, 1, gGeoIdentity);
1360 // Flange Tube 3
1361 voRB24VMABCRB->AddNode(voRB24VMABCRBF3, 1, new TGeoCombiTrans(0., 11.2 - kRB24VMABCRBF3L / 2., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotyz));
1362 // Pirani Gauge
1363 voRB24VMABCRB->AddNode(voRB24VMABCPirani, 1, new TGeoCombiTrans(0., 11.2, kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotyz));
1364 // Tube 4
1365 voRB24VMABCRB->AddNode(voRB24VMABCRBT4, 1, gGeoIdentity);
1366 // Inforcement
1367 voRB24VMABCRB->AddNode(voRB24VMABCRBT12, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L2 / 2. - kRB24VMABCRBT1L / 2. + 2.8));
1368
1369 // Pos 1.3 Bellows with end part LHCVBU__0002
1370 //
1371 // Connection Tube
1372 // Connection tube inner r
1373 const float kRB24VMABBEConTubeRin = 10.0 / 2.;
1374 // Connection tube outer r
1375 const float kRB24VMABBEConTubeRou = 10.3 / 2.;
1376 // Connection tube length
1377 const float kRB24VMABBEConTubeL1 = 0.9;
1378 const float kRB24VMABBEConTubeL2 = 2.6;
1379
1380 // Mother volume
1381 TGeoPcon* shRB24VMABBEBellowM = new TGeoPcon(0., 360., 6);
1382 // Connection Tube and Flange
1383 z = 0.;
1384 shRB24VMABBEBellowM->DefineSection(0, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1385 z += kRB24VMABBEConTubeL1;
1386 shRB24VMABBEBellowM->DefineSection(1, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1387 shRB24VMABBEBellowM->DefineSection(2, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1388 z += newRB24B1BellowUndL;
1389 shRB24VMABBEBellowM->DefineSection(3, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1390 shRB24VMABBEBellowM->DefineSection(4, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1391 z += kRB24VMABBEConTubeL2;
1392 shRB24VMABBEBellowM->DefineSection(5, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1393 TGeoVolume* voRB24VMABBEBellowM = new TGeoVolume("RB24VMABBEBellowM", shRB24VMABBEBellowM, kMedVacNF);
1394 voRB24VMABBEBellowM->SetVisibility(0);
1395
1396 // Connection tube left
1397 TGeoVolume* voRB24VMABBECT1 = new TGeoVolume(
1398 "RB24VMABBECT1", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou, kRB24VMABBEConTubeL1 / 2.), kMedSteelNF);
1399 // Connection tube right
1400 TGeoVolume* voRB24VMABBECT2 = new TGeoVolume(
1401 "RB24VMABBECT2", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou, kRB24VMABBEConTubeL2 / 2.), kMedSteelNF);
1402 z = kRB24VMABBEConTubeL1 / 2.;
1403 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT1, 1, new TGeoTranslation(0., 0., z));
1404 z += kRB24VMABBEConTubeL1 / 2.;
1405 z += newRB24B1BellowUndL / 2.;
1406 voRB24VMABBEBellowM->AddNode(voRB24B1Bellow, 2, new TGeoTranslation(0., 0., z));
1407 z += newRB24B1BellowUndL / 2.;
1408 z += kRB24VMABBEConTubeL2 / 2.;
1409 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT2, 1, new TGeoTranslation(0., 0., z));
1410 z += kRB24VMABBEConTubeL2 / 2.;
1411
1412 voRB24VMABCRB->AddNode(voRB24VMABBEBellowM, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L / 2.));
1413
1414 // Pos 1.2 Rotable flange LHCVBU__0013[*]
1415 // Front
1416 voRB24VMABCRB->AddNode(voRB24B1RFlange, 3, new TGeoCombiTrans(0., 0., -kRB24VMABCRBT1L / 2. + 0.86, rot180));
1417 // End
1418 z = kRB24VMABCRBT1L / 2. + newRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2;
1419 voRB24VMABCRB->AddNode(voRB24B1RFlange, 4, new TGeoTranslation(0., 0., z - 0.86));
1420
1421 // Pos 2 Trans. Tube Flange LHCVSR__0062
1422 // Pos 2.1 Transition Tube LHCVSR__0063
1423 // Pos 2.2 Transition Flange LHCVSR__0060
1424 //
1425 // Transition Tube with Flange
1426 TGeoPcon* shRB24VMABCTT = new TGeoPcon(0., 360., 7);
1427 z = 0.;
1428 shRB24VMABCTT->DefineSection(0, z, 6.3 / 2., 11.16 / 2.);
1429 z += 0.25;
1430 shRB24VMABCTT->DefineSection(1, z, 6.3 / 2., 11.16 / 2.);
1431 shRB24VMABCTT->DefineSection(2, z, 6.3 / 2., 9.30 / 2.);
1432 z += 0.25;
1433 shRB24VMABCTT->DefineSection(3, z, 6.3 / 2., 9.30 / 2.);
1434 shRB24VMABCTT->DefineSection(4, z, 6.3 / 2., 6.70 / 2.);
1435 z += (20.35 - 0.63);
1436 shRB24VMABCTT->DefineSection(5, z, 6.3 / 2., 6.7 / 2.);
1437 z += 0.63;
1438 shRB24VMABCTT->DefineSection(6, z, 6.3 / 2., 6.7 / 2.);
1439 TGeoVolume* voRB24VMABCTT = new TGeoVolume("RB24VMABCTT", shRB24VMABCTT, kMedSteelNF);
1440 voRB24VMABCRB->AddNode(voRB24VMABCTT, 1, new TGeoTranslation(0., 0., -kRB24VMABCRBT1L / 2. - 1.));
1441
1442 // Pos 3 RF Contact D63 LHCVSR__0057
1443 // Pos 3.1 RF Contact Flange LHCVSR__0017
1444 //
1445 TGeoPcon* shRB24VMABCCTFlange = new TGeoPcon(0., 360., 6);
1446 const float kRB24VMABCCTFlangeRin = 6.36 / 2.; // Inner radius
1447 const float kRB24VMABCCTFlangeL = 1.30; // Length
1448
1449 z = 0.;
1450 shRB24VMABCCTFlange->DefineSection(0, z, kRB24VMABCCTFlangeRin, 6.5 / 2.);
1451 z += 0.15;
1452 shRB24VMABCCTFlange->DefineSection(1, z, kRB24VMABCCTFlangeRin, 6.5 / 2.);
1453 shRB24VMABCCTFlange->DefineSection(2, z, kRB24VMABCCTFlangeRin, 6.9 / 2.);
1454 z += 0.9;
1455 shRB24VMABCCTFlange->DefineSection(3, z, kRB24VMABCCTFlangeRin, 6.9 / 2.);
1456 shRB24VMABCCTFlange->DefineSection(4, z, kRB24VMABCCTFlangeRin, 11.16 / 2.);
1457 z += 0.25;
1458 shRB24VMABCCTFlange->DefineSection(5, z, kRB24VMABCCTFlangeRin, 11.16 / 2.);
1459 TGeoVolume* voRB24VMABCCTFlange = new TGeoVolume("RB24VMABCCTFlange", shRB24VMABCCTFlange, kMedCuNF);
1460 //
1461 // Pos 3.2 RF-Contact LHCVSR__0056
1462 //
1463 TGeoPcon* shRB24VMABCCT = new TGeoPcon(0., 360., 4);
1464 const float kRB24VMABCCTRin = 6.30 / 2.; // Inner radius
1465 const float kRB24VMABCCTCRin = 7.29 / 2.; // Max. inner radius conical section
1466 const float kRB24VMABCCTL = 11.88; // Length
1467 const float kRB24VMABCCTSL = 10.48; // Length of straight section
1468 const float kRB24VMABCCTd = 0.03; // Thickness
1469 z = 0;
1470 shRB24VMABCCT->DefineSection(0, z, kRB24VMABCCTCRin, kRB24VMABCCTCRin + kRB24VMABCCTd);
1471 z = kRB24VMABCCTL - kRB24VMABCCTSL;
1472 shRB24VMABCCT->DefineSection(1, z, kRB24VMABCCTRin + 0.35, kRB24VMABCCTRin + 0.35 + kRB24VMABCCTd);
1473 z = kRB24VMABCCTL - kRB24VMABCCTFlangeL;
1474 shRB24VMABCCT->DefineSection(2, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1475 z = kRB24VMABCCTL;
1476 shRB24VMABCCT->DefineSection(3, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1477
1478 TGeoVolume* voRB24VMABCCT = new TGeoVolume("RB24VMABCCT", shRB24VMABCCT, kMedCuNF);
1479
1480 TGeoVolumeAssembly* voRB24VMABRFCT = new TGeoVolumeAssembly("RB24VMABRFCT");
1481 voRB24VMABRFCT->AddNode(voRB24VMABCCT, 1, gGeoIdentity);
1482 voRB24VMABRFCT->AddNode(voRB24VMABCCTFlange, 1, new TGeoTranslation(0., 0., kRB24VMABCCTL - kRB24VMABCCTFlangeL));
1483
1484 z = kRB24VMABCRBT1L / 2. + newRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 - kRB24VMABCCTL + 1.;
1485 voRB24VMABCRB->AddNode(voRB24VMABRFCT, 1, new TGeoTranslation(0., 0., z));
1486
1487 //
1488 // Assembling RB24/1
1489 //
1490
1491 // part which is placed in the cave
1492 // ->
1493 TGeoVolumeAssembly* voRB24C = new TGeoVolumeAssembly("RB24C");
1494 voRB24C->AddNode(voRB24cCuTubeM, 1, gGeoIdentity);
1495 z = -kRB24cCuTubeL / 2 + kRB24CuTubeFL / 2.;
1496 voRB24C->AddNode(voRB24CuTubeF, 1, new TGeoTranslation(0., 0., z));
1497 // VMABC close to compensator magnet
1498 // z = -kRB24cCuTubeL / 2. - (kRB24VMABCL - kRB24VMABCRBT1L / 2) + 1.;
1499 // voRB24C->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z));
1500 z = -kRB24cCuTubeL / 2. - kRB24B1L;
1501 voRB24C->AddNode(voRB24B1BellowM, 2, new TGeoTranslation(0., 0., z));
1502
1503 // <-
1504
1505 //
1506 // RB24/2
1507 //
1508 // Copper Tube RB24/2
1509 // mainly inside the compensator magnet
1510 const float kRB242CuTubeL = 350.0;
1511 // 20 cm straight - 20 cm transition to final oval - 270 oval - 20 cm transition to final oval - 20 cm straight
1512 //
1513 // mother volume for transition region
1514 TGeoVolume* voRB242CuOvTransMo = new TGeoVolume("voRB24CuOvTransMo", new TGeoTube(0., 4.75, 10.), kMedAir);
1515 const int nTrans = 10;
1516 TGeoVolume* voRB242CuOvTransV[nTrans];
1517 TGeoVolume* voRB242CuOvTransI[nTrans];
1518 float dovX = 4.;
1519 float dovY = 4.;
1520 float dovZ = -9.0;
1521 for (int i = 0; i < nTrans; i++) {
1522 dovX -= 0.0625;
1523 dovY += 0.075;
1524 char vname[20];
1525 snprintf(vname, 20, "voRB242CuOvTransV%d", i);
1526 voRB242CuOvTransV[i] = new TGeoVolume(vname, new TGeoEltu(dovX, dovY, 1.0), kMedCuHC);
1527 snprintf(vname, 20, "voRB242CuOvTransI%d", i);
1528 voRB242CuOvTransI[i] = new TGeoVolume(vname, new TGeoEltu(dovX - 0.2, dovY - 0.2, 1.0), kMedVacHC);
1529 voRB242CuOvTransV[i]->AddNode(voRB242CuOvTransI[i], 1, gGeoIdentity);
1530 voRB242CuOvTransMo->AddNode(voRB242CuOvTransV[i], 1, new TGeoTranslation(0., 0., dovZ));
1531 dovZ += 2.;
1532 }
1533 //
1534 TGeoVolume* voRB242CuTubeM = new TGeoVolume("voRB242CuTubeM", new TGeoTube(0., kRB24CuTubeRo, 10.), kMedVacHC);
1535 TGeoVolume* voRB242CuTube = new TGeoVolume("voRB242CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, 10.), kMedCuHC);
1536 voRB242CuTubeM->AddNode(voRB242CuTube, 1, gGeoIdentity);
1537 TGeoVolume* voRB242CuOvalM = new TGeoVolume("voRB242CuOvalM", new TGeoEltu(3.375, 4.75, 135.), kMedCuHC);
1538 TGeoVolume* voRB242CuOval = new TGeoVolume("voRB242CuOval", new TGeoEltu(3.175, 4.55, 135.), kMedVacHC);
1539 voRB242CuOvalM->AddNode(voRB242CuOval, 1, gGeoIdentity);
1540 //
1541 TGeoVolumeAssembly* voRB242 = new TGeoVolumeAssembly("RB242");
1542 voRB242->AddNode(voRB242CuOvalM, 1, gGeoIdentity);
1543 z = -kRB242CuTubeL / 2 + kRB24CuTubeFL / 2.;
1544 voRB242->AddNode(voRB24CuTubeF, 3, new TGeoTranslation(0., 0., z));
1545 z = +kRB242CuTubeL / 2 - kRB24CuTubeFL / 2.;
1546 voRB242->AddNode(voRB24CuTubeF, 4, new TGeoTranslation(0., 0., z));
1547 z = 135. + 10.;
1548 voRB242->AddNode(voRB242CuOvTransMo, 1, new TGeoCombiTrans(0., 0., z, rot180));
1549 z = -135. - 10.;
1550 voRB242->AddNode(voRB242CuOvTransMo, 2, new TGeoTranslation(0., 0., z));
1551 z = -135. - 30.;
1552 voRB242->AddNode(voRB242CuTubeM, 1, new TGeoTranslation(0., 0., z));
1553 z = 135. + 30.;
1554 voRB242->AddNode(voRB242CuTubeM, 2, new TGeoTranslation(0., 0., z));
1555 z = -kRB24cCuTubeL / 2 - kRB24B1L - kRB242CuTubeL / 2.;
1556 voRB24C->AddNode(voRB242, 1, new TGeoTranslation(0., 0., z));
1557 //
1558 // RB24/3
1559 //
1560 // Copper Tube RB24/3
1561 // the lenth of the tube is 296.85 on the drawing but this is inconsistent with the total length tube + bellow
1562 const float kRB243CuTubeL = 297.85 - (kRB24VMABCL - kRB24B1L);
1563
1564 TGeoVolume* voRB243CuTubeM = new TGeoVolume("voRB243CuTubeM", new TGeoTube(0., kRB24CuTubeRo, (kRB243CuTubeL) / 2.), kMedVacNF);
1565 TGeoVolume* voRB243CuTube = new TGeoVolume("voRB243CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, (kRB243CuTubeL) / 2.), kMedCuNF);
1566 voRB243CuTubeM->AddNode(voRB243CuTube, 1, gGeoIdentity);
1567
1568 TGeoVolumeAssembly* voRB243 = new TGeoVolumeAssembly("RB243");
1569 TGeoVolumeAssembly* voRB243A = new TGeoVolumeAssembly("RB243A");
1570
1571 voRB243A->AddNode(voRB243CuTube, 1, gGeoIdentity);
1572 z = -kRB243CuTubeL / 2 + kRB24CuTubeFL / 2.;
1573 voRB243A->AddNode(voRB24CuTubeF, 5, new TGeoTranslation(0., 0., z));
1574 z = +kRB243CuTubeL / 2 - kRB24CuTubeFL / 2.;
1575 voRB243A->AddNode(voRB24CuTubeF, 6, new TGeoTranslation(0., 0., z));
1576
1577 z = +kRB243CuTubeL / 2 + (kRB24VMABCRBT1L / 2) + 1;
1578 voRB243A->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z));
1579
1580 z = -kRB243CuTubeL / 2. - kRB24VMABCL;
1581 voRB243->AddNode(voRB243A, 1, new TGeoTranslation(0., 0., z));
1582 z = -(1.5 * kRB243CuTubeL + 2. * kRB24VMABCL);
1583 voRB243->AddNode(voRB243A, 2, new TGeoTranslation(0., 0., z));
1584
1585 z = -2. * (kRB243CuTubeL + kRB24VMABCL) - (kRB24VMABCL - kRB24VMABCRBT1L / 2) + 1.;
1586 voRB243->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z));
1587
1588 z = -kRB24cCuTubeL / 2 - kRB24B1L - kRB242CuTubeL;
1589 voRB24C->AddNode(voRB243, 1, new TGeoTranslation(0., 0., z));
1590
1591 //
1592 //
1593 caveRB24->AddNode(voRB24C, 1, new TGeoCombiTrans(0., 0., -kRB24CL / 2 + kRB24cCuTubeL / 2, rot180));
1594
1595 //
1597 // //
1598 // The Absorber Vacuum system //
1599 // //
1601 //
1602 // Rotable Flange starts at: 82.00 cm from IP
1603 // Length of rotable flange section: 10.68 cm
1604 // Weld 0.08 cm
1605 // Length of straight section 207.21 cm
1606 // =======================================================================
1607 // 299.97 cm [0.03 cm missing ?]
1608 // Length of opening cone 252.09 cm
1609 // Weld 0.15 cm
1610 // Length of compensator 30.54 cm
1611 // Weld 0.15 cm
1612 // Length of fixed flange 2.13 - 0.97 1.16 cm
1613 // =======================================================================
1614 // 584.06 cm [584.80 installed] [0.74 cm missing]
1615 // RB26/3
1616 // Length of split flange 2.13 - 1.2 0.93 cm
1617 // Weld 0.15 cm
1618 // Length of fixed point section 16.07 cm
1619 // Weld 0.15 cm
1620 // Length of opening cone 629.20 cm
1621 // Weld 0.30 cm
1622 // Kength of the compensator 41.70 cm
1623 // Weld 0.30 cm
1624 // Length of fixed flange 2.99 - 1.72 1.27 cm
1625 // =================================================
1626 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1627 //
1628 // RB26/4-5
1629 // Length of split flange 2.13 - 1.2 0.93 cm
1630 // Weld 0.15 cm
1631 // Length of fixed point section 16.07 cm
1632 // Weld 0.15 cm
1633 // Length of opening cone 629.20 cm
1634 // Weld 0.30 cm
1635 // Length of closing cone
1636 // Weld
1637 // Lenth of straight section
1638 // Kength of the compensator 41.70 cm
1639 // Weld 0.30 cm
1640 // Length of fixed flange 2.99 - 1.72 1.27 cm
1641 // =================================================
1642 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1643
1645 // //
1646 // RB26/1-2 //
1647 // Drawing LHCV2a_0050 [as installed] //
1648 // Drawing LHCV2a_0008 //
1649 // Drawing LHCV2a_0001 //
1651 // Pos1 Vacuum Tubes LHCVC2A__0010
1652 // Pos2 Compensator LHCVC2A__0064
1653 // Pos3 Rotable Flange LHCVFX___0016
1654 // Pos4 Fixed Flange LHCVFX___0006
1655 // Pos5 Bellow Tooling LHCVFX___0003
1656 //
1657 //
1658 //
1660 // RB26/1-2 Vacuum Tubes //
1661 // Drawing LHCVC2a_0010 //
1663 const float kRB26s12TubeL0 = 459.45; // 0.15 cm added for welding
1664 const float kRB26s12TubeL2 = 47.21; // part of this tube outside barrel region
1665 const float kRB26s12TubeL = kRB26s12TubeL0 - kRB26s12TubeL2; // 392.115
1666 //
1667 // 184.905
1668 // 0.877
1669 // Add 1 cm on outer diameter for insulation
1670 //
1671 //
1672 // the section which is placed into the central barrel (ending at z = -505)
1673 TGeoPcon* shRB26s12Tube = new TGeoPcon(0., 360., 4);
1674 // Section 1: straight section
1675 shRB26s12Tube->DefineSection(0, 0.00, 5.84 / 2., 6.00 / 2.);
1676 shRB26s12Tube->DefineSection(1, 207.21, 5.84 / 2., 6.00 / 2.);
1677 // Section 2: 0.72 deg opening cone
1678 shRB26s12Tube->DefineSection(2, 207.21, 5.84 / 2., 6.14 / 2.);
1679 shRB26s12Tube->DefineSection(3, kRB26s12TubeL, 5.84 / 2 + 2.576, 6.14 / 2. + 2.576);
1680
1681 // the section which is placed into the muon spectrometer (starting at z = -505)
1682 TGeoPcon* shRB26s12msTube = new TGeoPcon(0., 360., 3);
1683 // conical part
1684 shRB26s12msTube->DefineSection(0, 0.00, shRB26s12Tube->GetRmin(3), shRB26s12Tube->GetRmax(3));
1685 shRB26s12msTube->DefineSection(1, 452.30 - kRB26s12TubeL, 12.0 / 2., 12.3 / 2.);
1686 // straight part until compensator
1687 shRB26s12msTube->DefineSection(2, kRB26s12TubeL2, 12.0 / 2., 12.3 / 2.);
1688
1689 TGeoVolume* voRB26s12Tube = new TGeoVolume("RB26s12Tube", shRB26s12Tube, kMedSteelHC);
1690 TGeoVolume* voRB26s12msTube = new TGeoVolume("RB26s12msTube", shRB26s12msTube, kMedSteelHC);
1691 // Add the insulation layer
1692 TGeoVolume* voRB26s12TubeIns = new TGeoVolume("RB26s12TubeIns", makeInsulationFromTemplate(shRB26s12Tube), kMedInsu);
1693 TGeoVolume* voRB26s12msTubeIns = new TGeoVolume("RB26s12msTubeIns", makeInsulationFromTemplate(shRB26s12msTube), kMedInsu);
1694 voRB26s12Tube->AddNode(voRB26s12TubeIns, 1, gGeoIdentity);
1695 voRB26s12msTube->AddNode(voRB26s12msTubeIns, 1, gGeoIdentity);
1696
1697 TGeoVolume* voRB26s12TubeM = new TGeoVolume("RB26s12TubeM", makeMotherFromTemplate(shRB26s12Tube), kMedVacHC);
1698 voRB26s12TubeM->AddNode(voRB26s12Tube, 1, gGeoIdentity);
1699 TGeoVolume* voRB26s12msTubeM = new TGeoVolume("RB26s12msTubeM", makeMotherFromTemplate(shRB26s12msTube), kMedVacHC);
1700 voRB26s12msTubeM->AddNode(voRB26s12msTube, 1, gGeoIdentity);
1701
1703 // RB26/2 Axial Compensator //
1704 // Drawing LHCVC2a_0064 //
1706 const float kRB26s2CompL = 30.65; // Length of the compensator
1707 const float kRB26s2BellowRo = 14.38 / 2.; // Bellow outer radius [Pos 1]
1708 const float kRB26s2BellowRi = 12.12 / 2.; // Bellow inner radius [Pos 1]
1709 const int kRB26s2NumberOfPlies = 14; // Number of plies [Pos 1]
1710 const float kRB26s2BellowUndL = 10.00; // Length of undulated region [Pos 1] [+10 mm installed including pretension ?]
1711 const float kRB26s2PlieThickness = 0.025; // Plie thickness [Pos 1]
1712 const float kRB26s2ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
1713 // Plie radius
1714 const float kRB26s2PlieR = (kRB26s2BellowUndL - 4. * kRB26s2ConnectionPlieR + 2. * kRB26s2PlieThickness +
1715 (2. * kRB26s2NumberOfPlies - 2.) * kRB26s2PlieThickness) /
1716 (4. * kRB26s2NumberOfPlies - 2.);
1717 const float kRB26s2CompTubeInnerR = 12.00 / 2.; // Connection tubes inner radius [Pos 2 + 3]
1718 const float kRB26s2CompTubeOuterR = 12.30 / 2.; // Connection tubes outer radius [Pos 2 + 3]
1719 const float kRB26s2WeldingTubeLeftL = 9.00 / 2.; // Left connection tube half length [Pos 2]
1720 const float kRB26s2WeldingTubeRightL = 11.65 / 2.; // Right connection tube half length [Pos 3] [+ 0.15 cm for welding]
1721 const float kRB26s2RingOuterR = 18.10 / 2.; // Ring inner radius [Pos 4]
1722 const float kRB26s2RingL = 0.40 / 2.; // Ring half length [Pos 4]
1723 const float kRB26s2RingZ = 6.50; // Ring z-position [Pos 4]
1724 const float kRB26s2ProtOuterR = 18.20 / 2.; // Protection tube outer radius [Pos 5]
1725 const float kRB26s2ProtL = 15.00 / 2.; // Protection tube half length [Pos 5]
1726 const float kRB26s2ProtZ = 6.70; // Protection tube z-position [Pos 5]
1727
1728 // Mother volume
1729 //
1730 TGeoPcon* shRB26s2Compensator = new TGeoPcon(0., 360., 6);
1731 shRB26s2Compensator->DefineSection(0, 0.0, 0., kRB26s2CompTubeOuterR);
1732 shRB26s2Compensator->DefineSection(1, kRB26s2RingZ, 0., kRB26s2CompTubeOuterR);
1733 shRB26s2Compensator->DefineSection(2, kRB26s2RingZ, 0., kRB26s2ProtOuterR);
1734 shRB26s2Compensator->DefineSection(3, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2ProtOuterR);
1735 shRB26s2Compensator->DefineSection(4, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2CompTubeOuterR);
1736 shRB26s2Compensator->DefineSection(5, kRB26s2CompL, 0., kRB26s2CompTubeOuterR);
1737 TGeoVolume* voRB26s2Compensator = new TGeoVolume("RB26s2Compensator", shRB26s2Compensator, kMedVacHC);
1738
1739 //
1740 // [Pos 1] Bellow
1741 //
1742 //
1743 TGeoVolume* voRB26s2Bellow =
1744 new TGeoVolume("RB26s2Bellow", new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRo, kRB26s2BellowUndL / 2.), kMedVacHC);
1745 //
1746 // Upper part of the undulation
1747 //
1748 TGeoTorus* shRB26s2PlieTorusU = new TGeoTorus(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1749 shRB26s2PlieTorusU->SetName("RB26s2TorusU");
1750 TGeoTube* shRB26s2PlieTubeU = new TGeoTube(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2BellowRo, kRB26s2PlieR);
1751 shRB26s2PlieTubeU->SetName("RB26s2TubeU");
1752 TGeoCompositeShape* shRB26s2UpperPlie = new TGeoCompositeShape("RB26s2UpperPlie", "RB26s2TorusU*RB26s2TubeU");
1753
1754 TGeoVolume* voRB26s2WiggleU = new TGeoVolume("RB26s2UpperPlie", shRB26s2UpperPlie, kMedSteelHC);
1755 //
1756 // Lower part of the undulation
1757 TGeoTorus* shRB26s2PlieTorusL = new TGeoTorus(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1758 shRB26s2PlieTorusL->SetName("RB26s2TorusL");
1759 TGeoTube* shRB26s2PlieTubeL = new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR);
1760 shRB26s2PlieTubeL->SetName("RB26s2TubeL");
1761 TGeoCompositeShape* shRB26s2LowerPlie = new TGeoCompositeShape("RB26s2LowerPlie", "RB26s2TorusL*RB26s2TubeL");
1762
1763 TGeoVolume* voRB26s2WiggleL = new TGeoVolume("RB26s2LowerPlie", shRB26s2LowerPlie, kMedSteelHC);
1764
1765 //
1766 // Connection between upper and lower part of undulation
1767 TGeoVolume* voRB26s2WiggleC1 = new TGeoVolume(
1768 "RB26s2PlieConn1",
1769 new TGeoTube(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieThickness / 2.), kMedSteelHC);
1770 //
1771 // One wiggle
1772 TGeoVolumeAssembly* voRB26s2Wiggle = new TGeoVolumeAssembly("RB26s2Wiggle");
1773 z0 = -kRB26s2PlieThickness / 2.;
1774 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 1, new TGeoTranslation(0., 0., z0));
1775 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1776 voRB26s2Wiggle->AddNode(voRB26s2WiggleU, 1, new TGeoTranslation(0., 0., z0));
1777 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1778 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 2, new TGeoTranslation(0., 0., z0));
1779 z0 += kRB26s2PlieR - kRB26s2PlieThickness;
1780 voRB26s2Wiggle->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
1781 // Positioning of the volumes
1782 z0 = -kRB26s2BellowUndL / 2. + kRB26s2ConnectionPlieR;
1783 voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
1784 z0 += kRB26s2ConnectionPlieR;
1785 zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness;
1786 for (int iw = 0; iw < kRB26s2NumberOfPlies; iw++) {
1787 float zpos = z0 + iw * zsh;
1788 voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness));
1789 }
1790
1791 voRB26s2Compensator->AddNode(voRB26s2Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s2WeldingTubeLeftL + kRB26s2BellowUndL / 2.));
1792
1793 //
1794 // [Pos 2] Left Welding Tube
1795 //
1796 TGeoTube* shRB26s2CompLeftTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeLeftL);
1797 TGeoVolume* voRB26s2CompLeftTube = new TGeoVolume("RB26s2CompLeftTube", shRB26s2CompLeftTube, kMedSteelHC);
1798 voRB26s2Compensator->AddNode(voRB26s2CompLeftTube, 1, new TGeoTranslation(0., 0., kRB26s2WeldingTubeLeftL));
1799 //
1800 // [Pos 3] Right Welding Tube
1801 //
1802 TGeoTube* shRB26s2CompRightTube =
1803 new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeRightL);
1804 TGeoVolume* voRB26s2CompRightTube = new TGeoVolume("RB26s2CompRightTube", shRB26s2CompRightTube, kMedSteelHC);
1805 voRB26s2Compensator->AddNode(voRB26s2CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s2CompL - kRB26s2WeldingTubeRightL));
1806 //
1807 // [Pos 4] Ring
1808 //
1809 TGeoTube* shRB26s2CompRing = new TGeoTube(kRB26s2CompTubeOuterR, kRB26s2RingOuterR, kRB26s2RingL);
1810 TGeoVolume* voRB26s2CompRing = new TGeoVolume("RB26s2CompRing", shRB26s2CompRing, kMedSteelHC);
1811 voRB26s2Compensator->AddNode(voRB26s2CompRing, 1, new TGeoTranslation(0., 0., kRB26s2RingZ + kRB26s2RingL));
1812
1813 //
1814 // [Pos 5] Outer Protecting Tube
1815 //
1816 TGeoTube* shRB26s2CompProtTube = new TGeoTube(kRB26s2RingOuterR, kRB26s2ProtOuterR, kRB26s2ProtL);
1817 TGeoVolume* voRB26s2CompProtTube = new TGeoVolume("RB26s2CompProtTube", shRB26s2CompProtTube, kMedSteelHC);
1818 voRB26s2Compensator->AddNode(voRB26s2CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s2ProtZ + kRB26s2ProtL));
1819
1821 // Rotable Flange //
1822 // Drawing LHCVFX_0016 //
1824 const float kRB26s1RFlangeTubeRi = 5.84 / 2.; // Tube inner radius
1825 const float kRB26s1RFlangeTubeRo = 6.00 / 2.; // Tube outer radius
1826
1827 // Pos 1 Clamp Ring LHCVFX__0015
1828 const float kRB26s1RFlangeCrL = 1.40; // Lenth of the clamp ring
1829 const float kRB26s1RFlangeCrRi1 = 6.72 / 2.; // Ring inner radius section 1
1830 const float kRB26s1RFlangeCrRi2 = 6.06 / 2.; // Ring inner radius section 2
1831 const float kRB26s1RFlangeCrRo = 8.60 / 2.; // Ring outer radius
1832 const float kRB26s1RFlangeCrD = 0.800; // Width section 1
1833
1834 TGeoPcon* shRB26s1RFlangeCr = new TGeoPcon(0., 360., 4);
1835 z0 = 0.;
1836 shRB26s1RFlangeCr->DefineSection(0, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1837 z0 += kRB26s1RFlangeCrD;
1838 shRB26s1RFlangeCr->DefineSection(1, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1839 shRB26s1RFlangeCr->DefineSection(2, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1840 z0 = kRB26s1RFlangeCrL;
1841 shRB26s1RFlangeCr->DefineSection(3, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1842 TGeoVolume* voRB26s1RFlangeCr = new TGeoVolume("RB26s1RFlangeCr", shRB26s1RFlangeCr, kMedSteelHC);
1843
1844 // Pos 2 Insert LHCVFX__0015
1845 const float kRB26s1RFlangeIsL = 4.88; // Lenth of the insert
1846 const float kRB26s1RFlangeIsR = 6.70 / 2.; // Ring radius
1847 const float kRB26s1RFlangeIsD = 0.80; // Ring Width
1848
1849 TGeoPcon* shRB26s1RFlangeIs = new TGeoPcon(0., 360., 4);
1850 z0 = 0.;
1851 shRB26s1RFlangeIs->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1852 z0 += kRB26s1RFlangeIsD;
1853 shRB26s1RFlangeIs->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1854 shRB26s1RFlangeIs->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1855 z0 = kRB26s1RFlangeIsL;
1856 shRB26s1RFlangeIs->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1857 TGeoVolume* voRB26s1RFlangeIs = new TGeoVolume("RB26s1RFlangeIs", shRB26s1RFlangeIs, kMedSteelHC);
1858 // 4.88 + 3.7 = 8.58 (8.7 to avoid overlap)
1859 // Pos 3 Fixed Point Section LHCVC2A_0021
1860 const float kRB26s1RFlangeFpL = 5.88; // Length of the fixed point section (0.08 cm added for welding)
1861 const float kRB26s1RFlangeFpZ = 3.82; // Position of the ring
1862 const float kRB26s1RFlangeFpD = 0.59; // Width of the ring
1863 const float kRB26s1RFlangeFpR = 7.00 / 2.; // Radius of the ring
1864
1865 TGeoPcon* shRB26s1RFlangeFp = new TGeoPcon(0., 360., 6);
1866 z0 = 0.;
1867 shRB26s1RFlangeFp->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1868 z0 += kRB26s1RFlangeFpZ;
1869 shRB26s1RFlangeFp->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1870 shRB26s1RFlangeFp->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
1871 z0 += kRB26s1RFlangeFpD;
1872 shRB26s1RFlangeFp->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
1873 shRB26s1RFlangeFp->DefineSection(4, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1874 z0 = kRB26s1RFlangeFpL;
1875 shRB26s1RFlangeFp->DefineSection(5, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1876 TGeoVolume* voRB26s1RFlangeFp = new TGeoVolume("RB26s1RFlangeFp", shRB26s1RFlangeFp, kMedSteelHC);
1877
1878 // Put everything in a mother volume
1879 TGeoPcon* shRB26s1RFlange = new TGeoPcon(0., 360., 8);
1880 z0 = 0.;
1881 shRB26s1RFlange->DefineSection(0, z0, 0., kRB26s1RFlangeCrRo);
1882 z0 += kRB26s1RFlangeCrL;
1883 shRB26s1RFlange->DefineSection(1, z0, 0., kRB26s1RFlangeCrRo);
1884 shRB26s1RFlange->DefineSection(2, z0, 0., kRB26s1RFlangeTubeRo);
1885 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpZ;
1886 shRB26s1RFlange->DefineSection(3, z0, 0., kRB26s1RFlangeTubeRo);
1887 shRB26s1RFlange->DefineSection(4, z0, 0., kRB26s1RFlangeFpR);
1888 z0 += kRB26s1RFlangeFpD;
1889 shRB26s1RFlange->DefineSection(5, z0, 0., kRB26s1RFlangeFpR);
1890 shRB26s1RFlange->DefineSection(6, z0, 0., kRB26s1RFlangeTubeRo);
1891 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
1892 shRB26s1RFlange->DefineSection(7, z0, 0., kRB26s1RFlangeTubeRo);
1893 TGeoVolume* voRB26s1RFlange = new TGeoVolume("RB26s1RFlange", shRB26s1RFlange, kMedVacHC);
1894
1895 voRB26s1RFlange->AddNode(voRB26s1RFlangeIs, 1, gGeoIdentity);
1896 voRB26s1RFlange->AddNode(voRB26s1RFlangeCr, 1, gGeoIdentity);
1897 voRB26s1RFlange->AddNode(voRB26s1RFlangeFp, 1, new TGeoTranslation(0., 0., kRB26s1RFlangeIsL));
1898
1900 // Fixed Flange //
1901 // Drawing LHCVFX_0006 //
1903 const float kRB26s2FFlangeL = 2.13; // Length of the flange
1904 const float kRB26s2FFlangeD1 = 0.97; // Length of section 1
1905 const float kRB26s2FFlangeD2 = 0.29; // Length of section 2
1906 const float kRB26s2FFlangeD3 = 0.87; // Length of section 3
1907 const float kRB26s2FFlangeRo = 17.15 / 2.; // Flange outer radius
1908 const float kRB26s2FFlangeRi1 = 12.30 / 2.; // Flange inner radius section 1
1909 const float kRB26s2FFlangeRi2 = 12.00 / 2.; // Flange inner radius section 2
1910 const float kRB26s2FFlangeRi3 = 12.30 / 2.; // Flange inner radius section 3
1911 z0 = 0;
1912 TGeoPcon* shRB26s2FFlange = new TGeoPcon(0., 360., 6);
1913 z0 = 0.;
1914 shRB26s2FFlange->DefineSection(0, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
1915 z0 += kRB26s2FFlangeD1;
1916 shRB26s2FFlange->DefineSection(1, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
1917 shRB26s2FFlange->DefineSection(2, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
1918 z0 += kRB26s2FFlangeD2;
1919 shRB26s2FFlange->DefineSection(3, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
1920 shRB26s2FFlange->DefineSection(4, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
1921 z0 += kRB26s2FFlangeD3;
1922 shRB26s2FFlange->DefineSection(5, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
1923 TGeoVolume* voRB26s2FFlange = new TGeoVolume("RB26s2FFlange", shRB26s2FFlange, kMedSteelHC);
1924
1925 TGeoVolume* voRB26s2FFlangeM = new TGeoVolume("RB26s2FFlangeM", makeMotherFromTemplate(shRB26s2FFlange, 2, 5), kMedVacHC);
1926 voRB26s2FFlangeM->AddNode(voRB26s2FFlange, 1, gGeoIdentity);
1927
1929 // //
1930 // RB26/3 //
1931 // Drawing LHCV2a_0048 //
1932 // Drawing LHCV2a_0002 //
1934 //
1935 // Pos 1 Vacuum Tubes LHCVC2A__0003
1936 // Pos 2 Fixed Point LHCVFX___0005
1937 // Pos 3 Split Flange LHCVFX___0007
1938 // Pos 4 Fixed Flange LHCVFX___0004
1939 // Pos 5 Axial Compensator LHCVC2A__0065
1940 //
1941 //
1942 //
1943 //
1945 // Vacuum Tube //
1946 // Drawing LHCVC2A_0003 //
1948 const float kRB26s3TubeL = 629.35 + 0.3; // 0.3 cm added for welding
1949 const float kRB26s3TubeR1 = 12. / 2.;
1950 const float kRB26s3TubeR2 = kRB26s3TubeR1 + 215.8 * TMath::Tan(0.829 / 180. * TMath::Pi());
1951
1952 TGeoPcon* shRB26s3Tube = new TGeoPcon(0., 360., 7);
1953 // Section 1: straight section
1954 shRB26s3Tube->DefineSection(0, 0.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
1955 shRB26s3Tube->DefineSection(1, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
1956 // Section 2: 0.829 deg opening cone
1957 shRB26s3Tube->DefineSection(2, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.20);
1958
1959 shRB26s3Tube->DefineSection(3, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.20);
1960 shRB26s3Tube->DefineSection(4, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.30);
1961
1962 shRB26s3Tube->DefineSection(5, 622.20, 30.00 / 2., 30.60 / 2.);
1963 shRB26s3Tube->DefineSection(6, kRB26s3TubeL, 30.00 / 2., 30.60 / 2.);
1964
1965 TGeoVolume* voRB26s3Tube = new TGeoVolume("RB26s3Tube", shRB26s3Tube, kMedSteelHC);
1966 // Add the insulation layer
1967 TGeoVolume* voRB26s3TubeIns = new TGeoVolume("RB26s3TubeIns", makeInsulationFromTemplate(shRB26s3Tube), kMedInsu);
1968 voRB26s3Tube->AddNode(voRB26s3TubeIns, 1, gGeoIdentity);
1969
1970 TGeoVolume* voRB26s3TubeM = new TGeoVolume("RB26s3TubeM", makeMotherFromTemplate(shRB26s3Tube), kMedVacHC);
1971 voRB26s3TubeM->AddNode(voRB26s3Tube, 1, gGeoIdentity);
1972
1974 // Fixed Point //
1975 // Drawing LHCVFX_0005 //
1977 const float kRB26s3FixedPointL = 16.37; // Length of the fixed point section (0.3 cm added for welding)
1978 const float kRB26s3FixedPointZ = 9.72; // Position of the ring (0.15 cm added for welding)
1979 const float kRB26s3FixedPointD = 0.595; // Width of the ring
1980 const float kRB26s3FixedPointR = 13.30 / 2.; // Radius of the ring
1981 const float kRB26s3FixedPointRi = 12.00 / 2.; // Inner radius of the tube
1982 const float kRB26s3FixedPointRo1 = 12.30 / 2.; // Outer radius of the tube (in)
1983 const float kRB26s3FixedPointRo2 = 12.40 / 2.; // Outer radius of the tube (out)
1984 const float kRB26s3FixedPointDs = 1.5; // Width of straight section behind ring
1985 const float kRB26s3FixedPointDc = 3.15; // Width of conical section behind ring (0.15 cm added for welding)
1986
1987 TGeoPcon* shRB26s3FixedPoint = new TGeoPcon(0., 360., 8);
1988 z0 = 0.;
1989 shRB26s3FixedPoint->DefineSection(0, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
1990 z0 += kRB26s3FixedPointZ;
1991 shRB26s3FixedPoint->DefineSection(1, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
1992 shRB26s3FixedPoint->DefineSection(2, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
1993 z0 += kRB26s3FixedPointD;
1994 shRB26s3FixedPoint->DefineSection(3, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
1995 shRB26s3FixedPoint->DefineSection(4, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
1996 z0 += kRB26s3FixedPointDs;
1997 shRB26s3FixedPoint->DefineSection(5, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
1998 z0 += kRB26s3FixedPointDc;
1999 shRB26s3FixedPoint->DefineSection(6, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2000 z0 = kRB26s3FixedPointL;
2001 shRB26s3FixedPoint->DefineSection(7, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2002 TGeoVolume* voRB26s3FixedPoint = new TGeoVolume("RB26s3FixedPoint", shRB26s3FixedPoint, kMedSteelHC);
2003
2004 TGeoVolume* voRB26s3FixedPointM = new TGeoVolume("RB26s3FixedPointM", makeMotherFromTemplate(shRB26s3FixedPoint), kMedVacHC);
2005 voRB26s3FixedPointM->AddNode(voRB26s3FixedPoint, 1, gGeoIdentity);
2006
2008 // Split Flange //
2009 // Drawing LHCVFX_0005 //
2011 const float kRB26s3SFlangeL = 2.13; // Length of the flange
2012 const float kRB26s3SFlangeD1 = 0.57; // Length of section 1
2013 const float kRB26s3SFlangeD2 = 0.36; // Length of section 2
2014 const float kRB26s3SFlangeD3 = 0.50 + 0.70; // Length of section 3
2015 const float kRB26s3SFlangeRo = 17.15 / 2.; // Flange outer radius
2016 const float kRB26s3SFlangeRi1 = 12.30 / 2.; // Flange inner radius section 1
2017 const float kRB26s3SFlangeRi2 = 12.00 / 2.; // Flange inner radius section 2
2018 const float kRB26s3SFlangeRi3 = 12.30 / 2.; // Flange inner radius section 3
2019 z0 = 0;
2020 TGeoPcon* shRB26s3SFlange = new TGeoPcon(0., 360., 6);
2021 z0 = 0.;
2022 shRB26s3SFlange->DefineSection(0, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2023 z0 += kRB26s3SFlangeD1;
2024 shRB26s3SFlange->DefineSection(1, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2025 shRB26s3SFlange->DefineSection(2, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2026 z0 += kRB26s3SFlangeD2;
2027 shRB26s3SFlange->DefineSection(3, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2028 shRB26s3SFlange->DefineSection(4, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2029 z0 += kRB26s3SFlangeD3;
2030 shRB26s3SFlange->DefineSection(5, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2031 TGeoVolume* voRB26s3SFlange = new TGeoVolume("RB26s3SFlange", shRB26s3SFlange, kMedSteelHC);
2032
2033 TGeoVolume* voRB26s3SFlangeM = new TGeoVolume("RB26s3SFlangeM", makeMotherFromTemplate(shRB26s3SFlange, 0, 3), kMedVacHC);
2034 voRB26s3SFlangeM->AddNode(voRB26s3SFlange, 1, gGeoIdentity);
2035
2037 // RB26/3 Fixed Flange //
2038 // Drawing LHCVFX___0004 //
2040 const float kRB26s3FFlangeL = 2.99; // Length of the flange
2041 const float kRB26s3FFlangeD1 = 1.72; // Length of section 1
2042 const float kRB26s3FFlangeD2 = 0.30; // Length of section 2
2043 const float kRB26s3FFlangeD3 = 0.97; // Length of section 3
2044 const float kRB26s3FFlangeRo = 36.20 / 2.; // Flange outer radius
2045 const float kRB26s3FFlangeRi1 = 30.60 / 2.; // Flange inner radius section 1
2046 const float kRB26s3FFlangeRi2 = 30.00 / 2.; // Flange inner radius section 2
2047 const float kRB26s3FFlangeRi3 = 30.60 / 2.; // Flange inner radius section 3
2048 z0 = 0;
2049 TGeoPcon* shRB26s3FFlange = new TGeoPcon(0., 360., 6);
2050 z0 = 0.;
2051 shRB26s3FFlange->DefineSection(0, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2052 z0 += kRB26s3FFlangeD1;
2053 shRB26s3FFlange->DefineSection(1, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2054 shRB26s3FFlange->DefineSection(2, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2055 z0 += kRB26s3FFlangeD2;
2056 shRB26s3FFlange->DefineSection(3, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2057 shRB26s3FFlange->DefineSection(4, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2058 z0 += kRB26s3FFlangeD3;
2059 shRB26s3FFlange->DefineSection(5, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2060 TGeoVolume* voRB26s3FFlange = new TGeoVolume("RB26s3FFlange", shRB26s3FFlange, kMedSteelHC);
2061
2062 TGeoVolume* voRB26s3FFlangeM = new TGeoVolume("RB26s3FFlangeM", makeMotherFromTemplate(shRB26s3FFlange, 2, 5), kMedVacHC);
2063 voRB26s3FFlangeM->AddNode(voRB26s3FFlange, 1, gGeoIdentity);
2064
2066 // RB26/3 Axial Compensator //
2067 // Drawing LHCVC2a_0065 //
2069 const float kRB26s3CompL = 42.3; // Length of the compensator (0.3 cm added for welding)
2070 const float kRB26s3BellowRo = 34.00 / 2.; // Bellow outer radius [Pos 1]
2071 const float kRB26s3BellowRi = 30.10 / 2.; // Bellow inner radius [Pos 1]
2072 const int kRB26s3NumberOfPlies = 13; // Number of plies [Pos 1]
2073 const float kRB26s3BellowUndL = 17.70; // Length of undulated region [Pos 1]
2074 const float kRB26s3PlieThickness = 0.06; // Plie thickness [Pos 1]
2075 const float kRB26s3ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2076 // Plie radius
2077 const float kRB26s3PlieR = (kRB26s3BellowUndL - 4. * kRB26s3ConnectionPlieR + 2. * kRB26s3PlieThickness +
2078 (2. * kRB26s3NumberOfPlies - 2.) * kRB26s3PlieThickness) /
2079 (4. * kRB26s3NumberOfPlies - 2.);
2080
2081 //
2082 // The welding tubes have 3 sections with different radii and 2 transition regions.
2083 // Section 1: connection to the outside
2084 // Section 2: commection to the bellow
2085 // Section 3: between 1 and 2
2086 const float kRB26s3CompTubeInnerR1 = 30.0 / 2.; // Outer Connection tubes inner radius [Pos 4 + 3]
2087 const float kRB26s3CompTubeOuterR1 = 30.6 / 2.; // Outer Connection tubes outer radius [Pos 4 + 3]
2088 const float kRB26s3CompTubeInnerR2 = 29.4 / 2.; // Connection tubes inner radius [Pos 4 + 3]
2089 const float kRB26s3CompTubeOuterR2 = 30.0 / 2.; // Connection tubes outer radius [Pos 4 + 3]
2090 const float kRB26s3CompTubeInnerR3 = 30.6 / 2.; // Connection tubes inner radius at bellow [Pos 4 + 3]
2091 const float kRB26s3CompTubeOuterR3 = 32.2 / 2.; // Connection tubes outer radius at bellow [Pos 4 + 3]
2092
2093 const float kRB26s3WeldingTubeLeftL1 = 2.0; // Left connection tube length [Pos 4]
2094 const float kRB26s3WeldingTubeLeftL2 = 3.4; // Left connection tube length [Pos 4]
2095 const float kRB26s3WeldingTubeLeftL = 7.0; // Left connection tube total length [Pos 4]
2096 const float kRB26s3WeldingTubeRightL1 = 2.3; // Right connection tube length [Pos 3] (0.3 cm added for welding)
2097 const float kRB26s3WeldingTubeRightL2 = 13.4; // Right connection tube length [Pos 3]
2098
2099 const float kRB26s3WeldingTubeT1 = 0.6; // Length of first r-transition [Pos 4 + 3]
2100 const float kRB26s3WeldingTubeT2 = 1.0; // Length of 2nd r-transition [Pos 4 + 3]
2101
2102 const float kRB26s3RingOuterR = 36.1 / 2.; // Ring inner radius [Pos 4]
2103 const float kRB26s3RingL = 0.8 / 2.; // Ring half length [Pos 4]
2104 const float kRB26s3RingZ = 3.7; // Ring z-position [Pos 4]
2105 const float kRB26s3ProtOuterR = 36.2 / 2.; // Protection tube outer radius [Pos 2]
2106 const float kRB26s3ProtL = 27.0 / 2.; // Protection tube half length [Pos 2]
2107 const float kRB26s3ProtZ = 4.0; // Protection tube z-position [Pos 2]
2108
2109 // Mother volume
2110 //
2111 TGeoPcon* shRB26s3Compensator = new TGeoPcon(0., 360., 6);
2112 shRB26s3Compensator->DefineSection(0, 0.0, 0., kRB26s3CompTubeOuterR1);
2113 shRB26s3Compensator->DefineSection(1, kRB26s3RingZ, 0., kRB26s3CompTubeOuterR1);
2114 shRB26s3Compensator->DefineSection(2, kRB26s3RingZ, 0., kRB26s3ProtOuterR);
2115 shRB26s3Compensator->DefineSection(3, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3ProtOuterR);
2116 shRB26s3Compensator->DefineSection(4, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3CompTubeOuterR1);
2117 shRB26s3Compensator->DefineSection(5, kRB26s3CompL, 0., kRB26s3CompTubeOuterR1);
2118 TGeoVolume* voRB26s3Compensator = new TGeoVolume("RB26s3Compensator", shRB26s3Compensator, kMedVacHC);
2119
2120 //
2121 // [Pos 1] Bellow
2122 //
2123 //
2124
2125 //
2126 // Upper part of the undulation
2127 //
2128 TGeoTorus* shRB26s3PlieTorusU = new TGeoTorus(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2129 shRB26s3PlieTorusU->SetName("RB26s3TorusU");
2130 TGeoTube* shRB26s3PlieTubeU = new TGeoTube(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3BellowRo, kRB26s3PlieR);
2131 shRB26s3PlieTubeU->SetName("RB26s3TubeU");
2132 TGeoCompositeShape* shRB26s3UpperPlie = new TGeoCompositeShape("RB26s3UpperPlie", "RB26s3TorusU*RB26s3TubeU");
2133
2134 TGeoVolume* voRB26s3WiggleU = new TGeoVolume("RB26s3UpperPlie", shRB26s3UpperPlie, kMedSteelHC);
2135 //
2136 // Lower part of the undulation
2137 TGeoTorus* shRB26s3PlieTorusL = new TGeoTorus(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2138 shRB26s3PlieTorusL->SetName("RB26s3TorusL");
2139 TGeoTube* shRB26s3PlieTubeL = new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR);
2140 shRB26s3PlieTubeL->SetName("RB26s3TubeL");
2141 TGeoCompositeShape* shRB26s3LowerPlie = new TGeoCompositeShape("RB26s3LowerPlie", "RB26s3TorusL*RB26s3TubeL");
2142
2143 TGeoVolume* voRB26s3WiggleL = new TGeoVolume("RB26s3LowerPlie", shRB26s3LowerPlie, kMedSteelHC);
2144
2145 //
2146 // Connection between upper and lower part of undulation
2147 TGeoVolume* voRB26s3WiggleC1 = new TGeoVolume(
2148 "RB26s3PlieConn1",
2149 new TGeoTube(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieThickness / 2.), kMedSteelHC);
2150 //
2151 // One wiggle
2152 TGeoVolumeAssembly* voRB26s3Wiggle = new TGeoVolumeAssembly("RB26s3Wiggle");
2153 z0 = -kRB26s3PlieThickness / 2.;
2154 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 1, new TGeoTranslation(0., 0., z0));
2155 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2156 voRB26s3Wiggle->AddNode(voRB26s3WiggleU, 1, new TGeoTranslation(0., 0., z0));
2157 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2158 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 2, new TGeoTranslation(0., 0., z0));
2159 z0 += kRB26s3PlieR - kRB26s3PlieThickness;
2160 voRB26s3Wiggle->AddNode(voRB26s3WiggleL, 1, new TGeoTranslation(0., 0., z0));
2161 voRB26s3Wiggle->GetShape()->ComputeBBox(); // enforce recomputing of BBox
2162
2163 //
2164 // The bellow itself
2165 float zBellowTot = kRB26s3NumberOfPlies * (static_cast<TGeoBBox*>(voRB26s3Wiggle->GetShape()))->GetDZ();
2166 TGeoVolume* voRB26s3Bellow = new TGeoVolume("RB26s3Bellow", new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRo, zBellowTot), kMedVacHC);
2167
2168 // Positioning of the volumes
2169 z0 = -kRB26s2BellowUndL / 2. + kRB26s2ConnectionPlieR;
2170 voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
2171 z0 += kRB26s2ConnectionPlieR;
2172 zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness;
2173 for (int iw = 0; iw < kRB26s2NumberOfPlies; iw++) {
2174 float zpos = z0 + iw * zsh;
2175 voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness));
2176 }
2177
2178 voRB26s3Compensator->AddNode(voRB26s3Bellow, 1, new TGeoTranslation(0., 0., kRB26s3WeldingTubeLeftL + zBellowTot));
2179
2180 //
2181 // [Pos 2] Outer Protecting Tube
2182 //
2183 TGeoTube* shRB26s3CompProtTube = new TGeoTube(kRB26s3RingOuterR, kRB26s3ProtOuterR, kRB26s3ProtL);
2184 TGeoVolume* voRB26s3CompProtTube = new TGeoVolume("RB26s3CompProtTube", shRB26s3CompProtTube, kMedSteelHC);
2185 voRB26s3Compensator->AddNode(voRB26s3CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s3ProtZ + kRB26s3ProtL));
2186
2187 //
2188 // [Pos 3] Right Welding Tube
2189 //
2190 TGeoPcon* shRB26s3CompRightTube = new TGeoPcon(0., 360., 5);
2191 z0 = 0.;
2192 shRB26s3CompRightTube->DefineSection(0, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2193 z0 += kRB26s3WeldingTubeT2;
2194 shRB26s3CompRightTube->DefineSection(1, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2195 z0 += kRB26s3WeldingTubeRightL2;
2196 shRB26s3CompRightTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2197 z0 += kRB26s3WeldingTubeT1;
2198 shRB26s3CompRightTube->DefineSection(3, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2199 z0 += kRB26s3WeldingTubeRightL1;
2200 shRB26s3CompRightTube->DefineSection(4, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2201
2202 TGeoVolume* voRB26s3CompRightTube = new TGeoVolume("RB26s3CompRightTube", shRB26s3CompRightTube, kMedSteelHC);
2203 voRB26s3Compensator->AddNode(voRB26s3CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s3CompL - z0));
2204
2205 //
2206 // [Pos 4] Left Welding Tube
2207 //
2208 TGeoPcon* shRB26s3CompLeftTube = new TGeoPcon(0., 360., 5);
2209 z0 = 0.;
2210 shRB26s3CompLeftTube->DefineSection(0, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2211 z0 += kRB26s3WeldingTubeLeftL1;
2212 shRB26s3CompLeftTube->DefineSection(1, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2213 z0 += kRB26s3WeldingTubeT1;
2214 shRB26s3CompLeftTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2215 z0 += kRB26s3WeldingTubeLeftL2;
2216 shRB26s3CompLeftTube->DefineSection(3, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2217 z0 += kRB26s3WeldingTubeT2;
2218 shRB26s3CompLeftTube->DefineSection(4, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2219
2220 TGeoVolume* voRB26s3CompLeftTube = new TGeoVolume("RB26s3CompLeftTube", shRB26s3CompLeftTube, kMedSteelHC);
2221 voRB26s3Compensator->AddNode(voRB26s3CompLeftTube, 1, gGeoIdentity);
2222 //
2223 // [Pos 5] Ring
2224 //
2225 TGeoTube* shRB26s3CompRing = new TGeoTube(kRB26s3CompTubeOuterR2, kRB26s3RingOuterR, kRB26s3RingL);
2226 TGeoVolume* voRB26s3CompRing = new TGeoVolume("RB26s3CompRing", shRB26s3CompRing, kMedSteelHC);
2227 voRB26s3Compensator->AddNode(voRB26s3CompRing, 1, new TGeoTranslation(0., 0., kRB26s3RingZ + kRB26s3RingL));
2228
2230 // //
2231 // RB26/4-5 //
2232 // Drawing LHCV2a_0012 [as installed] //
2234 // Pos1 Vacuum Tubes LHCVC2A__0014
2235 // Pos2 Compensator LHCVC2A__0066
2236 // Pos3 Fixed Point Section LHCVC2A__0016
2237 // Pos4 Split Flange LHCVFX___0005
2238 // Pos5 RotableFlange LHCVFX___0009
2240
2242 // RB26/4-5 Vacuum Tubes //
2243 // Drawing LHCVC2a_0014 //
2245 const float kRB26s45TubeL = 593.12 + 0.3; // 0.3 cm added for welding
2246
2247 TGeoPcon* shRB26s45Tube = new TGeoPcon(0., 360., 11);
2248 // Section 1: straight section
2249 shRB26s45Tube->DefineSection(0, 0.00, 30.00 / 2., 30.60 / 2.);
2250 shRB26s45Tube->DefineSection(1, 1.20, 30.00 / 2., 30.60 / 2.);
2251 shRB26s45Tube->DefineSection(2, 1.20, 30.00 / 2., 30.80 / 2.);
2252 shRB26s45Tube->DefineSection(3, 25.10, 30.00 / 2., 30.80 / 2.);
2253 // Section 2: 0.932 deg opening cone
2254 shRB26s45Tube->DefineSection(4, 486.10, 45.00 / 2., 45.80 / 2.);
2255 // Section 3: straight section 4 mm
2256 shRB26s45Tube->DefineSection(5, 512.10, 45.00 / 2., 45.80 / 2.);
2257 // Section 4: straight section 3 mm
2258 shRB26s45Tube->DefineSection(6, 512.10, 45.00 / 2., 45.60 / 2.);
2259 shRB26s45Tube->DefineSection(7, 527.70, 45.00 / 2., 45.60 / 2.);
2260 // Section 4: closing cone
2261 shRB26s45Tube->DefineSection(8, 591.30, 10.00 / 2., 10.60 / 2.);
2262 shRB26s45Tube->DefineSection(9, 591.89, 10.00 / 2., 10.30 / 2.);
2263
2264 shRB26s45Tube->DefineSection(10, kRB26s45TubeL, 10.00 / 2., 10.30 / 2.);
2265 TGeoVolume* voRB26s45Tube = new TGeoVolume("RB26s45Tube", shRB26s45Tube, kMedSteelHC);
2266
2267 TGeoVolume* voRB26s45TubeM = new TGeoVolume("RB26s45TubeM", makeMotherFromTemplate(shRB26s45Tube), kMedVacHC);
2268 voRB26s45TubeM->AddNode(voRB26s45Tube, 1, gGeoIdentity);
2269
2271 // RB26/5 Axial Compensator //
2272 // Drawing LHCVC2a_0066 //
2274 const float kRB26s5CompL = 27.60; // Length of the compensator (0.30 cm added for welding)
2275 const float kRB26s5BellowRo = 12.48 / 2.; // Bellow outer radius [Pos 1]
2276 const float kRB26s5BellowRi = 10.32 / 2.; // Bellow inner radius [Pos 1]
2277 const int kRB26s5NumberOfPlies = 15; // Number of plies [Pos 1]
2278 const float kRB26s5BellowUndL = 10.50; // Length of undulated region [Pos 1]
2279 const float kRB26s5PlieThickness = 0.025; // Plie thickness [Pos 1]
2280 const float kRB26s5ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2281 const float kRB26s5ConnectionR = 11.2 / 2.; // Bellow connection radius [Pos 1]
2282 // Plie radius
2283 const float kRB26s5PlieR = (kRB26s5BellowUndL - 4. * kRB26s5ConnectionPlieR + 2. * kRB26s5PlieThickness +
2284 (2. * kRB26s5NumberOfPlies - 2.) * kRB26s5PlieThickness) /
2285 (4. * kRB26s5NumberOfPlies - 2.);
2286 const float kRB26s5CompTubeInnerR = 10.00 / 2.; // Connection tubes inner radius [Pos 2 + 3]
2287 const float kRB26s5CompTubeOuterR = 10.30 / 2.; // Connection tubes outer radius [Pos 2 + 3]
2288 const float kRB26s5WeldingTubeLeftL = 3.70 / 2.; // Left connection tube half length [Pos 2]
2289 const float kRB26s5WeldingTubeRightL = 13.40 / 2.; // Right connection tube half length [Pos 3] (0.3 cm added for welding)
2290 const float kRB26s5RingInnerR = 11.2 / 2.; // Ring inner radius [Pos 4]
2291 const float kRB26s5RingOuterR = 16.0 / 2.; // Ring inner radius [Pos 4]
2292 const float kRB26s5RingL = 0.4 / 2.; // Ring half length [Pos 4]
2293 const float kRB26s5RingZ = 14.97; // Ring z-position [Pos 4]
2294 const float kRB26s5ProtOuterR = 16.2 / 2.; // Protection tube outer radius [Pos 5]
2295 const float kRB26s5ProtL = 13.0 / 2.; // Protection tube half length [Pos 5]
2296 const float kRB26s5ProtZ = 2.17; // Protection tube z-position [Pos 5]
2297 const float kRB26s5DetailZR = 11.3 / 2.; // Detail Z max radius
2298
2299 // Mother volume
2300 //
2301 TGeoPcon* shRB26s5Compensator = new TGeoPcon(0., 360., 8);
2302 shRB26s5Compensator->DefineSection(0, 0.0, 0., kRB26s5CompTubeOuterR);
2303 shRB26s5Compensator->DefineSection(1, kRB26s5ProtZ, 0., kRB26s5CompTubeOuterR);
2304 shRB26s5Compensator->DefineSection(2, kRB26s5ProtZ, 0., kRB26s5ProtOuterR);
2305 shRB26s5Compensator->DefineSection(3, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5ProtOuterR);
2306 shRB26s5Compensator->DefineSection(4, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5DetailZR);
2307 shRB26s5Compensator->DefineSection(5, kRB26s5CompL - 8., 0., kRB26s5DetailZR);
2308 shRB26s5Compensator->DefineSection(6, kRB26s5CompL - 8., 0., kRB26s5CompTubeOuterR);
2309 shRB26s5Compensator->DefineSection(7, kRB26s5CompL, 0., kRB26s5CompTubeOuterR);
2310 TGeoVolume* voRB26s5Compensator = new TGeoVolume("RB26s5Compensator", shRB26s5Compensator, kMedVacHC);
2311
2312 //
2313 // [Pos 1] Bellow
2314 //
2315 //
2316 TGeoVolume* voRB26s5Bellow =
2317 new TGeoVolume("RB26s5Bellow", new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRo, kRB26s5BellowUndL / 2.), kMedVacHC);
2318 //
2319 // Upper part of the undulation
2320 //
2321 TGeoTorus* shRB26s5PlieTorusU = new TGeoTorus(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2322 shRB26s5PlieTorusU->SetName("RB26s5TorusU");
2323 TGeoTube* shRB26s5PlieTubeU = new TGeoTube(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5BellowRo, kRB26s5PlieR);
2324 shRB26s5PlieTubeU->SetName("RB26s5TubeU");
2325 TGeoCompositeShape* shRB26s5UpperPlie = new TGeoCompositeShape("RB26s5UpperPlie", "RB26s5TorusU*RB26s5TubeU");
2326
2327 TGeoVolume* voRB26s5WiggleU = new TGeoVolume("RB26s5UpperPlie", shRB26s5UpperPlie, kMedSteelHC);
2328 //
2329 // Lower part of the undulation
2330 TGeoTorus* shRB26s5PlieTorusL = new TGeoTorus(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2331 shRB26s5PlieTorusL->SetName("RB26s5TorusL");
2332 TGeoTube* shRB26s5PlieTubeL = new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR);
2333 shRB26s5PlieTubeL->SetName("RB26s5TubeL");
2334 TGeoCompositeShape* shRB26s5LowerPlie = new TGeoCompositeShape("RB26s5LowerPlie", "RB26s5TorusL*RB26s5TubeL");
2335
2336 TGeoVolume* voRB26s5WiggleL = new TGeoVolume("RB26s5LowerPlie", shRB26s5LowerPlie, kMedSteelHC);
2337
2338 //
2339 // Connection between upper and lower part of undulation
2340 TGeoVolume* voRB26s5WiggleC1 = new TGeoVolume("RB26s5PlieConn1",
2341 new TGeoTube(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieThickness / 2.), kMedSteelHC);
2342 //
2343 // One wiggle
2344 TGeoVolumeAssembly* voRB26s5Wiggle = new TGeoVolumeAssembly("RB26s5Wiggle");
2345 z0 = -kRB26s5PlieThickness / 2.;
2346 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 1, new TGeoTranslation(0., 0., z0));
2347 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2348 voRB26s5Wiggle->AddNode(voRB26s5WiggleU, 1, new TGeoTranslation(0., 0., z0));
2349 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2350 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 2, new TGeoTranslation(0., 0., z0));
2351 z0 += kRB26s5PlieR - kRB26s5PlieThickness;
2352 voRB26s5Wiggle->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0));
2353 // Positioning of the volumes
2354 z0 = -kRB26s5BellowUndL / 2. + kRB26s5ConnectionPlieR;
2355 voRB26s5Bellow->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0));
2356 z0 += kRB26s5ConnectionPlieR;
2357 zsh = 4. * kRB26s5PlieR - 2. * kRB26s5PlieThickness;
2358 for (int iw = 0; iw < kRB26s5NumberOfPlies; iw++) {
2359 float zpos = z0 + iw * zsh;
2360 voRB26s5Bellow->AddNode(voRB26s5Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s5PlieThickness));
2361 }
2362
2363 voRB26s5Compensator->AddNode(voRB26s5Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s5WeldingTubeLeftL + kRB26s5BellowUndL / 2.));
2364
2365 //
2366 // [Pos 2] Left Welding Tube
2367 //
2368 TGeoPcon* shRB26s5CompLeftTube = new TGeoPcon(0., 360., 3);
2369 z0 = 0;
2370 shRB26s5CompLeftTube->DefineSection(0, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2371 z0 += 2 * kRB26s5WeldingTubeLeftL - (kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2372 shRB26s5CompLeftTube->DefineSection(1, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2373 z0 += (kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2374 shRB26s5CompLeftTube->DefineSection(2, z0, kRB26s5ConnectionR - 0.15, kRB26s5ConnectionR);
2375 TGeoVolume* voRB26s5CompLeftTube = new TGeoVolume("RB26s5CompLeftTube", shRB26s5CompLeftTube, kMedSteelHC);
2376 voRB26s5Compensator->AddNode(voRB26s5CompLeftTube, 1, gGeoIdentity);
2377 //
2378 // [Pos 3] Right Welding Tube
2379 //
2380 TGeoPcon* shRB26s5CompRightTube = new TGeoPcon(0., 360., 11);
2381 // Detail Z
2382 shRB26s5CompRightTube->DefineSection(0, 0., kRB26s5CompTubeInnerR + 0.22, 11.2 / 2.);
2383 shRB26s5CompRightTube->DefineSection(1, 0.05, kRB26s5CompTubeInnerR + 0.18, 11.2 / 2.);
2384 shRB26s5CompRightTube->DefineSection(2, 0.22, kRB26s5CompTubeInnerR, 11.2 / 2. - 0.22);
2385 shRB26s5CompRightTube->DefineSection(3, 0.44, kRB26s5CompTubeInnerR, 11.2 / 2.);
2386 shRB26s5CompRightTube->DefineSection(4, 1.70, kRB26s5CompTubeInnerR, 11.2 / 2.);
2387 shRB26s5CompRightTube->DefineSection(5, 2.10, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2388 shRB26s5CompRightTube->DefineSection(6, 2.80, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2389 shRB26s5CompRightTube->DefineSection(7, 2.80, kRB26s5CompTubeInnerR, 11.3 / 2.);
2390 shRB26s5CompRightTube->DefineSection(8, 3.40, kRB26s5CompTubeInnerR, 11.3 / 2.);
2391 // Normal pipe
2392 shRB26s5CompRightTube->DefineSection(9, 3.50, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2393 shRB26s5CompRightTube->DefineSection(10, 2. * kRB26s5WeldingTubeRightL, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2394
2395 TGeoVolume* voRB26s5CompRightTube = new TGeoVolume("RB26s5CompRightTube", shRB26s5CompRightTube, kMedSteelHC);
2396 voRB26s5Compensator->AddNode(voRB26s5CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s5CompL - 2. * kRB26s5WeldingTubeRightL));
2397 //
2398 // [Pos 4] Ring
2399 //
2400 TGeoTube* shRB26s5CompRing = new TGeoTube(kRB26s5RingInnerR, kRB26s5RingOuterR, kRB26s5RingL);
2401 TGeoVolume* voRB26s5CompRing = new TGeoVolume("RB26s5CompRing", shRB26s5CompRing, kMedSteelHC);
2402 voRB26s5Compensator->AddNode(voRB26s5CompRing, 1, new TGeoTranslation(0., 0., kRB26s5RingZ + kRB26s5RingL));
2403
2404 //
2405 // [Pos 5] Outer Protecting Tube
2406 //
2407 TGeoTube* shRB26s5CompProtTube = new TGeoTube(kRB26s5RingOuterR, kRB26s5ProtOuterR, kRB26s5ProtL);
2408 TGeoVolume* voRB26s5CompProtTube = new TGeoVolume("RB26s5CompProtTube", shRB26s5CompProtTube, kMedSteelHC);
2409 voRB26s5Compensator->AddNode(voRB26s5CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s5ProtZ + kRB26s5ProtL));
2410
2412 // RB26/4 Fixed Point Section //
2413 // Drawing LHCVC2a_0016 //
2415 const float kRB26s4TubeRi = 30.30 / 2.; // Tube inner radius (0.3 cm added for welding)
2416 const float kRB26s4TubeRo = 30.60 / 2.; // Tube outer radius
2417 const float kRB26s4FixedPointL = 12.63; // Length of the fixed point section
2418 const float kRB26s4FixedPointZ = 10.53; // Position of the ring (0.15 added for welding)
2419 const float kRB26s4FixedPointD = 0.595; // Width of the ring
2420 const float kRB26s4FixedPointR = 31.60 / 2.; // Radius of the ring
2421
2422 TGeoPcon* shRB26s4FixedPoint = new TGeoPcon(0., 360., 6);
2423 z0 = 0.;
2424 shRB26s4FixedPoint->DefineSection(0, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2425 z0 += kRB26s4FixedPointZ;
2426 shRB26s4FixedPoint->DefineSection(1, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2427 shRB26s4FixedPoint->DefineSection(2, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2428 z0 += kRB26s4FixedPointD;
2429 shRB26s4FixedPoint->DefineSection(3, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2430 shRB26s4FixedPoint->DefineSection(4, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2431 z0 = kRB26s4FixedPointL;
2432 shRB26s4FixedPoint->DefineSection(5, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2433 TGeoVolume* voRB26s4FixedPoint = new TGeoVolume("RB26s4FixedPoint", shRB26s4FixedPoint, kMedSteelHC);
2434
2435 TGeoVolume* voRB26s4FixedPointM = new TGeoVolume("RB26s4FixedPointM", makeMotherFromTemplate(shRB26s4FixedPoint), kMedVacHC);
2436 voRB26s4FixedPointM->AddNode(voRB26s4FixedPoint, 1, gGeoIdentity);
2437
2439 // RB26/4 Split Flange //
2440 // Drawing LHCVFX__0005 //
2442 const float kRB26s4SFlangeL = 2.99; // Length of the flange
2443 const float kRB26s4SFlangeD1 = 0.85; // Length of section 1
2444 const float kRB26s4SFlangeD2 = 0.36; // Length of section 2
2445 const float kRB26s4SFlangeD3 = 0.73 + 1.05; // Length of section 3
2446 const float kRB26s4SFlangeRo = 36.20 / 2.; // Flange outer radius
2447 const float kRB26s4SFlangeRi1 = 30.60 / 2.; // Flange inner radius section 1
2448 const float kRB26s4SFlangeRi2 = 30.00 / 2.; // Flange inner radius section 2
2449 const float kRB26s4SFlangeRi3 = 30.60 / 2.; // Flange inner radius section 3
2450 z0 = 0;
2451 TGeoPcon* shRB26s4SFlange = new TGeoPcon(0., 360., 6);
2452 z0 = 0.;
2453 shRB26s4SFlange->DefineSection(0, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2454 z0 += kRB26s4SFlangeD1;
2455 shRB26s4SFlange->DefineSection(1, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2456 shRB26s4SFlange->DefineSection(2, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2457 z0 += kRB26s4SFlangeD2;
2458 shRB26s4SFlange->DefineSection(3, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2459 shRB26s4SFlange->DefineSection(4, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2460 z0 += kRB26s4SFlangeD3;
2461 shRB26s4SFlange->DefineSection(5, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2462 TGeoVolume* voRB26s4SFlange = new TGeoVolume("RB26s4SFlange", shRB26s4SFlange, kMedSteelHC);
2463
2464 TGeoVolume* voRB26s4SFlangeM = new TGeoVolume("RB26s4SFlangeM", makeMotherFromTemplate(shRB26s4SFlange, 0, 3), kMedVacHC);
2465 voRB26s4SFlangeM->AddNode(voRB26s4SFlange, 1, gGeoIdentity);
2466
2468 // RB26/5 Rotable Flange //
2469 // Drawing LHCVFX__0009 //
2471 const float kRB26s5RFlangeL = 1.86; // Length of the flange
2472 const float kRB26s5RFlangeD1 = 0.61; // Length of section 1
2473 const float kRB26s5RFlangeD2 = 0.15; // Length of section 2
2474 const float kRB26s5RFlangeD3 = 0.60; // Length of section 3
2475 const float kRB26s5RFlangeD4 = 0.50; // Length of section 4
2476 const float kRB26s5RFlangeRo = 15.20 / 2.; // Flange outer radius
2477 const float kRB26s5RFlangeRi1 = 10.30 / 2.; // Flange inner radius section 1
2478 const float kRB26s5RFlangeRi2 = 10.00 / 2.; // Flange inner radius section 2
2479 const float kRB26s5RFlangeRi3 = 10.30 / 2.; // Flange inner radius section 3
2480 const float kRB26s5RFlangeRi4 = 10.50 / 2.; // Flange inner radius section 4
2481
2482 z0 = 0;
2483 TGeoPcon* shRB26s5RFlange = new TGeoPcon(0., 360., 8);
2484 z0 = 0.;
2485 shRB26s5RFlange->DefineSection(0, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2486 z0 += kRB26s5RFlangeD4;
2487 shRB26s5RFlange->DefineSection(1, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2488 shRB26s5RFlange->DefineSection(2, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2489 z0 += kRB26s5RFlangeD3;
2490 shRB26s5RFlange->DefineSection(3, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2491 shRB26s5RFlange->DefineSection(4, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2492 z0 += kRB26s5RFlangeD2;
2493 shRB26s5RFlange->DefineSection(5, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2494 shRB26s5RFlange->DefineSection(6, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2495 z0 += kRB26s5RFlangeD1;
2496 shRB26s5RFlange->DefineSection(7, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2497 TGeoVolume* voRB26s5RFlange = new TGeoVolume("RB26s5RFlange", shRB26s5RFlange, kMedSteelHC);
2498
2499 TGeoVolume* voRB26s5RFlangeM = new TGeoVolume("RB26s5RFlangeM", makeMotherFromTemplate(shRB26s5RFlange, 4, 7), kMedVacHC);
2500 voRB26s5RFlangeM->AddNode(voRB26s5RFlange, 1, gGeoIdentity);
2501
2502 //
2503 // Assemble RB26/1-2
2504 //
2505 TGeoVolumeAssembly* asRB26s12 = new TGeoVolumeAssembly("RB26s12");
2506 z0 = 0.;
2507 // asRB26s12->AddNode(voRB26s1RFlange, 1, gGeoIdentity);
2508 barrel->AddNode(voRB26s1RFlange, 1, new TGeoCombiTrans(0., 30., -82, rot180));
2509 z0 += kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
2510 barrel->AddNode(voRB26s12TubeM, 1, new TGeoCombiTrans(0., 30., -82. - z0, rot180));
2511 z0 += kRB26s12TubeL;
2512 asRB26s12->AddNode(voRB26s12msTubeM, 1, new TGeoTranslation(0., 0., z0));
2513 z0 += kRB26s12TubeL2;
2514 asRB26s12->AddNode(voRB26s2Compensator, 1, new TGeoTranslation(0., 0., z0));
2515 z0 += kRB26s2CompL;
2516 z0 -= kRB26s2FFlangeD1;
2517 asRB26s12->AddNode(voRB26s2FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2518 z0 += kRB26s2FFlangeL;
2519 const float kRB26s12L = z0;
2520
2521 //
2522 // Assemble RB26/3
2523 //
2524 TGeoVolumeAssembly* asRB26s3 = new TGeoVolumeAssembly("RB26s3");
2525 z0 = 0.;
2526 asRB26s3->AddNode(voRB26s3SFlangeM, 1, gGeoIdentity);
2527 z0 += kRB26s3SFlangeL;
2528 z0 -= kRB26s3SFlangeD3;
2529 asRB26s3->AddNode(voRB26s3FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2530 z0 += kRB26s3FixedPointL;
2531 asRB26s3->AddNode(voRB26s3TubeM, 1, new TGeoTranslation(0., 0., z0));
2532 z0 += kRB26s3TubeL;
2533 asRB26s3->AddNode(voRB26s3Compensator, 1, new TGeoTranslation(0., 0., z0));
2534 z0 += kRB26s3CompL;
2535 z0 -= kRB26s3FFlangeD1;
2536 asRB26s3->AddNode(voRB26s3FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2537 z0 += kRB26s3FFlangeL;
2538 const float kRB26s3L = z0;
2539
2540 //
2541 // Assemble RB26/4-5
2542 //
2543 TGeoVolumeAssembly* asRB26s45 = new TGeoVolumeAssembly("RB26s45");
2544 z0 = 0.;
2545 asRB26s45->AddNode(voRB26s4SFlangeM, 1, gGeoIdentity);
2546 z0 += kRB26s4SFlangeL;
2547 z0 -= kRB26s4SFlangeD3;
2548 asRB26s45->AddNode(voRB26s4FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2549 z0 += kRB26s4FixedPointL;
2550 asRB26s45->AddNode(voRB26s45TubeM, 1, new TGeoTranslation(0., 0., z0));
2551 z0 += kRB26s45TubeL;
2552 asRB26s45->AddNode(voRB26s5Compensator, 1, new TGeoTranslation(0., 0., z0));
2553 z0 += kRB26s5CompL;
2554 z0 -= kRB26s5RFlangeD3;
2555 z0 -= kRB26s5RFlangeD4;
2556 asRB26s45->AddNode(voRB26s5RFlangeM, 1, new TGeoTranslation(0., 0., z0));
2557 z0 += kRB26s5RFlangeL;
2558 const float kRB26s45L = z0;
2559
2560 //
2561 // Assemble RB26
2562 //
2563 TGeoVolumeAssembly* asRB26Pipe = new TGeoVolumeAssembly("RB26Pipe");
2564 z0 = 0.;
2565 asRB26Pipe->AddNode(asRB26s12, 1, new TGeoTranslation(0., 0., z0));
2566 z0 += kRB26s12L;
2567 asRB26Pipe->AddNode(asRB26s3, 1, new TGeoTranslation(0., 0., z0));
2568 z0 += kRB26s3L;
2569 asRB26Pipe->AddNode(asRB26s45, 1, new TGeoTranslation(0., 0., z0));
2570 z0 += kRB26s45L;
2571 top->AddNode(asRB26Pipe, 1, new TGeoCombiTrans(0., 0., -82., rot180));
2572}
2573
2574void PipeRun4::createMaterials()
2575{
2576 //
2577 // Define materials for beam pipe
2578 //
2579 int isxfld = 2.;
2580 float sxmgmx = 10.;
2582
2583 // Steel (Inox)
2584 float asteel[4] = {55.847, 51.9961, 58.6934, 28.0855};
2585 float zsteel[4] = {26., 24., 28., 14.};
2586 float wsteel[4] = {.715, .18, .1, .005};
2587 // AlBe - alloy
2588 float aAlBe[2] = {26.98, 9.01}; // al=2.702 be=1.8477
2589 float zAlBe[2] = {13.00, 4.00};
2590 float wAlBe[2] = {0.4, 0.6};
2591 // Polyamid
2592 float aPA[4] = {16., 14., 12., 1.};
2593 float zPA[4] = {8., 7., 6., 1.};
2594 float wPA[4] = {1., 1., 6., 11.};
2595 // Polyimide film
2596 float aPI[4] = {16., 14., 12., 1.};
2597 float zPI[4] = {8., 7., 6., 1.};
2598 float wPI[4] = {5., 2., 22., 10.};
2599 // Rohacell
2600 float aRohacell[4] = {16., 14., 12., 1.};
2601 float zRohacell[4] = {8., 7., 6., 1.};
2602 float wRohacell[4] = {2., 1., 9., 13.};
2603 // Air
2604 float aAir[4] = {12.0107, 14.0067, 15.9994, 39.948};
2605 float zAir[4] = {6., 7., 8., 18.};
2606 float wAir[4] = {0.000124, 0.755267, 0.231781, 0.012827};
2607 float dAir = 1.20479E-3;
2608 float dAir1 = 1.20479E-11;
2609 // Insulation powder
2610 // Si O Ti Al
2611 float ains[4] = {28.0855, 15.9994, 47.867, 26.982};
2612 float zins[4] = {14., 8., 22., 13.};
2613 float wins[4] = {0.3019, 0.4887, 0.1914, 0.018};
2614 //
2615 //
2616 // Anticorodal
2617 //
2618 // Al Si7 Mg 0.6
2619 //
2620 float aaco[3] = {26.982, 28.0855, 24.035};
2621 float zaco[3] = {13., 14., 12.};
2622 float waco[3] = {0.924, 0.07, 0.006};
2623 // Kapton
2624 //
2625 float aKapton[4] = {1.00794, 12.0107, 14.010, 15.9994};
2626 float zKapton[4] = {1., 6., 7., 8.};
2627 float wKapton[4] = {0.026362, 0.69113, 0.07327, 0.209235};
2628 float dKapton = 1.42;
2629 // NEG coating
2630 // Ti V Zr
2631 float aNEG[4] = {47.87, 50.94, 91.24};
2632 float zNEG[4] = {22.00, 23.00, 40.00};
2633 float wNEG[4] = {1. / 3., 1. / 3., 1. / 3.};
2634 float dNEG = 5.6; // ?
2635
2636 //---------------------------------
2637 // Aluminium AA 5083 for MFT: Al Manganese(Mn) Magnesium(Mg) Chrome(Cr)
2638 float aALU5083[4] = {26.982, 54.938, 24.305, 51.996}; // Mg pas meme a que la ligne Anticorodal!
2639 float zALU5083[4] = {13., 25., 12., 24.};
2640 float wALU5083[4] = {0.947, 0.007, 0.044, 0.0015};
2641 // Aluminium AA 2219 for MFT: Al Cu Mn Ti V Zr
2642 float aALU2219[6] = {26.982, 63.546, 54.938, 47.867, 50.941, 91.224};
2643 float zALU2219[6] = {13., 29., 25., 22., 23., 40.};
2644 float wALU2219[6] = {0.93, 0.063, 0.003, 0.0006, 0.001, 0.0018};
2645 // Aluminium AA 7075 for beam pipe support (wings): Al Zn Mg Cu
2646 float aALU7075[4] = {26.982, 65.38, 24.305, 63.546};
2647 float zALU7075[4] = {13., 30., 12., 29.};
2648 float wALU7075[4] = {0.902, 0.06, 0.024, 0.014};
2649 //---------------------------------
2650
2651 // ****************
2652 // Defines tracking media parameters.
2653 //
2654 float epsil = .1; // Tracking precision,
2655 float stemax = -0.01; // Maximum displacement for multiple scat
2656 float tmaxfd = -20.; // Maximum angle due to field deflection
2657 float deemax = -.3; // Maximum fractional energy loss, DLS
2658 float stmin = -.8;
2659 // ***************
2660 //
2661
2662 auto& matmgr = o2::base::MaterialManager::Instance();
2663
2664 // Beryllium
2665 matmgr.Material("PIPE", 5, "BERILLIUM$", 9.01, 4., 1.848, 35.3, 36.7);
2666 matmgr.Medium("PIPE", 5, "BE", 5, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2667
2668 // Copper
2669 matmgr.Material("PIPE", 10, "COPPER", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2670 matmgr.Material("PIPE", 30, "COPPER_NF", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2671 matmgr.Material("PIPE", 50, "COPPER_HC", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2672 matmgr.Material("PIPE", 70, "COPPER_NFHC", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2673
2674 matmgr.Medium("PIPE", 10, "CU", 10, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2675 matmgr.Medium("PIPE", 30, "CU_NF", 30, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2676 matmgr.Medium("PIPE", 50, "CU_HC", 50, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2677 matmgr.Medium("PIPE", 70, "CU_NFHC", 70, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2678
2679 // Air
2680 matmgr.Mixture("PIPE", 15, "AIR$ ", aAir, zAir, dAir, 4, wAir);
2681 matmgr.Mixture("PIPE", 35, "AIR_HIGH$ ", aAir, zAir, dAir, 4, wAir);
2682 matmgr.Mixture("PIPE", 55, "AIR_NF ", aAir, zAir, dAir, 4, wAir);
2683 matmgr.Medium("PIPE", 15, "AIR", 15, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2684 matmgr.Medium("PIPE", 35, "AIR_HIGH", 35, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2685 matmgr.Medium("PIPE", 55, "AIR_NF", 55, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2686
2687 // Insulation
2688 matmgr.Mixture("PIPE", 14, "INSULATION0$", ains, zins, 0.41, 4, wins);
2689 matmgr.Medium("PIPE", 14, "INS_C0", 14, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2690
2691 //
2692 // Vacuum
2693 matmgr.Mixture("PIPE", 16, "VACUUM$ ", aAir, zAir, dAir1, 4, wAir);
2694 matmgr.Mixture("PIPE", 36, "VACUUM$_NF", aAir, zAir, dAir1, 4, wAir);
2695 matmgr.Mixture("PIPE", 56, "VACUUM$_HC ", aAir, zAir, dAir1, 4, wAir);
2696 matmgr.Mixture("PIPE", 76, "VACUUM$_NFHC", aAir, zAir, dAir1, 4, wAir);
2697
2698 matmgr.Medium("PIPE", 16, "VACUUM", 16, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2699 matmgr.Medium("PIPE", 36, "VACUUM_NF", 36, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2700 matmgr.Medium("PIPE", 56, "VACUUM_HC", 56, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2701 matmgr.Medium("PIPE", 76, "VACUUM_NFHC", 76, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2702
2703 //
2704 // Steel
2705 matmgr.Mixture("PIPE", 19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
2706 matmgr.Mixture("PIPE", 39, "STAINLESS STEEL$_NF", asteel, zsteel, 7.88, 4, wsteel);
2707 matmgr.Mixture("PIPE", 59, "STAINLESS STEEL$_HC", asteel, zsteel, 7.88, 4, wsteel);
2708 matmgr.Mixture("PIPE", 79, "STAINLESS STEEL$_NFHC", asteel, zsteel, 7.88, 4, wsteel);
2709
2710 matmgr.Medium("PIPE", 19, "INOX", 19, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2711 matmgr.Medium("PIPE", 39, "INOX_NF", 39, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2712 matmgr.Medium("PIPE", 59, "INOX_HC", 59, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2713 matmgr.Medium("PIPE", 79, "INOX_NFHC", 79, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2714
2715 //----------------- for the MFT ----------------------
2716 matmgr.Mixture("PIPE", 63, "ALUMINIUM5083$", aALU5083, zALU5083, 2.66, 4, wALU5083); // from aubertduval.fr
2717 matmgr.Mixture("PIPE", 64, "ALUMINIUM2219$", aALU2219, zALU2219, 2.84, 6, wALU2219); // from aubertduval.fr
2718 matmgr.Medium("PIPE", 63, "AA5083", 63, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2719 matmgr.Medium("PIPE", 64, "AA2219", 64, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2720
2721 //----------------------------------------------------
2722 matmgr.Mixture("PIPE", 65, "PI$", aPI, zPI, 1.42, -4, wPI);
2723 matmgr.Medium("PIPE", 65, "POLYIMIDE", 65, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2724
2725 //---------------------------------
2726 // Carbon Fiber M55J
2727 matmgr.Material("PIPE", 66, "M55J6K$", 12.0107, 6, 1.92, 999, 999);
2728 matmgr.Medium("PIPE", 66, "M55J6K", 66, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2729
2730 // Rohacell
2731 matmgr.Mixture("PIPE", 67, "Rohacell$", aRohacell, zRohacell, 0.03, -4, wRohacell);
2732 matmgr.Medium("PIPE", 67, "ROHACELL", 67, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2733
2734 // Titanium
2735 matmgr.Material("PIPE", 22, "Titanium$", 47.867, 22, 4.54, 3.560, 27.80);
2736 matmgr.Medium("PIPE", 22, "TITANIUM", 22, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2737
2738 // Alu 7075 (ZICRAL)
2739 matmgr.Mixture("PIPE", 68, "ALUMINIUM7075$", aALU7075, zALU7075, 2.810, -4, wALU7075);
2740 matmgr.Medium("PIPE", 68, "AA7075", 68, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2741
2742 // Al-Be alloy
2743 matmgr.Mixture("PIPE", 11, "AlBe$", aAlBe, zAlBe, 2.07, 2, wAlBe);
2744 matmgr.Medium("PIPE", 11, "AlBe", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2745}
2746
2747TGeoPcon* PipeRun4::makeMotherFromTemplate(const TGeoPcon* shape, int imin, int imax, float r0, int nz)
2748{
2749 //
2750 // Create a mother shape from a template setting some min radii to 0
2751 //
2752 int nz0 = shape->GetNz();
2753 // if nz > -1 the number of planes is given by nz
2754 if (nz != -1) {
2755 nz0 = nz;
2756 }
2757 TGeoPcon* mother = new TGeoPcon(0., 360., nz0);
2758
2759 if (imin == -1 || imax == -1) {
2760 imin = 0;
2761 imax = shape->GetNz();
2762 } else if (imax >= nz0) {
2763 imax = nz0 - 1;
2764 printf("Warning: imax reset to nz-1 %5d %5d %5d %5d\n", imin, imax, nz, nz0);
2765 }
2766
2767 // construct the sections dynamically since duplications have to be avoided
2768 std::vector<double> pconparams;
2769 pconparams.reserve(nz0);
2770 pconparams.push_back(0.);
2771 pconparams.push_back(360);
2772 pconparams.push_back(nz0);
2773 int zplanecounter = 0;
2774
2775 auto addSection = [&pconparams, &zplanecounter](double z, double rmin, double rmax) {
2776 pconparams.push_back(z);
2777 pconparams.push_back(rmin);
2778 pconparams.push_back(rmax);
2779 zplanecounter++;
2780 };
2781
2782 double zlast, rminlast, rmaxlast;
2783 for (int i = 0; i < shape->GetNz(); i++) {
2784 double rmin = shape->GetRmin(i);
2785 if ((i >= imin) && (i <= imax)) {
2786 rmin = r0;
2787 }
2788 double rmax = shape->GetRmax(i);
2789 double z = shape->GetZ(i);
2790 if (i == 0 || (z != zlast || rmin != rminlast || rmax != rmaxlast)) {
2791 addSection(z, rmin, rmax);
2792 }
2793 zlast = z;
2794 rminlast = rmin;
2795 rmaxlast = rmax;
2796 }
2797 // correct dimension (unless the user chose the number of sections)
2798 if (nz == -1) {
2799 pconparams[2] = zplanecounter;
2800 // reinit polycon from parameters
2801 mother->SetDimensions(pconparams.data());
2802 } else {
2803 for (int i = 0; i < zplanecounter; i++) {
2804 mother->DefineSection(i, pconparams[3 + 3 * i], pconparams[4 + 3 * i], pconparams[5 + 3 * i]);
2805 }
2806 }
2807
2808 return mother;
2809}
2810
2811TGeoPcon* PipeRun4::makeInsulationFromTemplate(TGeoPcon* shape)
2812{
2813 //
2814 // Create an beam pipe insulation layer shape from a template
2815 //
2816 int nz = shape->GetNz();
2817 TGeoPcon* insu = new TGeoPcon(0., 360., nz);
2818
2819 for (int i = 0; i < nz; i++) {
2820 double z = shape->GetZ(i);
2821 double rmin = shape->GetRmin(i);
2822 double rmax = shape->GetRmax(i);
2823 rmax += 0.5;
2824 shape->DefineSection(i, z, rmin, rmax);
2825 rmin = rmax - 0.5;
2826 insu->DefineSection(i, z, rmin, rmax);
2827 }
2828 return insu;
2829}
2830
2831TGeoVolume* PipeRun4::makeBellow(const char* ext, int nc, float rMin, float rMax, float rPlie, float dPlie)
2832{
2833 // nc Number of convolution
2834 // rMin Inner radius of the bellow
2835 // rMax Outer radius of the bellow
2836 // rPlie Plie radius
2837 // dPlie Plie thickness
2838 auto& matmgr = o2::base::MaterialManager::Instance();
2839 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
2840 const TGeoMedium* kMedSteel = matmgr.getTGeoMedium("PIPE_INOX");
2841 //
2842 // Upper part of the undulation
2843 //
2844 std::string name, nameA, nameB;
2845 TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie);
2846 nameA = fmt::format("{:s}TorusU", ext);
2847 shPlieTorusU->SetName(nameA.c_str());
2848 TGeoTube* shPlieTubeU = new TGeoTube(rMax - rPlie, rMax, rPlie);
2849 nameB = fmt::format("{:s}TubeU", ext);
2850 shPlieTubeU->SetName(nameB.c_str());
2851 name = fmt::format("{:s}UpperPlie", ext);
2852 TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
2853
2854 TGeoVolume* voWiggleU = new TGeoVolume(name.c_str(), shUpperPlie, kMedSteel);
2855 //
2856 // Lower part of the undulation
2857 TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie);
2858 nameA = fmt::format("{:s}TorusL", ext);
2859 shPlieTorusL->SetName(nameA.c_str());
2860 TGeoTube* shPlieTubeL = new TGeoTube(rMin, rMin + rPlie, rPlie);
2861 nameB = fmt::format("{:s}TubeL", ext);
2862 shPlieTubeL->SetName(nameB.c_str());
2863 name = fmt::format("{:s}LowerPlie", ext);
2864 TGeoCompositeShape* shLowerPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
2865
2866 TGeoVolume* voWiggleL = new TGeoVolume(name.c_str(), shLowerPlie, kMedSteel);
2867
2868 //
2869 // Connection between upper and lower part of undulation
2870 TGeoVolume* voWiggleC1 = new TGeoVolume(fmt::format("{:s}PlieConn1", ext).c_str(), new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie / 2.), kMedSteel);
2871 //
2872 // One wiggle
2873 float dz = rPlie - dPlie / 2.;
2874 float z0 = -dPlie / 2.;
2875 TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(fmt::format("{:s}Wiggle", ext).c_str());
2876 asWiggle->AddNode(voWiggleC1, 1, new TGeoTranslation(0., 0., z0));
2877 z0 += dz;
2878 asWiggle->AddNode(voWiggleU, 1, new TGeoTranslation(0., 0., z0));
2879 z0 += dz;
2880 asWiggle->AddNode(voWiggleC1, 2, new TGeoTranslation(0., 0., z0));
2881 z0 += dz;
2882 asWiggle->AddNode(voWiggleL, 1, new TGeoTranslation(0., 0., z0));
2883 asWiggle->GetShape()->ComputeBBox(); // enforce recomputing of BBox
2884 //
2885 float zBellowTot = nc * (2. * (static_cast<TGeoBBox*>(asWiggle->GetShape()))->GetDZ() - dPlie) + 2. * rPlie;
2886 TGeoVolume* voBellow = new TGeoVolume(fmt::format("{:s}BellowUS", ext).c_str(), new TGeoTube(rMin, rMax, zBellowTot / 2.), kMedVac);
2887 // Positioning of the volumes
2888 z0 = -zBellowTot / 2. + rPlie;
2889 voBellow->AddNode(voWiggleL, 2, new TGeoTranslation(0., 0., z0));
2890 z0 += rPlie;
2891 float zsh = 4. * rPlie - 2. * dPlie;
2892 for (int iw = 0; iw < nc; iw++) {
2893 float zpos = z0 + iw * zsh;
2894 voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos - dPlie));
2895 }
2896
2897 return voBellow;
2898}
2899
2900TGeoVolume* PipeRun4::makeBellowCside(const char* ext, int nc, float rMin, float rMax, float rPlie, float dPlie)
2901{
2902 // nc Number of convolution
2903 // rMin Inner radius of the bellow
2904 // rMax Outer radius of the bellow
2905 // dU Undulation length
2906 // rPlie Plie radius
2907 // dPlie Plie thickness
2908 auto& matmgr = o2::base::MaterialManager::Instance();
2909 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
2910 const TGeoMedium* kMedAlu5083 = matmgr.getTGeoMedium("PIPE_AA5083"); // fm
2911
2912 float dU = nc * (4. * rPlie - 2. * dPlie);
2913
2914 std::string name, nameA, nameB;
2915 name = fmt::format("{:s}BellowUS", ext);
2916 // TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac);
2917 TGeoVolumeAssembly* voBellow = new TGeoVolumeAssembly(name.c_str());
2918 //
2919 // Upper part of the undulation
2920 //
2921
2922 TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie);
2923 nameA = fmt::format("{:s}TorusU", ext);
2924 shPlieTorusU->SetName(nameA.c_str());
2925 TGeoTube* shPlieTubeU = new TGeoTube(rMax - rPlie, rMax, rPlie);
2926 nameB = fmt::format("{:s}TubeU", ext);
2927 shPlieTubeU->SetName(nameB.c_str());
2928 name = fmt::format("{:s}UpperPlie", ext);
2929 TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
2930
2931 TGeoVolume* voWiggleU = new TGeoVolume(name.c_str(), shUpperPlie, kMedAlu5083);
2932 voWiggleU->SetLineColor(kOrange); // fm
2933
2934 // First Lower part of the ondulation
2935 TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie);
2936 nameA = fmt::format("{:s}TorusL", ext);
2937 shPlieTorusL->SetName(nameA.c_str());
2938 TGeoTranslation* t1 = new TGeoTranslation("t1", 0, 0, -rPlie / 2.);
2939 t1->RegisterYourself();
2940
2941 TGeoTube* shPlieTubeL = new TGeoTube(rMin, rMin + rPlie, rPlie / 2.);
2942 nameB = fmt::format("{:s}TubeL", ext);
2943 shPlieTubeL->SetName(nameB.c_str());
2944 name = fmt::format("{:s}LowerPlie", ext);
2945 TGeoCompositeShape* shLowerPlie1 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}:t1", nameA, nameB).c_str());
2946
2947 TGeoVolume* voWiggleL1 = new TGeoVolume(name.c_str(), shLowerPlie1, kMedAlu5083);
2948 voWiggleL1->SetLineColor(kOrange); // fm
2949
2950 // Second Lower part of the undulation
2951 TGeoTranslation* t2 = new TGeoTranslation("t2", 0, 0, rPlie / 2.);
2952 t2->RegisterYourself();
2953
2954 TGeoCompositeShape* shLowerPlie2 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}:t2", nameA, nameB).c_str());
2955
2956 TGeoVolume* voWiggleL2 = new TGeoVolume(name.c_str(), shLowerPlie2, kMedAlu5083);
2957 voWiggleL2->SetLineColor(kOrange); // fm
2958
2959 // Connection between upper and lower part of undulation
2960 name = fmt::format("{:s}PlieConn1", ext);
2961 TGeoVolume* voWiggleC1 = new TGeoVolume(name.c_str(), new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie / 2.), kMedAlu5083);
2962 voWiggleC1->SetLineColor(kOrange); // fm
2963
2964 //
2965 // Vacuum Part
2966 //
2967
2968 //--Upper part of the ondulation
2969
2970 TGeoTorus* vacPlieTorusU = new TGeoTorus(rMax - rPlie, 0., rPlie - dPlie);
2971 nameA = fmt::format("{:s}vacTorusU", ext);
2972 vacPlieTorusU->SetName(nameA.c_str());
2973 TGeoTube* vacPlieTubeU = new TGeoTube(0., rMax - rPlie, rPlie - dPlie);
2974 nameB = fmt::format("{:s}vacTubeU", ext);
2975 vacPlieTubeU->SetName(nameB.c_str());
2976 name = fmt::format("{:s}vacUpperPlie", ext);
2977 TGeoCompositeShape* vacUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}+{:s}", nameA, nameB).c_str());
2978
2979 TGeoVolume* voVacWiggleU = new TGeoVolume(name.c_str(), vacUpperPlie, kMedVac);
2980 voVacWiggleU->SetVisibility(0);
2981
2982 // First Lower part of the undulation
2983 TGeoTorus* vacPlieTorusL = new TGeoTorus(rMin + rPlie, 0., rPlie);
2984 nameA = fmt::format("{:s}vacTorusL", ext);
2985 vacPlieTorusL->SetName(nameA.c_str());
2986
2987 TGeoTube* vacPlieTubeL = new TGeoTube(0., rMin + rPlie, rPlie / 2.);
2988 nameB = fmt::format("{:s}vacTubeL", ext);
2989 vacPlieTubeL->SetName(nameB.c_str());
2990 name = fmt::format("{:s}vacLowerPlie", ext);
2991 TGeoCompositeShape* vacLowerPlie1 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}:t1-{:s}", nameB, nameA).c_str());
2992
2993 TGeoVolume* voVacWiggleL1 = new TGeoVolume(name.c_str(), vacLowerPlie1, kMedVac);
2994 voVacWiggleL1->SetVisibility(0);
2995
2996 // Second Lower part of the undulation
2997 TGeoCompositeShape* vacLowerPlie2 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}:t2-{:s}", nameB, nameA).c_str());
2998
2999 TGeoVolume* voVacWiggleL2 = new TGeoVolume(name.c_str(), vacLowerPlie2, kMedVac);
3000 voVacWiggleL2->SetVisibility(0);
3001
3002 // One wiggle
3003 float dz = rPlie - dPlie / 2.;
3004 float z0 = 2. * rPlie;
3005 name = fmt::format("{:s}Wiggle", ext);
3006 TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name.c_str());
3007
3008 asWiggle->AddNode(voWiggleL1, 1, new TGeoTranslation(0., 0., z0));
3009 asWiggle->AddNode(voVacWiggleL1, 1, new TGeoTranslation(0., 0., z0));
3010 z0 -= dz;
3011 asWiggle->AddNode(voWiggleC1, 1, new TGeoTranslation(0., 0., z0));
3012 z0 -= dz;
3013 asWiggle->AddNode(voWiggleU, 1, new TGeoTranslation(0., 0., z0));
3014 asWiggle->AddNode(voVacWiggleU, 1, new TGeoTranslation(0., 0., z0));
3015 z0 -= dz;
3016 asWiggle->AddNode(voWiggleC1, 2, new TGeoTranslation(0., 0., z0));
3017 z0 -= dz;
3018 asWiggle->AddNode(voWiggleL2, 1, new TGeoTranslation(0., 0., z0));
3019 asWiggle->AddNode(voVacWiggleL2, 1, new TGeoTranslation(0., 0., z0));
3020
3021 // Positioning of the volumes
3022 z0 = +dU / 2.;
3023 float zsh = 4. * dz;
3024 // for (int iw = 0; iw < 1; iw++) {
3025 for (int iw = 0; iw < nc; iw++) {
3026 float zpos = z0 - iw * zsh;
3027 voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos));
3028 }
3029 return voBellow;
3030}
3031
3032TGeoVolume* PipeRun4::makeSupportBar(const char* tag, float Rin, float Rout, float length, float skinLength)
3033{
3034 //
3035 // make a support bar with the specified dimensions of the collar and arms
3036 //
3037
3038 // Dimensions :
3039
3040 const float kSupportXdim = length; // 20.67;
3041 const float kBeamPipeRingZdim = 5.25 / 2;
3042 /* thin layer of material between pipe and support; to be put back later */
3043 const float kVespelRmax = Rin + 0.08;
3044 const float kVespelRmin = Rin;
3045 const float kBeampipeCarbonCollarRmin = Rin + 0.18; // 2.4;
3046 const float kBeampipeCarbonCollarRmax = Rout; // 2.7;
3047
3048 const float kFixationCarbonCollarRmin = 1.5;
3049 const float kFixationCarbonCollarRmax = 1.7;
3050 const float kFixationCarbonCollarDZ = 2.5;
3051
3052 const float kSkinThickness = 0.1;
3053 const float kSkinXdim = skinLength; // 14.25;
3054 const float kSkinYdim = 1.;
3055 const float kSkinZdim = kFixationCarbonCollarDZ;
3056 const float kCarbonEarsXdim = 1.01;
3057 const float kCarbonEarsYdim = 0.2;
3058 const float kCarbonEarsZdim = kFixationCarbonCollarDZ;
3059
3060 const TGeoMedium* kMedRohacell = gGeoManager->GetMedium("PIPE_ROHACELL");
3061 const TGeoMedium* kMedPolyimide = gGeoManager->GetMedium("PIPE_POLYIMIDE");
3062 const TGeoMedium* kMedCarbonFiber = gGeoManager->GetMedium("PIPE_M55J6K");
3063
3064 TGeoVolume* beamPipeSupport = new TGeoVolumeAssembly(Form("BeampipeSupport_%s", tag));
3065
3066 // Support Bar
3067 TGeoVolumeAssembly* supportBar = new TGeoVolumeAssembly(Form("BPS_SupportBar_%s", tag));
3068
3069 TGeoBBox* carbonSkinBPS = new TGeoBBox(kSkinXdim / 2., kSkinYdim / 2., kSkinZdim / 2.);
3070 carbonSkinBPS->SetName(Form("carbonSkinBPS_%s", tag));
3071
3072 TGeoBBox* foambarBPS = new TGeoBBox(Form("foambarBPS_%s", tag), kSkinXdim / 2. - kSkinThickness, kSkinYdim / 2. - kSkinThickness,
3073 kSkinZdim / 2. - kSkinThickness / 2.);
3074 TGeoBBox* carbonEarsBPS = new TGeoBBox(kCarbonEarsXdim / 2., kCarbonEarsYdim / 2., kCarbonEarsZdim / 2.);
3075 carbonEarsBPS->SetName(Form("carbonEarsBPS_%s", tag));
3076
3077 // TODO: could reuse those?..
3078 TGeoTranslation* transBP1 = new TGeoTranslation(Form("transBP1_%s", tag), (kSkinXdim + kCarbonEarsXdim) / 2., 0., 0.);
3079 transBP1->RegisterYourself();
3080 TGeoTranslation* transBP2 = new TGeoTranslation(Form("transBP2_%s", tag), -(kSkinXdim + kCarbonEarsXdim) / 2., 0., 0.);
3081 transBP2->RegisterYourself();
3082 TGeoCompositeShape* supportBarCarbon = new TGeoCompositeShape(
3083 Form("BPS_supportBarCarbon_%s", tag), Form("(carbonSkinBPS_%s-foambarBPS_%s)+carbonEarsBPS_%s:transBP1_%s+carbonEarsBPS_%s:transBP2_%s", tag, tag, tag, tag, tag, tag));
3084
3085 TGeoVolume* supportBarCarbonVol = new TGeoVolume(Form("BPS_supportBarCarbon_%s", tag), supportBarCarbon, kMedCarbonFiber);
3086 supportBarCarbonVol->SetLineColor(kGray + 3);
3087
3088 supportBar->AddNode(supportBarCarbonVol, 1, new TGeoTranslation(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0));
3089 supportBar->AddNode(supportBarCarbonVol, 2, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
3090
3091 TGeoVolume* foamVol = new TGeoVolume(Form("supportBarFoam_%s", tag), foambarBPS, kMedRohacell);
3092 foamVol->SetLineColor(kGray);
3093 supportBar->AddNode(foamVol, 1, new TGeoTranslation(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0));
3094 supportBar->AddNode(foamVol, 2, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
3095
3096 beamPipeSupport->AddNode(supportBar, 1);
3097
3098 // Fixation to wings
3099 TGeoVolumeAssembly* fixationToWings = new TGeoVolumeAssembly(Form("BPS_fixationToWings_%s", tag));
3100
3101 float delatX = 0.1;
3102
3103 TGeoTubeSeg* fixationTube = new TGeoTubeSeg(kFixationCarbonCollarRmin, kFixationCarbonCollarRmax, kFixationCarbonCollarDZ / 2., -90., 90.);
3104 fixationTube->SetName(Form("fixationTube_%s", tag));
3105 TGeoBBox* fixationToBar = new TGeoBBox(kCarbonEarsXdim / 2. + delatX, kCarbonEarsYdim / 2., kCarbonEarsZdim / 2.);
3106 fixationToBar->SetName(Form("fixationToBar_%s", tag));
3107
3108 TGeoTranslation* transBP3 = new TGeoTranslation(Form("transBP3_%s", tag), kFixationCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX, kCarbonEarsYdim, 0.);
3109 transBP3->RegisterYourself();
3110 TGeoTranslation* transBP4 = new TGeoTranslation(Form("transBP4_%s", tag), kFixationCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX, -kCarbonEarsYdim, 0.);
3111 transBP4->RegisterYourself();
3112 TGeoCompositeShape* fixationToWing = new TGeoCompositeShape(Form("fixationToWing_%s", tag), Form("fixationTube_%s+fixationToBar_%s:transBP3_%s+fixationToBar_%s:transBP4_%s", tag, tag, tag, tag, tag));
3113
3114 TGeoVolume* fixationToWingVol = new TGeoVolume(Form("fixationToWing_%s", tag), fixationToWing, kMedCarbonFiber);
3115 fixationToWingVol->SetLineColor(kGray + 2);
3116
3117 fixationToWings->AddNode(fixationToWingVol, 1, new TGeoTranslation(-kSupportXdim, 0, 0));
3118 fixationToWings->AddNode(fixationToWingVol, 2, new TGeoCombiTrans(+kSupportXdim, 0, 0, new TGeoRotation("rot", 0., 0., 180.)));
3119
3120 beamPipeSupport->AddNode(fixationToWings, 1);
3121
3122 // Fixation to pipe
3123
3124 TGeoVolumeAssembly* fixationToPipe = new TGeoVolumeAssembly(Form("fixationToPipe_%s", tag));
3125
3126 TGeoTubeSeg* pipeSupportTubeCarbon = new TGeoTubeSeg(kBeampipeCarbonCollarRmin, kBeampipeCarbonCollarRmax, kFixationCarbonCollarDZ / 2., 0., 180.);
3127 pipeSupportTubeCarbon->SetName(Form("pipeSupportTubeCarbon_%s", tag));
3128
3129 TGeoBBox* fixationTubeToBar = new TGeoBBox(kCarbonEarsXdim / 2. + delatX, kCarbonEarsYdim / 2., kCarbonEarsZdim / 2.);
3130 fixationTubeToBar->SetName(Form("fixationTubeToBar_%s", tag));
3131 TGeoBBox* hole = new TGeoBBox((kBeampipeCarbonCollarRmax - kVespelRmin) / 2., kCarbonEarsYdim / 2., kCarbonEarsZdim / 2. + 1e-3);
3132 hole->SetName(Form("hole_%s", tag));
3133
3134 TGeoTranslation* transBP5 = new TGeoTranslation(Form("transBP5_%s", tag), kBeampipeCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX, kCarbonEarsYdim, 0.);
3135 transBP5->RegisterYourself();
3136 TGeoTranslation* transBP6 = new TGeoTranslation(Form("transBP6_%s", tag), -(kBeampipeCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX), kCarbonEarsYdim, 0.);
3137 transBP6->RegisterYourself();
3138 TGeoTranslation* transBP7 = new TGeoTranslation(Form("transBP7_%s", tag), (kBeampipeCarbonCollarRmax + kVespelRmin) / 2., 0., 0.);
3139 transBP7->RegisterYourself();
3140 TGeoTranslation* transBP8 = new TGeoTranslation(Form("transBP8_%s", tag), -((kBeampipeCarbonCollarRmax + kVespelRmin) / 2.), 0., 0.);
3141 transBP8->RegisterYourself();
3142 TGeoCompositeShape* halfFixationToPipe = new TGeoCompositeShape(
3143 Form("halfFixationToPipe_%s", tag),
3144 Form("(pipeSupportTubeCarbon_%s-hole_%s:transBP7_%s-hole_%s:transBP8_%s)+fixationTubeToBar_%s:transBP5_%s+fixationTubeToBar_%s:transBP6_%s", tag, tag, tag, tag, tag, tag, tag, tag, tag));
3145
3146 TGeoVolume* halfFixationToPipeVol = new TGeoVolume(Form("halfFixationToPipe_%s", tag), halfFixationToPipe, kMedCarbonFiber);
3147 halfFixationToPipeVol->SetLineColor(kRed + 2);
3148
3149 fixationToPipe->AddNode(halfFixationToPipeVol, 1);
3150 fixationToPipe->AddNode(halfFixationToPipeVol, 2, new TGeoCombiTrans(0, 0, 0, new TGeoRotation("rot", 0., 0., 180.)));
3151
3152 beamPipeSupport->AddNode(fixationToPipe, 1);
3153
3154 // Beam Pipe Ring
3155
3156 TGeoVolumeAssembly* beamPipeRing = new TGeoVolumeAssembly(Form("beamPipeRing_%s", tag));
3157
3158 TGeoTube* beamPipeRingCarbon = new TGeoTube(kVespelRmax, kBeampipeCarbonCollarRmin, kBeamPipeRingZdim / 2.);
3159 TGeoVolume* beamPipeRingCarbonVol = new TGeoVolume(Form("beamPipeRingCarbon_%s", tag), beamPipeRingCarbon, kMedCarbonFiber);
3160 beamPipeRingCarbonVol->SetLineColor(kGreen + 2);
3161 beamPipeRing->AddNode(beamPipeRingCarbonVol, 1, new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
3162
3163 TGeoTube* beamPipeRingVespel = new TGeoTube(kVespelRmin, kVespelRmax, kBeamPipeRingZdim / 2.);
3164 TGeoVolume* beamPipeRingVespelVol = new TGeoVolume(Form("beamPipeRingVespel_%s", tag), beamPipeRingVespel, kMedPolyimide);
3165 beamPipeRingVespelVol->SetLineColor(kGreen + 4);
3166 beamPipeRing->AddNode(beamPipeRingVespelVol, 1, new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
3167
3168 beamPipeSupport->AddNode(beamPipeRing, 1);
3169 beamPipeSupport->SetVisibility(0);
3170
3171 return beamPipeSupport;
3172}
3173
3174// ----------------------------------------------------------------------------
3175FairModule* PipeRun4::CloneModule() const { return new PipeRun4(*this); }
Definition of the Detector class.
int32_t i
ClassImp(IdPath)
static void initFieldTrackingParams(int &mode, float &maxfield)
Definition Detector.cxx:143
static MaterialManager & Instance()
a common base class for passive modules - implementing generic functions
Definition PassiveBase.h:24
FairModule * CloneModule() const override
Clone this object (used in MT mode only)
void ConstructGeometry() override
Definition PipeRun4.cxx:67
GLint GLenum GLint x
Definition glcorearb.h:403
GLdouble GLdouble GLdouble GLdouble top
Definition glcorearb.h:4077
GLuint const GLchar * name
Definition glcorearb.h:781
GLuint GLsizei GLsizei * length
Definition glcorearb.h:790
GLdouble GLdouble GLdouble z
Definition glcorearb.h:843
GLuint GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat t1
Definition glcorearb.h:5034