Project
Loading...
Searching...
No Matches
PipeRun4.cxx
Go to the documentation of this file.
1// Copyright 2019-2020 CERN and copyright holders of ALICE O2.
2// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders.
3// All rights not expressly granted are reserved.
4//
5// This software is distributed under the terms of the GNU General Public
6// License v3 (GPL Version 3), copied verbatim in the file "COPYING".
7//
8// In applying this license CERN does not waive the privileges and immunities
9// granted to it by virtue of its status as an Intergovernmental Organization
10// or submit itself to any jurisdiction.
11
15#include <TGeoCompositeShape.h>
16#include <TGeoCone.h>
17#include <TGeoPcon.h>
18#include <TGeoTorus.h>
19#include <TGeoTube.h>
20#include <TGeoEltu.h>
21#include <TVirtualMC.h>
22#include "TGeoManager.h" // for TGeoManager, gGeoManager
23#include "TGeoMaterial.h" // for TGeoMaterial
24#include "TGeoMedium.h" // for TGeoMedium
25#include "TGeoVolume.h" // for TGeoVolume
26#include <TGeoArb8.h> // for TGeoTrap
27#include <TGeoTrd1.h> // for TGeoTrap
28// force availability of assert
29#ifdef NDEBUG
30#undef NDEBUG
31#endif
32#include <cassert>
33
34//-------------------------------------------------------------------------
35// Beam pipe class for ALICE ITS3 & FOCAL upgrade
36// Imported from Pipe class
37// Original Authors:
38// F. Manso
39// A. Morsch
40// R. Tieulent
41// M. Sitta
42//-------------------------------------------------------------------------
43
44using namespace o2::passive;
45
46PipeRun4::~PipeRun4() = default;
48PipeRun4::PipeRun4(const char* name, const char* title, float rho, float thick)
49 : PassiveBase(name, title), mBePipeRmax(rho), mBePipeThick(thick)
50{
51}
52PipeRun4::PipeRun4(const PipeRun4& rhs) = default;
53
54PipeRun4& PipeRun4::operator=(const PipeRun4& rhs)
55{
56 // self assignment
57 if (this == &rhs) {
58 return *this;
59 }
60
61 // base class assignment
62 PassiveBase::operator=(rhs);
63
64 return *this;
65}
66
68{
69 createMaterials();
70 //
71 // Class describing the beam pipe geometry
72 //
73 float z, zsh, z0;
74 //
75 // Rotation Matrices
76 //
77 const float kDegRad = TMath::Pi() / 180.;
78 // Rotation by 180 deg
79 TGeoRotation* rot180 = new TGeoRotation("rot180", 90., 180., 90., 90., 180., 0.);
80 TGeoRotation* rotyz = new TGeoRotation("rotyz", 90., 180., 0., 180., 90., 90.);
81 TGeoRotation* rotxz = new TGeoRotation("rotxz", 0., 0., 90., 90., 90., 180.);
82 //
83
84 // Media
86 const TGeoMedium* kMedAir = matmgr.getTGeoMedium("PIPE_AIR");
87 const TGeoMedium* kMedAirNF = matmgr.getTGeoMedium("PIPE_AIR_NF");
88 const TGeoMedium* kMedAirHigh = matmgr.getTGeoMedium("PIPE_AIR_HIGH");
89
90 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
91 const TGeoMedium* kMedVacNF = matmgr.getTGeoMedium("PIPE_VACUUM_NF");
92 const TGeoMedium* kMedVacHC = matmgr.getTGeoMedium("PIPE_VACUUM_HC");
93 const TGeoMedium* kMedVacNFHC = matmgr.getTGeoMedium("PIPE_VACUUM_NFHC");
94
95 const TGeoMedium* kMedInsu = matmgr.getTGeoMedium("PIPE_INS_C0");
96
97 const TGeoMedium* kMedSteel = matmgr.getTGeoMedium("PIPE_INOX");
98 const TGeoMedium* kMedSteelNF = matmgr.getTGeoMedium("PIPE_INOX_NF");
99 const TGeoMedium* kMedSteelHC = matmgr.getTGeoMedium("PIPE_INOX_HC");
100 const TGeoMedium* kMedSteelNFHC = matmgr.getTGeoMedium("PIPE_INOX_NFHC");
101
102 const TGeoMedium* kMedBe = matmgr.getTGeoMedium("PIPE_BE");
103
104 const TGeoMedium* kMedCu = matmgr.getTGeoMedium("PIPE_CU");
105 const TGeoMedium* kMedCuNF = matmgr.getTGeoMedium("PIPE_CU_NF");
106 const TGeoMedium* kMedCuHC = matmgr.getTGeoMedium("PIPE_CU_HC");
107 const TGeoMedium* kMedCuNFHC = matmgr.getTGeoMedium("PIPE_CU_NFHC");
108
109 const TGeoMedium* kMedAlu2219 = matmgr.getTGeoMedium("PIPE_AA2219");
110 const TGeoMedium* kMedRohacell = matmgr.getTGeoMedium("PIPE_ROHACELL");
111 const TGeoMedium* kMedPolyimide = matmgr.getTGeoMedium("PIPE_POLYIMIDE");
112 const TGeoMedium* kMedAlBe = matmgr.getTGeoMedium("PIPE_AlBe");
113 const TGeoMedium* kMedCarbonFiber = matmgr.getTGeoMedium("PIPE_M55J6K");
114 const TGeoMedium* kMedTitanium = matmgr.getTGeoMedium("PIPE_TITANIUM");
115 const TGeoMedium* kMedAlu7075 = matmgr.getTGeoMedium("PIPE_AA7075");
116
117 // Top volume
118 TGeoVolume* top = gGeoManager->GetVolume("cave");
119 TGeoVolume* barrel = gGeoManager->GetVolume("barrel");
120 TGeoVolume* caveRB24 = gGeoManager->GetVolume("caveRB24");
121 //
122 //
124 // //
125 // The Central Vacuum system //
126 // //
128 //
129 //
130 // The ALICE central beam-pipe according to drawing LHCVC2C_0001
131 // Drawings of sub-elements:
132 //
133 // Pos 7 - Minimised Flange: LHCVFX_P0025
134 // Pos 6 - Standard Flange: STDVFUHV0009
135 // Pos 8 - Bellow: LHCVBX__0001
136 //
137 // Absolute z-coordinates -82.0 - 400.0 cm
138 // Total length: 482.0 cm
139 // It consists of 3 main parts:
140 // CP/2 The flange on the non-absorber side: 36.5 cm
141 // CP/1 The central Be pipe: 405.0 cm
142 // CP/3 The double-bellow and flange on the absorber side: 40.5 cm
143
144 //
145 /*
146 // Starting position in z
147 const float kCPz0 = -400.0;
148 // Length of the CP/1 section
149 const float kCP1Length = 405.0;
150 // Length of the CP/2 section
151 const float kCP2Length = 36.5;
152 // Length of the CP/3 section
153 const float kCP3Length = 40.5;
154 // Position of the CP/2 section
155 // const float kCP2pos = kCPz0 + kCP2Length / 2.;
156 // Position of the CP/3 section
157 const float kCP3pos = kCPz0 + kCP2Length + kCP1Length + kCP3Length/2.;
158 */
159
161 // Authors: F. Manso, R. Tieulent
162 // Drawings from C. Gargiulo :
163 // \\cern.ch\dfs\Workspaces\c\cgargiul\EXPERIMENT\ALICE\ALICE_MECHANICS\ALICE_DATA_PACKAGE\IN\DETECTORS\ITS_UPGRADE\1-DESIGN\3D_cad_model\R14_20140311_ALI\
164 //
165 //
166 // central beam pipe
167 //------------------- Pipe version 4.7 March 2014 -----------------------------
168 TGeoVolumeAssembly* beamPipeCsideSection = new TGeoVolumeAssembly("BeamPipeCsideSection");
169 // If user set Rmax=0/Thick=0 use defaults, else use user input
170 const float kBeryliumSectionOuterRadius = (mBePipeRmax > 0.) ? mBePipeRmax : 1.65;
171 const float kBeryliumSectionThickness = (mBePipeThick > 0.) ? mBePipeThick : 0.05;
172 float kBeryliumSectionZmax = 25.0;
173 float kBeryliumSectionZmin = -25.0;
174
175 const float kBellowSectionOuterRadius = 2.15;
176 const float kCSideBPSOuterRadius = 2.22;
177 const float kCSideBPSWallThickness = 0.15;
178 const float kBellowSectionZmax = -55.35;
179 const float kBellowOuterRadius = 2.8;
180 const float kFirstConeAngle = 15. * TMath::DegToRad();
181 const float kChangeThicknessAngle = 45. * TMath::DegToRad();
182 const float kCSideBPSLength = 3.53;
183 const float kDzFirstCone = (kCSideBPSOuterRadius - kBeryliumSectionOuterRadius) / TMath::Tan(kFirstConeAngle);
184 const float kReduceThicknessPartAfterBPSLength = 1.52;
185 const float kThinPartBeforeBellowLength = 1.025;
186
187 const float kDistanceBetweenBellows = 2.5;
188
189 const float kAdaptConeZmax = -77.43;
190 const float kAdaptConeZmin = -80.6;
191 const float kAdaptConeRmax = 3.0;
192 const float kFlangeRmax = 4.3;
193 const float kFlangeLength = 1.4;
194
195 const float kBellowPlieRadius = 0.17; // radius of bellow plies
196 const float kBellowPlieThickness = 0.03; // Thickness of bellow plies 300 microns
197 const int kNBellowConvolutions = 7;
198
199 const float kZ1 = kBeryliumSectionZmin; // z of Be - Al jonction on the C-side
200 const float kZ2 = kBellowSectionZmax + kDzFirstCone; // z of end of small diameter part (beginning of first cone before the bellow
201 const float kZ3 = kBellowSectionZmax + (kCSideBPSOuterRadius - kBellowSectionOuterRadius) / TMath::Tan(kFirstConeAngle); // z of End of first cone part with 0.8mm thickness
202 const float kZ4 = kBellowSectionZmax; // z of End of first Cone
203 const float kZ5 = kBellowSectionZmax - kCSideBPSLength; // z of End of Beam Pipe support section
204 const float kZ6 = kBellowSectionZmax - kCSideBPSLength - (kCSideBPSOuterRadius - kBellowSectionOuterRadius) / TMath::Tan(kChangeThicknessAngle); // z of End of Beam Pipe support section after reduction of thickness
205 const float kZ7 = kZ6 - kReduceThicknessPartAfterBPSLength; // Z of end of 800 microns section after Beam Pipe Support
206 const float kZ8 = kZ7 - (kBeryliumSectionThickness - kBellowPlieThickness) / TMath::Tan(kChangeThicknessAngle);
207 const float kZ9 = kZ7 - kThinPartBeforeBellowLength; // Z of the start of first bellow
208 const float kFirstBellowZmax = kZ9;
209
210 //---------------- Be pipe around the IP ----------
211 TGeoTube* berylliumTube =
212 new TGeoTube("IP_PIPEsh", kBeryliumSectionOuterRadius - kBeryliumSectionThickness, kBeryliumSectionOuterRadius,
213 (kBeryliumSectionZmax - kBeryliumSectionZmin) / 2);
214 TGeoVolume* voberylliumTube = new TGeoVolume("IP_PIPE", berylliumTube, kMedBe);
215 voberylliumTube->SetLineColor(kRed);
216
217 TGeoTube* berylliumTubeVacuum =
218 new TGeoTube("IP_PIPEVACUUMsh", 0., kBeryliumSectionOuterRadius, (kBeryliumSectionZmax - kBeryliumSectionZmin) / 2);
219 TGeoVolume* voberylliumTubeVacuum = new TGeoVolume("IP_PIPEMOTHER", berylliumTubeVacuum, kMedVac);
220 voberylliumTubeVacuum->AddNode(voberylliumTube, 1, gGeoIdentity);
221 voberylliumTubeVacuum->SetVisibility(0);
222 voberylliumTubeVacuum->SetLineColor(kGreen);
223
224 beamPipeCsideSection->AddNode(voberylliumTubeVacuum, 1,
225 new TGeoTranslation(0., 0., (kBeryliumSectionZmax + kBeryliumSectionZmin) / 2));
226
227 //---------------- Al tube ------------------
228 TGeoPcon* aluBeforeBellows = new TGeoPcon(0., 360., 9);
229 aluBeforeBellows->DefineSection(0, kZ9, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
230 aluBeforeBellows->DefineSection(1, kZ8, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
231 aluBeforeBellows->DefineSection(2, kZ7, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
232 aluBeforeBellows->DefineSection(3, kZ6, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
233 aluBeforeBellows->DefineSection(4, kZ5, kCSideBPSOuterRadius - kCSideBPSWallThickness, kCSideBPSOuterRadius);
234 aluBeforeBellows->DefineSection(5, kZ4, kCSideBPSOuterRadius - kCSideBPSWallThickness, kCSideBPSOuterRadius);
235 aluBeforeBellows->DefineSection(6, kZ3, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
236 aluBeforeBellows->DefineSection(7, kZ2, kBeryliumSectionOuterRadius - kBeryliumSectionThickness, kBeryliumSectionOuterRadius);
237 aluBeforeBellows->DefineSection(8, kZ1, kBeryliumSectionOuterRadius - kBeryliumSectionThickness, kBeryliumSectionOuterRadius);
238 TGeoVolume* voaluBeforeBellows = new TGeoVolume("aluBeforeBellows", aluBeforeBellows, kMedAlu2219);
239 voaluBeforeBellows->SetLineColor(kBlue);
240 beamPipeCsideSection->AddNode(voaluBeforeBellows, 1, gGeoIdentity);
241
242 TGeoPcon* aluBeforeBellowsVacuum = new TGeoPcon(0., 360., 7);
243 aluBeforeBellowsVacuum->DefineSection(0, kZ9, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
244 aluBeforeBellowsVacuum->DefineSection(1, kZ6, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
245 aluBeforeBellowsVacuum->DefineSection(2, kZ5, 0., kCSideBPSOuterRadius - kCSideBPSWallThickness);
246 aluBeforeBellowsVacuum->DefineSection(3, kZ4, 0., kCSideBPSOuterRadius - kCSideBPSWallThickness);
247 aluBeforeBellowsVacuum->DefineSection(4, kZ3, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
248 aluBeforeBellowsVacuum->DefineSection(5, kZ2, 0., kBeryliumSectionOuterRadius - kBeryliumSectionThickness);
249 aluBeforeBellowsVacuum->DefineSection(6, kZ1, 0., kBeryliumSectionOuterRadius - kBeryliumSectionThickness);
250 TGeoVolume* voaluBeforeBellowsVacuum = new TGeoVolume("aluBeforeBellowsVacuum", aluBeforeBellowsVacuum, kMedVac);
251 voaluBeforeBellowsVacuum->SetVisibility(1);
252 voaluBeforeBellowsVacuum->SetLineColor(kGreen);
253 voaluBeforeBellows->AddNode(voaluBeforeBellowsVacuum, 1, gGeoIdentity);
254 //-------------------------------------------------
255
256 float kBellowLength = kNBellowConvolutions * (4. * kBellowPlieRadius - 2. * kBellowPlieThickness);
257 // ------------------ First Bellow --------------------
258 TGeoVolume* vobellows1 =
259 makeBellowCside("bellows1", kNBellowConvolutions, kBellowSectionOuterRadius - kBeryliumSectionThickness,
260 kBellowOuterRadius, kBellowPlieRadius, kBellowPlieThickness);
261 beamPipeCsideSection->AddNode(
262 vobellows1, 1, new TGeoTranslation(0., 0., kFirstBellowZmax - kBellowLength / 2. - 2. * kBellowPlieRadius));
263 //------------------------------------------------------
264
265 const float kZ10 = kFirstBellowZmax - kBellowLength; // End of First bellow
266 const float kZ12 = kZ10 - kThinPartBeforeBellowLength;
267 const float kZ11 = kZ12 +
268 (kBeryliumSectionThickness - kBellowPlieThickness) /
269 TMath::Tan(kChangeThicknessAngle); // End of 300 microns thickness part after first bellow
270 const float kZ13 = kZ12 - kDistanceBetweenBellows;
271 const float kZ14 = kZ13 - (kBeryliumSectionThickness - kBellowPlieThickness) / TMath::Tan(kChangeThicknessAngle);
272 const float kZ15 = kZ14 - kThinPartBeforeBellowLength;
273 const float kSecondBellowZmax = kZ15;
274
275 //---------- Al tube between the bellows ----------
276 TGeoPcon* tube4 = new TGeoPcon(0., 360., 6);
277 tube4->DefineSection(0, kZ10, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
278 tube4->DefineSection(1, kZ11, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
279 tube4->DefineSection(2, kZ12, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
280 tube4->DefineSection(3, kZ13, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
281 tube4->DefineSection(4, kZ14, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
282 tube4->DefineSection(5, kZ15, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
283 TGeoVolume* votube4 = new TGeoVolume("votube4", tube4, kMedAlu2219);
284 votube4->SetLineColor(kBlue);
285 beamPipeCsideSection->AddNode(votube4, 1, gGeoIdentity);
286
287 TGeoTube* tube4Vacuum = new TGeoTube(0., kBellowSectionOuterRadius - kBeryliumSectionThickness, -(kZ15 - kZ10) / 2.);
288 TGeoVolume* votube4Vacuum = new TGeoVolume("tube4Vacuum", tube4Vacuum, kMedVac);
289 votube4Vacuum->SetVisibility(1);
290 votube4->AddNode(votube4Vacuum, 1, new TGeoTranslation(0., 0., (kZ10 + kZ15) / 2.));
291
292 // ------------------ Second Bellow --------------------
293 TGeoVolume* vobellows2 =
294 makeBellowCside("bellows2", kNBellowConvolutions, kBellowSectionOuterRadius - kBeryliumSectionThickness,
295 kBellowOuterRadius, kBellowPlieRadius, kBellowPlieThickness);
296 beamPipeCsideSection->AddNode(
297 vobellows2, 1, new TGeoTranslation(0., 0., kSecondBellowZmax - kBellowLength / 2. - 2. * kBellowPlieRadius));
298 // -----------------------------------------------------
299
300 const float kZ16 = kSecondBellowZmax - kBellowLength; // End of Second bellow
301 const float kZ18 = kZ16 - kThinPartBeforeBellowLength;
302 const float kZ17 = kZ18 +
303 (kBeryliumSectionThickness - kBellowPlieThickness) /
304 TMath::Tan(kChangeThicknessAngle); // End of 300 microns thickness part after first bellow
305 const float kZ19 = kAdaptConeZmax; // Start of the Adpation Cone
306 const float kZ20 = kAdaptConeZmin; // End of the Adpation Cone
307 const float kZ21 = kAdaptConeZmin - kFlangeLength; // End of the Flange
308
309 //----------- 15 deg Conical adaptator + flange ----------
310 TGeoPcon* adaptator = new TGeoPcon(0., 360., 7);
311 adaptator->DefineSection(0, kZ16, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
312 adaptator->DefineSection(1, kZ17, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
313 adaptator->DefineSection(2, kZ18, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
314 adaptator->DefineSection(3, kZ19, kBellowSectionOuterRadius - kBeryliumSectionThickness, kBellowSectionOuterRadius);
315 adaptator->DefineSection(4, kZ20, kBellowSectionOuterRadius - kBeryliumSectionThickness, kAdaptConeRmax);
316 adaptator->DefineSection(5, kZ20, kBellowSectionOuterRadius - kBeryliumSectionThickness, kFlangeRmax);
317 adaptator->DefineSection(6, kZ21, kBellowSectionOuterRadius - kBeryliumSectionThickness, kFlangeRmax);
318 TGeoVolume* voadaptator = new TGeoVolume("voadaptator", adaptator, kMedAlu2219);
319 voadaptator->SetLineColor(kBlue);
320 beamPipeCsideSection->AddNode(voadaptator, 1, gGeoIdentity);
321
322 TGeoPcon* adaptatorvide = new TGeoPcon(0., 360., 4);
323 adaptatorvide->DefineSection(0, kZ16, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
324 adaptatorvide->DefineSection(1, kZ19, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
325 adaptatorvide->DefineSection(2, kZ20, 0., kAdaptConeRmax - kBeryliumSectionThickness);
326 adaptatorvide->DefineSection(3, kZ21, 0., kAdaptConeRmax - kBeryliumSectionThickness);
327 TGeoVolume* voadaptatorvide = new TGeoVolume("voadaptatorvide", adaptatorvide, kMedVac);
328 voadaptatorvide->SetVisibility(1);
329 // voadaptatorvide->SetLineColor(kGreen);
330 voadaptator->AddNode(voadaptatorvide, 1, gGeoIdentity);
331 //------------------------------------------------------
332
333 barrel->AddNode(beamPipeCsideSection, 1, new TGeoTranslation(0., 30., 0.));
334
336 // Beam Pipe support F.M. 2021 rev 2023 //
338
339 // Beam Pipe Support
340 TGeoVolume* beamPipeSupport = new TGeoVolumeAssembly("BeamPipeSupport");
341 const float kBeamPipesupportZpos = kZ5;
342
343 // Dimensions :
344 const float kSupportXdim = 20.67;
345 const float kBeamPipeRingZdim = 3.6;
346 const float kVespelRmax = 2.3;
347 const float kVespelRmin = 2.22;
348 const float kBeampipeCarbonCollarRmin = 2.5;
349 const float kBeampipeCarbonCollarRmax = 2.7;
350 const float kFixationCarbonCollarRmin = 1.5;
351 const float kFixationCarbonCollarRmax = 1.7;
352 const float kFixationCarbonCollarDZ = 2.5;
353 const float kSkinThickness = 0.3;
354 const float kSkinXdim = 14.2;
355 const float kSkinYdim = 1.4;
356 const float kSkinZdim = kFixationCarbonCollarDZ;
357 const float kCarbonEarsXdim = 2.8;
358 const float kCarbonEarsYdimIn = 1.1;
359 const float kCarbonEarsYdimOut = 0.6;
360 const float kCarbonEarsZdim = kFixationCarbonCollarDZ;
361 const float kScrewDiameter = 0.4;
362 const float kScrewHeadHeight = 0.2;
363 const float kScrewHeadDiameter = 0.6;
364 const float kScrewPositionIn = 3.25;
365 const float kScrewPositionOut = 21.80;
366 const float kScrewThreadLength = 1.0;
367 const float holeSightDiameterOut = 0.60;
368 const float holeSightDiameterIn = 0.25;
369
370 // Support Bar
371 TGeoVolumeAssembly* supportBar = new TGeoVolumeAssembly("BPS_SupportBar");
372 TGeoBBox* carbonSkinBPS = new TGeoBBox("carbonSkinBPS", kSkinXdim / 2., kSkinYdim / 2., kSkinZdim / 2.);
373 TGeoBBox* foambarBPS = new TGeoBBox("foambarBPS", kSkinXdim / 2. - kSkinThickness, kSkinYdim / 2. - kSkinThickness,
374 kSkinZdim / 2. - kSkinThickness / 2.);
375 TGeoBBox* carbonEarsBPSin = new TGeoBBox("carbonEarsBPSin", kCarbonEarsXdim / 2., kCarbonEarsYdimIn / 2., kCarbonEarsZdim / 2.);
376 TGeoBBox* carbonEarsBPSout = new TGeoBBox("carbonEarsBPSout", kCarbonEarsXdim / 2., kCarbonEarsYdimOut / 2., kCarbonEarsZdim / 2.);
377
378 //===== building the main support bar in carbon ====
379 TGeoTranslation* tBP1 = new TGeoTranslation("tBP1", (kSkinXdim + kCarbonEarsXdim) / 2., -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.);
380 TGeoTranslation* tBP2 = new TGeoTranslation("tBP2", -(kSkinXdim + kCarbonEarsXdim) / 2., 0., 0.);
381 tBP1->RegisterYourself();
382 tBP2->RegisterYourself();
383
384 TGeoRotation* rotScrew = new TGeoRotation("rotScrew", 0., 90., 0.);
385 rotScrew->RegisterYourself();
386
387 TGeoTube* holeScrew = new TGeoTube("holeScrew", 0., kScrewDiameter / 2., kCarbonEarsYdimIn / 2. + 0.001);
388 TGeoTube* holeSight = new TGeoTube("holeSight", 0., holeSightDiameterOut / 2., kSkinZdim / 2. + 0.001);
389 TGeoTranslation* tHoleSight = new TGeoTranslation("tHoleSight", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - 6.55, 0., 0.);
390 tHoleSight->RegisterYourself();
391 double kXHoleIn = kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - kScrewPositionIn;
392 double kXHoleOut = kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - kScrewPositionOut;
393 TGeoCombiTrans* tHoleScrew1 = new TGeoCombiTrans("tHoleScrew1", kXHoleIn, -(kSkinYdim - kCarbonEarsYdimIn) / 2., -0.7, rotScrew);
394 TGeoCombiTrans* tHoleScrew2 = new TGeoCombiTrans("tHoleScrew2", kXHoleIn, -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.7, rotScrew);
395 TGeoCombiTrans* tHoleScrew3 = new TGeoCombiTrans("tHoleScrew3", kXHoleOut, -(kSkinYdim - kCarbonEarsYdimIn) / 2., -0.7, rotScrew);
396 TGeoCombiTrans* tHoleScrew4 = new TGeoCombiTrans("tHoleScrew4", kXHoleOut, -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.7, rotScrew);
397 tHoleScrew1->RegisterYourself();
398 tHoleScrew2->RegisterYourself();
399 tHoleScrew3->RegisterYourself();
400 tHoleScrew4->RegisterYourself();
401
402 TGeoCompositeShape* supportBarCarbon = new TGeoCompositeShape("BPS_supportBarCarbon", "(carbonSkinBPS-foambarBPS)+carbonEarsBPSin:tBP1-holeScrew:tHoleScrew1-holeScrew:tHoleScrew2+carbonEarsBPSout:tBP2-holeSight:tHoleSight-holeScrew:tHoleScrew3-holeScrew:tHoleScrew4");
403 TGeoVolume* supportBarCarbonVol = new TGeoVolume("BPS_supportBarCarbon", supportBarCarbon, kMedCarbonFiber);
404 supportBarCarbonVol->SetLineColor(kGray + 2);
405 supportBar->AddNode(supportBarCarbonVol, 1, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
406 TGeoRotation* rotBar1 = new TGeoRotation("rotBar1", 0., 180., 180.);
407 rotBar1->RegisterYourself();
408 TGeoCombiTrans* transBar1 = new TGeoCombiTrans("transBar1", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0, rotBar1);
409 transBar1->RegisterYourself();
410 supportBar->AddNode(supportBarCarbonVol, 2, transBar1);
411 //==================================================
412
413 //==== Adding the internal foam volumes ============
414 TGeoCompositeShape* foamVolume = new TGeoCompositeShape("foamVolume", "foambarBPS-holeSight:tHoleSight");
415 TGeoVolume* FoamVolume = new TGeoVolume("supportBarFoam", foamVolume, kMedRohacell);
416 FoamVolume->SetLineColor(kGreen);
417 TGeoRotation* rotBar2 = new TGeoRotation("rotBar2", 0., 0., 180.);
418 rotBar2->RegisterYourself();
419 TGeoCombiTrans* transBar2 = new TGeoCombiTrans("transBar2", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0, rotBar2);
420 transBar2->RegisterYourself();
421 supportBar->AddNode(FoamVolume, 1, transBar1);
422 supportBar->AddNode(FoamVolume, 2, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
423 //==================================================
424
425 //================= Screws ====================
426 TGeoVolumeAssembly* screw = new TGeoVolumeAssembly("screw");
427 TGeoTube* headScrew = new TGeoTube("headScrew", 0., kScrewHeadDiameter / 2., kScrewHeadHeight / 2.);
428 TGeoVolume* HeadScrew = new TGeoVolume("HeadScrew", headScrew, kMedTitanium);
429 HeadScrew->SetLineColor(kRed);
430 TGeoTube* threadScrew = new TGeoTube("threadScrew", 0., kScrewDiameter / 2., kCarbonEarsYdimIn / 2.);
431 TGeoVolume* ThreadScrew = new TGeoVolume("ThreadScrew", threadScrew, kMedTitanium);
432 ThreadScrew->SetLineColor(kRed);
433 screw->AddNode(HeadScrew, 1, new TGeoTranslation(0., 0., -(kCarbonEarsYdimIn + kScrewHeadHeight) / 2.));
434 screw->AddNode(ThreadScrew, 1);
435 TGeoCombiTrans* tScrew1 = new TGeoCombiTrans("transScrew1", kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., -0.7, rotScrew);
436 TGeoCombiTrans* tScrew2 = new TGeoCombiTrans("transScrew2", kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., 0.7, rotScrew);
437 TGeoCombiTrans* tScrew3 = new TGeoCombiTrans("transScrew3", -kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., -0.7, rotScrew);
438 TGeoCombiTrans* tScrew4 = new TGeoCombiTrans("transScrew4", -kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., 0.7, rotScrew);
439 tScrew1->RegisterYourself();
440 tScrew2->RegisterYourself();
441 tScrew3->RegisterYourself();
442 tScrew4->RegisterYourself();
443 supportBar->AddNode(screw, 1, tScrew1);
444 supportBar->AddNode(screw, 2, tScrew2);
445 supportBar->AddNode(screw, 3, tScrew3);
446 supportBar->AddNode(screw, 4, tScrew4);
447 //==============================================
448
449 // === Optical sights (assuming the same than the MFT ones) ===
450 TGeoVolumeAssembly* fixationSight = new TGeoVolumeAssembly("fixationSight");
451 TGeoTube* screwSight = new TGeoTube("screwSight", holeSightDiameterIn / 2., holeSightDiameterOut / 2., kScrewThreadLength / 2.);
452 TGeoVolume* ScrewSight = new TGeoVolume("ScrewSight", screwSight, kMedSteel);
453 ScrewSight->SetLineColor(kBlue);
454 double supportSightLength = 0.5;
455 TGeoTube* supportSight = new TGeoTube("supportSight", holeSightDiameterIn / 2., 1.4 / 2., supportSightLength / 2.);
456 TGeoVolume* SupportSight = new TGeoVolume("SupportSight", supportSight, kMedSteel);
457 SupportSight->SetLineColor(kBlue);
458 fixationSight->AddNode(ScrewSight, 1);
459 fixationSight->AddNode(SupportSight, 1, new TGeoTranslation(0., 0., (kScrewThreadLength + supportSightLength) / 2.));
460 SupportSight->SetVisibility(kTRUE);
461 fixationSight->SetVisibility(kTRUE);
462 TGeoTranslation* tSight1 = new TGeoTranslation("tSight1", 6.55, 0., (kSkinZdim - kScrewThreadLength) / 2.);
463 TGeoTranslation* tSight2 = new TGeoTranslation("tSight2", -6.55, 0., (kSkinZdim - kScrewThreadLength) / 2.);
464 tSight1->RegisterYourself();
465 tSight2->RegisterYourself();
466 supportBar->AddNode(fixationSight, 1, tSight1);
467 supportBar->AddNode(fixationSight, 2, tSight2);
468 // =====================
469
470 beamPipeSupport->AddNode(supportBar, 1);
471
472 //======================= Fixation to pipe ========================
473 TGeoTube* pipeSupportTubeCarbon = new TGeoTube(kBeampipeCarbonCollarRmin, kBeampipeCarbonCollarRmax, kFixationCarbonCollarDZ / 2.);
474 TGeoVolume* FixationToPipeVol = new TGeoVolume("FixationToPipe", pipeSupportTubeCarbon, kMedCarbonFiber);
475 FixationToPipeVol->SetLineColor(kGray + 2);
476 beamPipeSupport->AddNode(FixationToPipeVol, 1);
477 //==================================================================
478
479 //================ Beam Pipe Ring =================
480 TGeoVolumeAssembly* beamPipeRing = new TGeoVolumeAssembly("beamPipeRing");
481 TGeoTube* beamPipeRingCarbon = new TGeoTube(kVespelRmax, kBeampipeCarbonCollarRmin, kBeamPipeRingZdim / 2.);
482 TGeoVolume* beamPipeRingCarbonVol = new TGeoVolume("beamPipeRingCarbon", beamPipeRingCarbon, kMedCarbonFiber);
483 beamPipeRingCarbonVol->SetLineColor(kGray + 2);
484 beamPipeRing->AddNode(beamPipeRingCarbonVol, 1,
485 new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
486 TGeoTube* beamPipeRingVespel = new TGeoTube(kVespelRmin, kVespelRmax, (kBeamPipeRingZdim + 0.4) / 2.);
487 TGeoVolume* beamPipeRingVespelVol = new TGeoVolume("beamPipeRingVespel", beamPipeRingVespel, kMedPolyimide);
488 beamPipeRingVespelVol->SetLineColor(kGreen + 2);
489 beamPipeRing->AddNode(beamPipeRingVespelVol, 1,
490 new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
491 beamPipeSupport->AddNode(beamPipeRing, 1);
492 beamPipeSupport->SetVisibility(1);
493 beamPipeSupport->IsVisible();
494 //==================================================
495
496 //============ Wings (connecting the support bars to the cage support) ===============
497 TGeoVolumeAssembly* Wing = new TGeoVolumeAssembly("Wing");
498
499 // Tige
500 double lengthRod = 28.7 - 1.0 - 1.0 - 1.9; // sligtly decreased to accomodate to the fixation pieces
501 double diameterRod = 1.815; // sligtly increased to account of the two ends of the rod
502 double xRod = 22.1;
503 TGeoTube* Rod = new TGeoTube(0., diameterRod / 2., lengthRod / 2.);
504 TGeoVolume* rod = new TGeoVolume("rod", Rod, kMedAlu7075);
505 rod->SetLineColor(kGray);
506
507 // Connecteur Tige / Beam support
508 double lengthFixRod = 4.0;
509 double diameterFixRod = 3.0;
510 //---------------------------------------
511 TGeoTube* RodBracket = new TGeoTube("RodBracket", 0., diameterFixRod / 2., lengthFixRod / 2.);
512 TGeoBBox* BracketPlane = new TGeoBBox("BracketPlane", 3., 3., 3.);
513 TGeoTranslation* tBracketPlane = new TGeoTranslation("tBracketPlane", 0., 3. - kCarbonEarsYdimOut / 2., (lengthFixRod + 6.) / 2. - 2.6);
514 tBracketPlane->RegisterYourself();
515 TGeoCompositeShape* Bracket = new TGeoCompositeShape("Bracket", "RodBracket-BracketPlane:tBracketPlane");
516 TGeoVolume* bracket = new TGeoVolume("bracket", Bracket, kMedAlu7075);
517 //---------------------------------------
518
519 // Carbon box surrounding the aluminum rod
520 TGeoVolumeAssembly* carbonBox = new TGeoVolumeAssembly("carbonBox");
521 double eCarbonBox = 0.1;
522 double trdWidth = 8.6;
523 double trdLength = 11.05 - 1.0 - 0.6; // on each side to accomodate the bracket and TRDPlate
524 TGeoTrd1* trdOut = new TGeoTrd1("trdOut", 1.405 / 2, 6.632 / 2, trdLength / 2, trdWidth / 2);
525 TGeoTrd1* trdIn = new TGeoTrd1("trdIn", 1.405 / 2 - eCarbonBox, 6.632 / 2 - eCarbonBox, trdLength / 2 + eCarbonBox, trdWidth / 2 - eCarbonBox);
526 TGeoCompositeShape* trd = new TGeoCompositeShape("trd", "trdOut-trdIn");
527 TGeoVolume* TRD = new TGeoVolume("TRD", trd, kMedCarbonFiber);
528 TRD->SetLineColor(kGray);
529
530 // To close the carbon box
531 TGeoTrd1* trdPlate = new TGeoTrd1("trdPlate", 1.405 / 2, 6.632 / 2, 1.0 / 2, trdWidth / 2);
532 TGeoVolume* TRDPlate = new TGeoVolume("TDRPlate", trdPlate, kMedAlu7075);
533
534 // To connect on the main cage
535 TGeoBBox* plateBox = new TGeoBBox("plateBox", 7.5 / 2., 9.5 / 2., 1.9 / 2.);
536 TGeoBBox* removeBox = new TGeoBBox("removeBox", 2.1 / 2 + 0.0001, 2.5 / 2. + 0.0001, 1.9 / 2. + 0.0001);
537 TGeoTranslation* tRemove1 = new TGeoTranslation("tRemove1", (7.5 - 2.1) / 2, -(9.5 - 2.5) / 2, 0.);
538 TGeoTranslation* tRemove2 = new TGeoTranslation("tRemove2", -(7.5 - 2.1) / 2, -(9.5 - 2.5) / 2, 0.);
539 tRemove1->RegisterYourself();
540 tRemove2->RegisterYourself();
541
542 // Connectors Rod / Cage
543 TGeoCompositeShape* PlateBox = new TGeoCompositeShape("PlateBox", "plateBox-removeBox:tRemove1-removeBox:tRemove2");
544 TGeoVolume* PLATEBox = new TGeoVolume("PLATEBox", PlateBox, kMedAlu7075);
545
546 TGeoRotation* PlateRot = new TGeoRotation("PlateRot", 0., 0., 0.);
547 TGeoRotation* FrontRot = new TGeoRotation("FrontRot", 180., 90., 0.);
548 TGeoCombiTrans* tFrontCarbonBox = new TGeoCombiTrans("tFrontCarbonBox", 0., 0., 0., FrontRot);
549 PlateRot->RegisterYourself();
550 FrontRot->RegisterYourself();
551 tFrontCarbonBox->RegisterYourself();
552 TGeoCombiTrans* tTRDPlate = new TGeoCombiTrans("tTRDPlate", 0., 0., -(trdLength + 1.0) / 2, FrontRot);
553 tTRDPlate->RegisterYourself();
554 TRDPlate->SetLineColor(kGray + 2);
555 TGeoCombiTrans* tPlateBox = new TGeoCombiTrans("tPlateBox", 0., 0., -(trdLength + 1.9) / 2 - 1.0, PlateRot);
556 tPlateBox->RegisterYourself();
557 PLATEBox->SetLineColor(kGray);
558
559 double xyOut[16] = {0};
560 xyOut[0] = 3.316;
561 xyOut[1] = 4.3;
562 xyOut[2] = 0.7025;
563 xyOut[3] = -xyOut[1];
564 xyOut[4] = -xyOut[2];
565 xyOut[5] = -xyOut[1];
566 xyOut[6] = -xyOut[0];
567 xyOut[7] = xyOut[1];
568 //--------------
569 xyOut[8] = 1.3;
570 xyOut[9] = 1.3 - xyOut[1] + xyOut[8];
571 xyOut[10] = xyOut[8];
572 xyOut[11] = -xyOut[8] - xyOut[1] + xyOut[8];
573 xyOut[12] = -xyOut[8];
574 xyOut[13] = -xyOut[8] - xyOut[1] + xyOut[8];
575 xyOut[14] = -xyOut[8];
576 xyOut[15] = xyOut[8] - xyOut[1] + xyOut[8];
577 double ARB8Length = 15.35;
578 TGeoArb8* ARB8Out = new TGeoArb8("ARB8Out", ARB8Length / 2, xyOut);
579
580 double xyIn[16] = {0};
581 xyIn[0] = xyOut[0] - eCarbonBox;
582 xyIn[1] = xyOut[1] - eCarbonBox;
583 xyIn[2] = 0.7025 - eCarbonBox;
584 xyIn[3] = -xyIn[1];
585 xyIn[4] = -xyIn[2];
586 xyIn[5] = -xyIn[1];
587 xyIn[6] = -xyIn[0];
588 xyIn[7] = xyIn[1];
589 //--------------
590 xyIn[8] = xyOut[8] - eCarbonBox;
591 xyIn[9] = xyOut[8] - xyIn[1] + xyIn[8] - eCarbonBox;
592 xyIn[10] = xyIn[8];
593 xyIn[11] = -xyIn[8] - xyOut[1] + xyOut[8];
594 xyIn[12] = -xyIn[8];
595 xyIn[13] = -xyIn[8] - xyOut[1] + xyOut[8];
596 xyIn[14] = -xyIn[8];
597 xyIn[15] = xyIn[8] - xyOut[1] + xyOut[8];
598 TGeoArb8* ARB8In = new TGeoArb8("ARB8In", ARB8Length / 2 + 0.0001, xyIn);
599
600 TGeoCompositeShape* arb8 = new TGeoCompositeShape("arb8", "ARB8Out-ARB8In");
601 TGeoVolume* ARB8 = new TGeoVolume("ARB8", arb8, kMedCarbonFiber);
602 ARB8->SetLineColor(kGray);
603 TGeoRotation* RearRot = new TGeoRotation("RearRot", 0., 0., 0.);
604 TGeoCombiTrans* tRearCarbonBox = new TGeoCombiTrans("tRearCarbonBox", 0., 0., (ARB8Length + trdLength) / 2, RearRot);
605 RearRot->RegisterYourself();
606 tRearCarbonBox->RegisterYourself();
607 //===============================================================
608
609 carbonBox->AddNode(TRD, 1, tFrontCarbonBox);
610 carbonBox->AddNode(ARB8, 1, tRearCarbonBox);
611 carbonBox->AddNode(TRDPlate, 1, tTRDPlate);
612 carbonBox->AddNode(PLATEBox, 1, tPlateBox);
613
614 TGeoRotation* CarbonBoxRot1 = new TGeoRotation("CarbonBoxRot1", 90., 0., 0.);
615 double xCarbonBox = xRod + trdWidth / 2 - xyOut[8];
616 double zCarbonBox = -trdLength / 2 - ARB8Length - lengthFixRod + 1.3;
617 TGeoCombiTrans* tCarbonBox1 = new TGeoCombiTrans("tCarbonBox1", -xCarbonBox, 0., zCarbonBox, CarbonBoxRot1);
618 CarbonBoxRot1->RegisterYourself();
619 tCarbonBox1->RegisterYourself();
620 TGeoRotation* CarbonBoxRot2 = new TGeoRotation("CarbonBoxRot2", 270., 0., 0.);
621 TGeoCombiTrans* tCarbonBox2 = new TGeoCombiTrans("tCarbonBox2", xCarbonBox, 0., zCarbonBox, CarbonBoxRot2);
622 CarbonBoxRot2->RegisterYourself();
623 tCarbonBox2->RegisterYourself();
624
625 Wing->AddNode(rod, 1, new TGeoTranslation(xRod, 0., -(lengthRod / 2. + lengthFixRod) + 1.3));
626 Wing->AddNode(rod, 2, new TGeoTranslation(-xRod, 0., -(lengthRod / 2. + lengthFixRod) + 1.3));
627 bracket->SetLineColor(kGray);
628 Wing->AddNode(bracket, 1, new TGeoTranslation(xRod, 0., -lengthFixRod / 2. + 1.3));
629 Wing->AddNode(bracket, 2, new TGeoTranslation(-xRod, 0., -lengthFixRod / 2. + 1.3));
630 Wing->AddNode(carbonBox, 1, tCarbonBox1);
631 Wing->AddNode(carbonBox, 2, tCarbonBox2);
632
633 beamPipeSupport->AddNode(Wing, 1);
634 double mGlobalShift = 2.45; // to be closest to the first bellow according to Corrado blueprints
635 barrel->AddNode(beamPipeSupport, 1, new TGeoTranslation(0., 30, kBeamPipesupportZpos + kFixationCarbonCollarDZ / 2. - mGlobalShift));
636
638
640 // Side A section after Beryllium
641 // Authors: M.Sitta - 19 Sep 2014
642 // Drawings from C. Gargiulo :
643 // \\cern.ch\dfs\Workspaces\c\cgargiul\EXPERIMENT\ALICE\ALICE_MECHANICS\ALICE_DATA_PACKAGE\IN\DETECTORS\ITS_UPGRADE\1-DESIGN\0-IF_Control_Drawing\20140207_ICD_ITS_MFT_BP
645
646 float kConicalBerilliumMinThickness = 0.08;
647 float kConicalBerilliumMaxThickness = 0.1;
648 float kFlangeZ = 483.75;
649 float kFlangeWidth = 2.74;
650 float kFlangeThickness = 4.3;
651 float kConicalBerylliumEnd = 473.3;
652 float kSupport1 = 178.6;
653 float kSupport2 = 471.3;
654 float kSupportWidth = 5.25;
655 float kPipeRadiusAtSupport1 = 2.2;
656 float kConicalBePipeEndOuterRadius = 3.0;
657
658 TGeoPcon* tube0 = new TGeoPcon(0., 360., 5);
659 tube0->DefineSection(0, kFlangeZ - kFlangeWidth / 2, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius);
660 tube0->DefineSection(1, kConicalBerylliumEnd, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius);
661 tube0->DefineSection(2, kSupport1 + kSupportWidth, kPipeRadiusAtSupport1 - kConicalBerilliumMinThickness, kPipeRadiusAtSupport1);
662 tube0->DefineSection(3, kSupport1, kPipeRadiusAtSupport1 - kConicalBerilliumMinThickness, kPipeRadiusAtSupport1);
663 tube0->DefineSection(4, kBeryliumSectionZmax, kBeryliumSectionOuterRadius - kConicalBerilliumMinThickness, kBeryliumSectionOuterRadius); // need a transition to kConicalBerilliumMaxThickness
664
665 TGeoPcon* tube0vide = new TGeoPcon(0., 360., 5);
666 tube0vide->DefineSection(0, kFlangeZ - kFlangeWidth / 2, 0., kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness - 0.01);
667 tube0vide->DefineSection(1, kConicalBerylliumEnd, 0., kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness - 0.01);
668 tube0vide->DefineSection(2, kSupport1 + kSupportWidth, 0, kPipeRadiusAtSupport1 - kConicalBerilliumMinThickness - 0.01);
669 tube0vide->DefineSection(3, kSupport1, 0, kPipeRadiusAtSupport1 - kConicalBerilliumMinThickness - 0.01);
670 tube0vide->DefineSection(4, kBeryliumSectionZmax, 0., kBeryliumSectionOuterRadius - kConicalBerilliumMinThickness - 0.01);
671
672 TGeoVolume* votube0 = new TGeoVolume("votube0", tube0, kMedBe);
673 votube0->SetLineColor(kRed);
674 TGeoVolume* votube0vide = new TGeoVolume("votube0vide", tube0vide, kMedVac);
675 votube0vide->SetLineColor(kGreen);
676
677 barrel->AddNode(votube0, 1, new TGeoTranslation(0., 30., 0.));
678 barrel->AddNode(votube0vide, 1, new TGeoTranslation(0., 30., 0.));
679
680 TGeoVolume* beampipeSupportA1 = makeSupportBar("A1", kPipeRadiusAtSupport1 + 0.01, kPipeRadiusAtSupport1 + 0.38, 20.67, 14.25);
681 barrel->AddNode(beampipeSupportA1, 1, new TGeoTranslation(0., 30, kSupport1 + kSupportWidth / 2.));
682
683 // Length is approximate
684 TGeoVolume* beampipeSupportA2 = makeSupportBar("A2", kConicalBePipeEndOuterRadius, kConicalBePipeEndOuterRadius + 0.38, 44, 37.5);
685 barrel->AddNode(beampipeSupportA2, 1, new TGeoTranslation(0., 30, kConicalBerylliumEnd + kSupportWidth / 2.));
686
687 TGeoPcon* Bolt1 = new TGeoPcon(0., 360, 8);
688 Bolt1->DefineSection(0, 0, 0, 0.5);
689 Bolt1->DefineSection(1, 0.515 - 0.01, 0, 0.5);
690 Bolt1->DefineSection(2, 0.515 - 0.01, 0, 0.25);
691 Bolt1->DefineSection(3, kFlangeWidth + 0.515 + 0.01, 0, 0.25);
692 Bolt1->DefineSection(4, kFlangeWidth + 0.515 + 0.01, 0, 0.5);
693 Bolt1->DefineSection(5, kFlangeWidth + 0.515 + 0.55, 0, 0.5);
694 Bolt1->DefineSection(6, kFlangeWidth + 0.515 + 0.55, 0, 0.25);
695 Bolt1->DefineSection(7, kFlangeWidth + 0.515 + 0.55 + 0.5, 0, 0.25);
696 Bolt1->SetName("BOLT");
697
698 TGeoVolume* volBolt1 = new TGeoVolume("volBolt1", Bolt1, kMedTitanium);
699 volBolt1->SetLineWidth(2);
700 volBolt1->SetLineColor(kRed);
701
702 TGeoTranslation* t1 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
703 t1->SetName("t1");
704 t1->RegisterYourself();
705 TGeoTranslation* t2 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
706 t2->SetName("t2");
707 t2->RegisterYourself();
708 TGeoTranslation* t3 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
709 t3->SetName("t3");
710 t3->RegisterYourself();
711 TGeoTranslation* t4 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), (kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
712 t4->SetName("t4");
713 t4->RegisterYourself();
714 TGeoTranslation* t5 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
715 t5->SetName("t5");
716 t5->RegisterYourself();
717 TGeoTranslation* t6 = new TGeoTranslation(-(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
718 t6->SetName("t6");
719 t6->RegisterYourself();
720 TGeoTranslation* t7 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
721 t7->SetName("t7");
722 t7->RegisterYourself();
723 TGeoTranslation* t8 = new TGeoTranslation((kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Cos(TMath::Pi() / 8), -(kConicalBePipeEndOuterRadius + (kFlangeThickness - kConicalBePipeEndOuterRadius) / 2) * TMath::Sin(TMath::Pi() / 8), kFlangeZ - kFlangeWidth / 2 - 0.515);
724 t8->SetName("t8");
725 t8->RegisterYourself();
726
727 TGeoVolumeAssembly* Bolts = new TGeoVolumeAssembly("Bolts");
728 Bolts->AddNode(volBolt1, 1, t1);
729 Bolts->AddNode(volBolt1, 2, t2);
730 Bolts->AddNode(volBolt1, 3, t3);
731 Bolts->AddNode(volBolt1, 4, t4);
732 Bolts->AddNode(volBolt1, 5, t5);
733 Bolts->AddNode(volBolt1, 6, t6);
734 Bolts->AddNode(volBolt1, 7, t7);
735 Bolts->AddNode(volBolt1, 8, t8);
736
737 barrel->AddNode(Bolts, 1, new TGeoTranslation(0., 30., 0.));
738
739 TGeoTranslation* Tflange = new TGeoTranslation(0, 0, kFlangeZ);
740 Tflange->SetName("Tflange");
741 Tflange->RegisterYourself();
742
743 // Flange
744 TGeoTube* flange = new TGeoTube("voFlangeA1", kConicalBePipeEndOuterRadius + 0.01, kFlangeThickness, kFlangeWidth / 2.);
745
746 TGeoPcon* HoleF = new TGeoPcon("HoleF", 0., 360., 2);
747 HoleF->DefineSection(0, 0., 0, 0.25 + 0.01);
748 HoleF->DefineSection(1, 4.305, 0, 0.25 + 0.01);
749
750 // create the flange with holes for the titanium bolts
751 TGeoCompositeShape* FlangeWithHoles = new TGeoCompositeShape("voFlangeWithHoles", "((voFlangeA1:Tflange)-((voFlangeA1:Tflange)*(HoleF:t1+HoleF:t2+HoleF:t3+HoleF:t4+HoleF:t5+HoleF:t6+HoleF:t7+HoleF:t8)))");
752
753 TGeoVolume* volflange = new TGeoVolume("voFlangeHoles", FlangeWithHoles, kMedAlBe);
754 volflange->SetLineWidth(2);
755 volflange->SetLineColor(kGray);
756
757 barrel->AddNode(volflange, 1, new TGeoTranslation(0., 30., 0.));
758
759 TGeoPcon* pipeSamell = new TGeoPcon(0., 360., 2);
760 pipeSamell->DefineSection(0, kFlangeZ + kFlangeWidth / 2, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius);
761 pipeSamell->DefineSection(1, kFlangeZ + 5.13 + 0.435 + 0.4 + 0.08, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius);
762 pipeSamell->SetName("pipeSamell");
763
764 TGeoVolume* VolpipeSmall = new TGeoVolume("voPipeSmallVac", pipeSamell, kMedAlu2219);
765 VolpipeSmall->SetLineWidth(2);
766 barrel->AddNode(VolpipeSmall, 1, new TGeoTranslation(0., 30., 0.));
767
768 TGeoPcon* pipeSmallVac = new TGeoPcon(0., 360., 2);
769 pipeSmallVac->DefineSection(0, kFlangeZ + kFlangeWidth / 2, 0, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness - 0.01);
770 pipeSmallVac->DefineSection(1, kFlangeZ + 5.13 + 0.435 + 0.4 + 0.08, 0, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness - 0.01);
771 TGeoVolume* vopipeSmallVac = new TGeoVolume("voPipeSmallVac", pipeSmallVac, kMedVac);
772 vopipeSmallVac->SetLineColor(kGreen);
773
774 barrel->AddNode(vopipeSmallVac, 1, new TGeoTranslation(0., 30., 0.));
775
776 // -- Bellows on A side
777 // float plieradius = (3.72 + (2. * 7 - 2.) * 0.03) / (4. * 7); // radius of bellows "plis"
778 float plieradiusA = 0.2; // radius of bellow plies
779
780 // ------------------ First Bellow --------------------
781 // Inner: 3.0 cm, outer 3.97 cm length 8.47 cm with 10 wiggles
782 // check meaning of dU ; it is probably the total length, see also below
783 TGeoVolume* vobellows1A = makeBellow("bellows1A", 10, 3.0, 3.97, 8.47, plieradiusA, 0.03);
784 // Z position is rough for now.
785 barrel->AddNode(vobellows1A, 1, new TGeoTranslation(0., 30., kFlangeZ + 10));
786 // Comments: removing 1/2 plie (see makeBellow): 0.31= 2*0.17-0.03 and 0.08: free space
787
788 // ------------------ Outer pipe after flange --------------------
789 TGeoPcon* pipeOut = new TGeoPcon(0., 360., 2);
790 pipeOut->DefineSection(0, kFlangeZ + 13.6 - 0.08, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius);
791 pipeOut->DefineSection(1, 714.6, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness, kConicalBePipeEndOuterRadius);
792
793 TGeoVolume* OuterPIPE = new TGeoVolume("pipeOut", pipeOut, kMedAlu2219);
794 barrel->AddNode(OuterPIPE, 1, new TGeoTranslation(0., 30., 0.));
795
796 // The end of the barrel volume is at 714.6 cm, after that we start with RB24 volume
797 TGeoPcon* pipeOutVac = new TGeoPcon(0., 360., 2);
798 pipeOutVac->DefineSection(0, kFlangeZ + 13.6 - 0.08, 0, kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness);
799 pipeOutVac->DefineSection(1, 714.6, 0., kConicalBePipeEndOuterRadius - kConicalBerilliumMaxThickness);
800
801 TGeoVolume* OuterPIPEVac = new TGeoVolume("pipeOutVac", pipeOutVac, kMedAlu2219);
802 barrel->AddNode(OuterPIPEVac, 1, new TGeoTranslation(0., 30., 0.));
803
804 //-------------------------------------------------
805
807 // //
808 // RB24/1 //
809 // //
811 //
812 //
813 // Drawing LHCVC2U_0001
814 // Copper Tube RB24/1 393.5 cm
815 // Warm module VMACA 18.0 cm
816 // Annular Ion Pump 35.0 cm
817 // Valve 7.5 cm
818 // Warm module VMABC 28.0 cm
819 // ================================
820 // 462.0 cm
821 //
822
823 // Copper Tube RB24/1
824 const float kRB24CuTubeL = 381.5;
825 const float kRB24cCuTubeL = 155.775 + (28.375 - 18.135);
826 const float kRB24bCuTubeL = kRB24CuTubeL - kRB24cCuTubeL;
827 const float kRB24CuTubeRi = 5.8 / 2.;
828 const float kRB24CuTubeRo = 6.0 / 2.;
829 const float kRB24CuTubeFRo = 7.6;
830 const float kRB24CuTubeFL = 1.86;
831 const float kRB24CL = 2. * 597.9;
832
833 //
834 // introduce cut at end of barrel 714.6m
835 //
836 // outside barrel
837 TGeoVolume* voRB24cCuTubeM = new TGeoVolume("voRB24cCuTubeM", new TGeoTube(0., kRB24CuTubeRi, kRB24cCuTubeL / 2.), kMedVacNFHC);
838 TGeoVolume* voRB24cCuTube = new TGeoVolume("voRB24cCuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB24cCuTubeL / 2.), kMedAlu2219);
839 voRB24cCuTubeM->AddNode(voRB24cCuTube, 1, gGeoIdentity);
840
841 // Air outside tube with higher transport cuts
842 TGeoVolume* voRB24CuTubeA = new TGeoVolume("voRB24CuTubeA", new TGeoTube(80., 81., kRB24bCuTubeL / 2.), kMedAirHigh);
843 voRB24CuTubeA->SetVisibility(0);
844
845 // Simplified DN 100 Flange
846 TGeoVolume* voRB24CuTubeF = new TGeoVolume("voRB24CuTubeF", new TGeoTube(kRB24CuTubeRo, kRB24CuTubeFRo, kRB24CuTubeFL / 2.), kMedSteelNF);
847
848 // Warm Module Type VMACA
849 // LHCVMACA_0002
850 //
851 // Pos 1 Warm Bellows DN100 LHCVBU__0012
852 // Pos 2 RF Contact D80 LHCVSR__0005
853 // Pos 3 Trans. Tube Flange LHCVSR__0065
854 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
855 // [Pos 5 Tension spring LHCVSR__0011]
856 //
857 //
858 //
859 // Pos1 Warm Bellows DN100
860 // Pos1.1 Bellows LHCVBU__0006
861 //
862 //
863 // Connection Tubes
864 // Connection tube inner r
865 const float kRB24B1ConTubeRin = 10.0 / 2.;
866 // Connection tube outer r
867 const float kRB24B1ConTubeRou = 10.3 / 2.;
868 // Connection tube length
869 const float kRB24B1ConTubeL = 2.5;
870 //
871 const float kRB24B1CompL = 16.375; // Length of the compensator
872 const float kRB24B1BellowRi = 10.25 / 2.; // Bellow inner radius
873 const float kRB24B1BellowRo = 11.40 / 2.; // Bellow outer radius
874 const int kRB24B1NumberOfPlies = 27; // Number of plies
875 const float kRB24B1BellowUndL = 11.00; // Length of undulated region
876 const float kRB24B1PlieThickness = 0.015; // Plie thickness
877
878 const float kRB24B1PlieRadius =
879 (kRB24B1BellowUndL + (2. * kRB24B1NumberOfPlies - 2.) * kRB24B1PlieThickness) / (4. * kRB24B1NumberOfPlies);
880
881 const float kRB24B1ProtTubeThickness = 0.02; // Thickness of the protection tube
882 const float kRB24B1ProtTubeLength = 4.2; // Length of the protection tube
883
884 const float kRB24B1RFlangeL = 1.86; // Length of the flanges
885 const float kRB24B1RFlangeLO = 0.26; // Flange overlap
886 const float kRB24B1RFlangeRO = 11.18 / 2; // Inner radius at Flange overlap
887 const float kRB24B1RFlangeRou = 15.20 / 2.; // Outer radius of flange
888 const float kRB24B1RFlangeRecess = 0.98; // Flange recess
889 const float kRB24B1L = kRB24B1CompL + 2. * (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
890
892 //
893 // Bellow Section
894 TGeoVolume* voRB24B1Bellow = makeBellow("RB24B1", kRB24B1NumberOfPlies, kRB24B1BellowRi, kRB24B1BellowRo,
895 kRB24B1BellowUndL, kRB24B1PlieRadius, kRB24B1PlieThickness);
896 voRB24B1Bellow->SetVisibility(0);
897 float newRB24B1BellowUndL = 2 * (static_cast<TGeoTube*>(voRB24B1Bellow->GetShape()))->GetDz();
898
899 //
900 // Bellow mother volume
901 TGeoPcon* shRB24B1BellowM = new TGeoPcon(0., 360., 12);
902 // Connection Tube and Flange
903 z = 0.;
904 shRB24B1BellowM->DefineSection(0, z, 0., kRB24B1RFlangeRou);
905 z += kRB24B1RFlangeLO;
906 shRB24B1BellowM->DefineSection(1, z, 0., kRB24B1RFlangeRou);
907 z = kRB24B1RFlangeL;
908 shRB24B1BellowM->DefineSection(2, z, 0., kRB24B1RFlangeRou);
909 shRB24B1BellowM->DefineSection(3, z, 0., kRB24B1ConTubeRou);
910 z = kRB24B1ConTubeL + kRB24B1RFlangeL - kRB24B1RFlangeRecess;
911 shRB24B1BellowM->DefineSection(4, z, 0., kRB24B1ConTubeRou);
912 // Plie
913 shRB24B1BellowM->DefineSection(5, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
914 z += newRB24B1BellowUndL;
915 shRB24B1BellowM->DefineSection(6, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
916 shRB24B1BellowM->DefineSection(7, z, 0., kRB24B1ConTubeRou);
917 // Connection Tube and Flange
918 z = kRB24B1L - shRB24B1BellowM->GetZ(3);
919 shRB24B1BellowM->DefineSection(8, z, 0., kRB24B1ConTubeRou);
920 shRB24B1BellowM->DefineSection(9, z, 0., kRB24B1RFlangeRou);
921 z = kRB24B1L - shRB24B1BellowM->GetZ(1);
922 shRB24B1BellowM->DefineSection(10, z, 0., kRB24B1RFlangeRou);
923 z = kRB24B1L - shRB24B1BellowM->GetZ(0);
924 shRB24B1BellowM->DefineSection(11, z, 0., kRB24B1RFlangeRou);
925
926 TGeoVolume* voRB24B1BellowM = new TGeoVolume("RB24B1BellowM", shRB24B1BellowM, kMedVacNF);
927 voRB24B1BellowM->SetVisibility(0);
928 //
929 // End Parts (connection tube)
930 TGeoVolume* voRB24B1CT = new TGeoVolume("RB24B1CT", new TGeoTube(kRB24B1ConTubeRin, kRB24B1ConTubeRou, kRB24B1ConTubeL / 2.), kMedSteelNF);
931 //
932 // Protection Tube
933 TGeoVolume* voRB24B1PT = new TGeoVolume(
934 "RB24B1PT", new TGeoTube(kRB24B1BellowRo, kRB24B1BellowRo + kRB24B1ProtTubeThickness, kRB24B1ProtTubeLength / 2.),
935 kMedSteelNF);
936
937 z = kRB24B1ConTubeL / 2. + (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
938
939 voRB24B1BellowM->AddNode(voRB24B1CT, 1, new TGeoTranslation(0., 0., z));
940 z += (kRB24B1ConTubeL / 2. + newRB24B1BellowUndL / 2.);
941 voRB24B1BellowM->AddNode(voRB24B1Bellow, 1, new TGeoTranslation(0., 0., z));
942 z += (newRB24B1BellowUndL / 2. + kRB24B1ConTubeL / 2);
943 voRB24B1BellowM->AddNode(voRB24B1CT, 2, new TGeoTranslation(0., 0., z));
944 z = kRB24B1ConTubeL + kRB24B1ProtTubeLength / 2. + 1. + kRB24B1RFlangeLO;
945 voRB24B1BellowM->AddNode(voRB24B1PT, 1, new TGeoTranslation(0., 0., z));
946 z += kRB24B1ProtTubeLength + 0.6;
947 voRB24B1BellowM->AddNode(voRB24B1PT, 2, new TGeoTranslation(0., 0., z));
948
949 // Pos 1/2 Rotatable Flange LHCVBU__0013
950 // Pos 1/3 Flange DN100/103 LHCVBU__0018
951 // The two flanges can be represented by the same volume
952 // Outer Radius (including the outer movable ring).
953 // The inner ring has a diameter of 12.04 cm
954
955 TGeoPcon* shRB24B1RFlange = new TGeoPcon(0., 360., 10);
956 z = 0.;
957 shRB24B1RFlange->DefineSection(0, z, 10.30 / 2., kRB24B1RFlangeRou);
958 z += 0.55; // 5.5 mm added for outer ring
959 z += 0.43;
960 shRB24B1RFlange->DefineSection(1, z, 10.30 / 2., kRB24B1RFlangeRou);
961 shRB24B1RFlange->DefineSection(2, z, 10.06 / 2., kRB24B1RFlangeRou);
962 z += 0.15;
963 shRB24B1RFlange->DefineSection(3, z, 10.06 / 2., kRB24B1RFlangeRou);
964 // In reality this part is rounded
965 shRB24B1RFlange->DefineSection(4, z, 10.91 / 2., kRB24B1RFlangeRou);
966 z += 0.15;
967 shRB24B1RFlange->DefineSection(5, z, 10.91 / 2., kRB24B1RFlangeRou);
968 shRB24B1RFlange->DefineSection(6, z, 10.06 / 2., kRB24B1RFlangeRou);
969 z += 0.32;
970 shRB24B1RFlange->DefineSection(7, z, 10.06 / 2., kRB24B1RFlangeRou);
971 shRB24B1RFlange->DefineSection(8, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
972 z += kRB24B1RFlangeLO;
973 shRB24B1RFlange->DefineSection(9, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
974
975 TGeoVolume* voRB24B1RFlange = new TGeoVolume("RB24B1RFlange", shRB24B1RFlange, kMedSteelNF);
976
977 z = kRB24B1L - kRB24B1RFlangeL;
978 voRB24B1BellowM->AddNode(voRB24B1RFlange, 1, new TGeoTranslation(0., 0., z));
979 z = kRB24B1RFlangeL;
980 voRB24B1BellowM->AddNode(voRB24B1RFlange, 2, new TGeoCombiTrans(0., 0., z, rot180));
981 //
982 // Pos 2 RF Contact D80 LHCVSR__0005
983 //
984 // Pos 2.1 RF Contact Flange LHCVSR__0003
985 //
986 TGeoPcon* shRB24B1RCTFlange = new TGeoPcon(0., 360., 6);
987 const float kRB24B1RCTFlangeRin = 8.06 / 2. + 0.05; // Inner radius
988 const float kRB24B1RCTFlangeL = 1.45; // Length
989
990 z = 0.;
991 shRB24B1RCTFlange->DefineSection(0, z, kRB24B1RCTFlangeRin, 8.20 / 2.);
992 z += 0.15;
993 shRB24B1RCTFlange->DefineSection(1, z, kRB24B1RCTFlangeRin, 8.20 / 2.);
994 shRB24B1RCTFlange->DefineSection(2, z, kRB24B1RCTFlangeRin, 8.60 / 2.);
995 z += 1.05;
996 shRB24B1RCTFlange->DefineSection(3, z, kRB24B1RCTFlangeRin, 8.60 / 2.);
997 shRB24B1RCTFlange->DefineSection(4, z, kRB24B1RCTFlangeRin, 11.16 / 2.);
998 z += 0.25;
999 shRB24B1RCTFlange->DefineSection(5, z, kRB24B1RCTFlangeRin, 11.16 / 2.);
1000 TGeoVolume* voRB24B1RCTFlange = new TGeoVolume("RB24B1RCTFlange", shRB24B1RCTFlange, kMedCuNF);
1001 z = kRB24B1L - kRB24B1RCTFlangeL;
1002
1003 voRB24B1BellowM->AddNode(voRB24B1RCTFlange, 1, new TGeoTranslation(0., 0., z));
1004 //
1005 // Pos 2.2 RF-Contact LHCVSR__0004
1006 //
1007 TGeoPcon* shRB24B1RCT = new TGeoPcon(0., 360., 3);
1008 const float kRB24B1RCTRin = 8.00 / 2.; // Inner radius
1009 const float kRB24B1RCTCRin = 8.99 / 2.; // Max. inner radius conical section
1010 const float kRB24B1RCTL = 11.78; // Length
1011 const float kRB24B1RCTSL = 10.48; // Length of straight section
1012 const float kRB24B1RCTd = 0.03; // Thickness
1013
1014 z = 0;
1015 shRB24B1RCT->DefineSection(0, z, kRB24B1RCTCRin, kRB24B1RCTCRin + kRB24B1RCTd);
1016 z = kRB24B1RCTL - kRB24B1RCTSL;
1017 // In the (VSR0004) this section is straight in (LHCVC2U_0001) it is conical ????
1018 shRB24B1RCT->DefineSection(1, z, kRB24B1RCTRin + 0.35, kRB24B1RCTRin + 0.35 + kRB24B1RCTd);
1019 z = kRB24B1RCTL - 0.03;
1020 shRB24B1RCT->DefineSection(2, z, kRB24B1RCTRin, kRB24B1RCTRin + kRB24B1RCTd);
1021
1022 TGeoVolume* voRB24B1RCT = new TGeoVolume("RB24B1RCT", shRB24B1RCT, kMedCuNF);
1023 z = kRB24B1L - kRB24B1RCTL - 0.45;
1024 voRB24B1BellowM->AddNode(voRB24B1RCT, 1, new TGeoTranslation(0., 0., z));
1025
1026 //
1027 // Pos 3 Trans. Tube Flange LHCVSR__0065
1028 //
1029 // Pos 3.1 Transition Tube D53 LHCVSR__0064
1030 // Pos 3.2 Transition Flange LHCVSR__0060
1031 // Pos 3.3 Transition Tube LHCVSR__0058
1032 TGeoPcon* shRB24B1TTF = new TGeoPcon(0., 360., 7);
1033 // Flange
1034 z = 0.;
1035 shRB24B1TTF->DefineSection(0, z, 6.30 / 2., 11.16 / 2.);
1036 z += 0.25;
1037 shRB24B1TTF->DefineSection(1, z, 6.30 / 2., 11.16 / 2.);
1038 shRB24B1TTF->DefineSection(2, z, 6.30 / 2., 9.3 / 2.);
1039 z += 0.55;
1040 shRB24B1TTF->DefineSection(3, z, 6.30 / 2., 9.3 / 2.);
1041 // Tube
1042 shRB24B1TTF->DefineSection(4, z, 6.30 / 2., 6.7 / 2.);
1043 z += 5.80;
1044 shRB24B1TTF->DefineSection(5, z, 6.30 / 2., 6.7 / 2.);
1045 // Transition Tube
1046 z += 3.75;
1047 shRB24B1TTF->DefineSection(6, z, 8.05 / 2., 8.45 / 2.);
1048 TGeoVolume* voRB24B1TTF = new TGeoVolume("RB24B1TTF", shRB24B1TTF, kMedSteelNF);
1049 z = 0.;
1050 voRB24B1BellowM->AddNode(voRB24B1TTF, 1, new TGeoTranslation(0., 0., z));
1051
1052 // Annular Ion Pump
1053 // LHCVC2U_0003
1054 //
1055 // Pos 1 Rotable Flange LHCVFX__0031
1056 // Pos 2 RF Screen Tube LHCVC2U_0005
1057 // Pos 3 Shell LHCVC2U_0007
1058 // Pos 4 Extruded Shell LHCVC2U_0006
1059 // Pos 5 Feedthrough Tube LHCVC2U_0004
1060 // Pos 6 Tubulated Flange STDVFUHV0021
1061 // Pos 7 Fixed Flange LHCVFX__0032
1062 // Pos 8 Pumping Elements
1063
1064 //
1065 // Pos 1 Rotable Flange LHCVFX__0031
1066 // pos 7 Fixed Flange LHCVFX__0032
1067 //
1068 // Mother volume
1069
1070 //
1071 // Length 35 cm
1072 // Flange 2 x 1.98 = 3.96
1073 // Tube = 32.84
1074 //==========================
1075 // 36.80
1076 // Overlap 2 * 0.90 = 1.80
1077
1078 const float kRB24IpRFD1 = 0.68; // Length of section 1
1079 const float kRB24IpRFD2 = 0.30; // Length of section 2
1080 const float kRB24IpRFD3 = 0.10; // Length of section 3
1081 const float kRB24IpRFD4 = 0.35; // Length of section 4
1082 const float kRB24IpRFD5 = 0.55; // Length of section 5
1083
1084 const float kRB24IpRFRo = 15.20 / 2.; // Flange outer radius
1085 const float kRB24IpRFRi1 = 6.30 / 2.; // Flange inner radius section 1
1086 const float kRB24IpRFRi2 = 6.00 / 2.; // Flange inner radius section 2
1087 const float kRB24IpRFRi3 = 5.84 / 2.; // Flange inner radius section 3
1088 const float kRB24IpRFRi4 = 6.00 / 2.; // Flange inner radius section 1
1089 const float kRB24IpRFRi5 = 10.50 / 2.; // Flange inner radius section 2
1090
1091 TGeoPcon* shRB24IpRF = new TGeoPcon(0., 360., 9);
1092 z0 = 0.;
1093 shRB24IpRF->DefineSection(0, z0, kRB24IpRFRi1, kRB24IpRFRo);
1094 z0 += kRB24IpRFD1;
1095 shRB24IpRF->DefineSection(1, z0, kRB24IpRFRi2, kRB24IpRFRo);
1096 z0 += kRB24IpRFD2;
1097 shRB24IpRF->DefineSection(2, z0, kRB24IpRFRi2, kRB24IpRFRo);
1098 shRB24IpRF->DefineSection(3, z0, kRB24IpRFRi3, kRB24IpRFRo);
1099 z0 += kRB24IpRFD3;
1100 shRB24IpRF->DefineSection(4, z0, kRB24IpRFRi3, kRB24IpRFRo);
1101 shRB24IpRF->DefineSection(5, z0, kRB24IpRFRi4, kRB24IpRFRo);
1102 z0 += kRB24IpRFD4;
1103 shRB24IpRF->DefineSection(6, z0, kRB24IpRFRi4, kRB24IpRFRo);
1104 shRB24IpRF->DefineSection(7, z0, kRB24IpRFRi5, kRB24IpRFRo);
1105 z0 += kRB24IpRFD5;
1106 shRB24IpRF->DefineSection(8, z0, kRB24IpRFRi5, kRB24IpRFRo);
1107
1108 TGeoVolume* voRB24IpRF = new TGeoVolume("RB24IpRF", shRB24IpRF, kMedSteel);
1109
1110 //
1111 // Pos 2 RF Screen Tube LHCVC2U_0005
1112 //
1113
1114 //
1115 // Tube
1116 float kRB24IpSTTL = 32.84; // Total length of the tube
1117 float kRB24IpSTTRi = 5.80 / 2.; // Inner Radius
1118 float kRB24IpSTTRo = 6.00 / 2.; // Outer Radius
1119 TGeoVolume* voRB24IpSTT = new TGeoVolume("RB24IpSTT", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTTL / 2.), kMedSteelNF);
1120 // Screen
1121 float kRB24IpSTCL = 0.4; // Lenth of the crochet detail
1122 // Length of the screen
1123 float kRB24IpSTSL = 9.00 - 2. * kRB24IpSTCL;
1124 // Rel. position of the screen
1125 float kRB24IpSTSZ = 7.00 + kRB24IpSTCL;
1126 TGeoVolume* voRB24IpSTS = new TGeoVolume("RB24IpSTS", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTSL / 2.), kMedSteelNF);
1127 //
1128 voRB24IpSTT->AddNode(voRB24IpSTS, 1, new TGeoTranslation(0., 0., kRB24IpSTSZ - kRB24IpSTTL / 2. + kRB24IpSTSL / 2.));
1129
1130 // Crochets
1131 // Inner radius
1132 float kRB24IpSTCRi = kRB24IpSTTRo + 0.25;
1133 // Outer radius
1134 float kRB24IpSTCRo = kRB24IpSTTRo + 0.35;
1135 // Length of 1stsection
1136 float kRB24IpSTCL1 = 0.15;
1137 // Length of 2nd section
1138 float kRB24IpSTCL2 = 0.15;
1139 // Length of 3rd section
1140 float kRB24IpSTCL3 = 0.10;
1141 // Rel. position of 1st Crochet
1142
1143 TGeoPcon* shRB24IpSTC = new TGeoPcon(0., 360., 5);
1144 z0 = 0;
1145 shRB24IpSTC->DefineSection(0, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1146 z0 += kRB24IpSTCL1;
1147 shRB24IpSTC->DefineSection(1, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1148 shRB24IpSTC->DefineSection(2, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1149 z0 += kRB24IpSTCL2;
1150 shRB24IpSTC->DefineSection(3, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1151 z0 += kRB24IpSTCL3;
1152 shRB24IpSTC->DefineSection(4, z0, kRB24IpSTTRo, kRB24IpSTTRo + 0.001);
1153 TGeoVolume* voRB24IpSTC = new TGeoVolume("RB24IpSTC", shRB24IpSTC, kMedSteel);
1154
1155 // Pos 3 Shell LHCVC2U_0007
1156 // Pos 4 Extruded Shell LHCVC2U_0006
1157 float kRB24IpShellL = 4.45; // Length of the Shell
1158 float kRB24IpShellD = 0.10; // Wall thickness of the shell
1159 float kRB24IpShellCTRi = 6.70 / 2.; // Inner radius of the connection tube
1160 float kRB24IpShellCTL = 1.56; // Length of the connection tube
1161 float kRB24IpShellCARi = 17.80 / 2.; // Inner radius of the cavity
1162 float kRB24IpShellCCRo = 18.20 / 2.; // Inner radius at the centre
1163
1164 TGeoPcon* shRB24IpShell = new TGeoPcon(0., 360., 7);
1165 z0 = 0;
1166 shRB24IpShell->DefineSection(0, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1167 z0 += kRB24IpShellCTL;
1168 shRB24IpShell->DefineSection(1, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1169 shRB24IpShell->DefineSection(2, z0, kRB24IpShellCTRi, kRB24IpShellCARi + kRB24IpShellD);
1170 z0 += kRB24IpShellD;
1171 shRB24IpShell->DefineSection(3, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1172 z0 = kRB24IpShellL - kRB24IpShellD;
1173 shRB24IpShell->DefineSection(4, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1174 shRB24IpShell->DefineSection(5, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1175 z0 = kRB24IpShellL;
1176 shRB24IpShell->DefineSection(6, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1177 TGeoVolume* voRB24IpShell = new TGeoVolume("RB24IpShell", shRB24IpShell, kMedSteel);
1178
1179 TGeoPcon* shRB24IpShellM = makeMotherFromTemplate(shRB24IpShell, 0, 6, kRB24IpShellCTRi, 13);
1180
1181 for (int i = 0; i < 6; i++) {
1182 z = 2. * kRB24IpShellL - shRB24IpShellM->GetZ(5 - i);
1183 float rmin = shRB24IpShellM->GetRmin(5 - i);
1184 float rmax = shRB24IpShellM->GetRmax(5 - i);
1185 shRB24IpShellM->DefineSection(7 + i, z, rmin, rmax);
1186 }
1187
1188 TGeoVolume* voRB24IpShellM = new TGeoVolume("RB24IpShellM", shRB24IpShellM, kMedVac);
1189 voRB24IpShellM->SetVisibility(0);
1190 voRB24IpShellM->AddNode(voRB24IpShell, 1, gGeoIdentity);
1191 voRB24IpShellM->AddNode(voRB24IpShell, 2, new TGeoCombiTrans(0., 0., 2. * kRB24IpShellL, rot180));
1192 //
1193 // Pos 8 Pumping Elements
1194 //
1195 // Anode array
1196 TGeoVolume* voRB24IpPE = new TGeoVolume("voRB24IpPE", new TGeoTube(0.9, 1., 2.54 / 2.), kMedSteel);
1197 float kRB24IpPEAR = 5.5;
1198
1199 for (int i = 0; i < 15; i++) {
1200 float phi = float(i) * 24.;
1201 float x = kRB24IpPEAR * TMath::Cos(kDegRad * phi);
1202 float y = kRB24IpPEAR * TMath::Sin(kDegRad * phi);
1203 voRB24IpShellM->AddNode(voRB24IpPE, i + 1, new TGeoTranslation(x, y, kRB24IpShellL));
1204 }
1205
1206 //
1207 // Warm Module Type VMABC
1208 // LHCVMABC_0002
1209 //
1210 //
1211 //
1212 // Flange 1.00
1213 // Central Piece 11.50
1214 // Bellow 14.50
1215 // End Flange 1.00
1216 //===================================
1217 // Total 28.00
1218 //
1219 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1220 // Pos 2 Trans. Tube Flange LHCVSR__0062
1221 // Pos 3 RF Contact D63 LHCVSR__0057
1222 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
1223 // [Pos 5 Tension spring LHCVSR__00239]
1224 //
1225
1226 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1227 // Pos 1.1 Right Body 2 Ports with Support LHCVBU__0014
1228 //
1229 // Tube 1
1230 const float kRB24VMABCRBT1Ri = 10.0 / 2.;
1231 const float kRB24VMABCRBT1Ro = 10.3 / 2.;
1232 const float kRB24VMABCRBT1L = 11.5;
1233 const float kRB24VMABCRBT1L2 = 8.;
1234 const float kRB24VMABCL = 28.375;
1235
1236 TGeoTube* shRB24VMABCRBT1 = new TGeoTube(kRB24VMABCRBT1Ri, kRB24VMABCRBT1Ro, kRB24VMABCRBT1L / 2.);
1237 shRB24VMABCRBT1->SetName("RB24VMABCRBT1");
1238 TGeoTube* shRB24VMABCRBT1o = new TGeoTube(0., kRB24VMABCRBT1Ro, kRB24VMABCRBT1L / 2.);
1239 shRB24VMABCRBT1o->SetName("RB24VMABCRBT1o");
1240 TGeoTube* shRB24VMABCRBT1o2 = new TGeoTube(0., kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L / 2.);
1241 shRB24VMABCRBT1o2->SetName("RB24VMABCRBT1o2");
1242 // Lower inforcement
1243 TGeoVolume* voRB24VMABCRBT12 = new TGeoVolume(
1244 "RB24VMABCRBT12", new TGeoTubeSeg(kRB24VMABCRBT1Ro, kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L2 / 2., 220., 320.),
1245 kMedSteelNF);
1246 //
1247 // Tube 2
1248 const float kRB24VMABCRBT2Ri = 6.0 / 2.;
1249 const float kRB24VMABCRBT2Ro = 6.3 / 2.;
1250 const float kRB24VMABCRBF2Ro = 11.4 / 2.;
1251 const float kRB24VMABCRBT2L = 5.95 + 2.; // 2. cm added for welding
1252 const float kRB24VMABCRBF2L = 1.75;
1253 TGeoTube* shRB24VMABCRBT2 = new TGeoTube(kRB24VMABCRBT2Ri, kRB24VMABCRBT2Ro, kRB24VMABCRBT2L / 2.);
1254 shRB24VMABCRBT2->SetName("RB24VMABCRBT2");
1255 TGeoTube* shRB24VMABCRBT2i = new TGeoTube(0., kRB24VMABCRBT2Ri, kRB24VMABCRBT2L / 2. + 2.);
1256 shRB24VMABCRBT2i->SetName("RB24VMABCRBT2i");
1257 TGeoCombiTrans* tRBT2 = new TGeoCombiTrans(-11.5 + kRB24VMABCRBT2L / 2., 0., 7.2 - kRB24VMABCRBT1L / 2., rotxz);
1258 tRBT2->SetName("tRBT2");
1259 tRBT2->RegisterYourself();
1260 TGeoCompositeShape* shRB24VMABCRBT2c = new TGeoCompositeShape("shRB24VMABCRBT2c", "RB24VMABCRBT2:tRBT2-RB24VMABCRBT1o");
1261 TGeoVolume* voRB24VMABCRBT2 = new TGeoVolume("shRB24VMABCRBT2", shRB24VMABCRBT2c, kMedSteelNF);
1262 // Flange
1263 // Pos 1.4 Flange DN63 LHCVBU__0008
1264 TGeoVolume* voRB24VMABCRBF2 =
1265 new TGeoVolume("RB24VMABCRBF2", new TGeoTube(kRB24VMABCRBT2Ro, kRB24VMABCRBF2Ro, kRB24VMABCRBF2L / 2.), kMedSteelNF);
1266 // DN63 Blank Flange (my best guess)
1267 TGeoVolume* voRB24VMABCRBF2B = new TGeoVolume("RB24VMABCRBF2B", new TGeoTube(0., kRB24VMABCRBF2Ro, kRB24VMABCRBF2L / 2.), kMedSteelNF);
1268 //
1269 // Tube 3
1270 const float kRB24VMABCRBT3Ri = 3.5 / 2.;
1271 const float kRB24VMABCRBT3Ro = 3.8 / 2.;
1272 const float kRB24VMABCRBF3Ro = 7.0 / 2.;
1273 const float kRB24VMABCRBT3L = 4.95 + 2.; // 2. cm added for welding
1274 const float kRB24VMABCRBF3L = 1.27;
1275 TGeoTube* shRB24VMABCRBT3 = new TGeoTube(kRB24VMABCRBT3Ri, kRB24VMABCRBT3Ro, kRB24VMABCRBT3L / 2);
1276 shRB24VMABCRBT3->SetName("RB24VMABCRBT3");
1277 TGeoTube* shRB24VMABCRBT3i = new TGeoTube(0., kRB24VMABCRBT3Ri, kRB24VMABCRBT3L / 2. + 2.);
1278 shRB24VMABCRBT3i->SetName("RB24VMABCRBT3i");
1279 TGeoCombiTrans* tRBT3 = new TGeoCombiTrans(0., 10.5 - kRB24VMABCRBT3L / 2., 7.2 - kRB24VMABCRBT1L / 2., rotyz);
1280 tRBT3->SetName("tRBT3");
1281 tRBT3->RegisterYourself();
1282 TGeoCompositeShape* shRB24VMABCRBT3c =
1283 new TGeoCompositeShape("shRB24VMABCRBT3c", "RB24VMABCRBT3:tRBT3-RB24VMABCRBT1o");
1284 TGeoVolume* voRB24VMABCRBT3 = new TGeoVolume("shRB24VMABCRBT3", shRB24VMABCRBT3c, kMedSteel);
1285 // Flange
1286 // Pos 1.4 Flange DN35 LHCVBU__0007
1287 TGeoVolume* voRB24VMABCRBF3 = new TGeoVolume("RB24VMABCRBF3", new TGeoTube(kRB24VMABCRBT3Ro, kRB24VMABCRBF3Ro, kRB24VMABCRBF3L / 2.), kMedSteelNF);
1288 //
1289 // Tube 4
1290 const float kRB24VMABCRBT4Ri = 6.0 / 2.;
1291 const float kRB24VMABCRBT4Ro = 6.4 / 2.;
1292 const float kRB24VMABCRBT4L = 6.6;
1293 TGeoTube* shRB24VMABCRBT4 = new TGeoTube(kRB24VMABCRBT4Ri, kRB24VMABCRBT4Ro, kRB24VMABCRBT4L / 2.);
1294 shRB24VMABCRBT4->SetName("RB24VMABCRBT4");
1295 TGeoCombiTrans* tRBT4 = new TGeoCombiTrans(0., -11. + kRB24VMABCRBT4L / 2., 7.2 - kRB24VMABCRBT1L / 2., rotyz);
1296 tRBT4->SetName("tRBT4");
1297 tRBT4->RegisterYourself();
1298 TGeoCompositeShape* shRB24VMABCRBT4c =
1299 new TGeoCompositeShape("shRB24VMABCRBT4c", "RB24VMABCRBT4:tRBT4-RB24VMABCRBT1o2");
1300 TGeoVolume* voRB24VMABCRBT4 = new TGeoVolume("shRB24VMABCRBT4", shRB24VMABCRBT4c, kMedSteelNF);
1301 TGeoCompositeShape* shRB24VMABCRB =
1302 new TGeoCompositeShape("shRB24VMABCRB", "RB24VMABCRBT1-(RB24VMABCRBT2i:tRBT2+RB24VMABCRBT3i:tRBT3)");
1303 TGeoVolume* voRB24VMABCRBI = new TGeoVolume("RB24VMABCRBI", shRB24VMABCRB, kMedSteelNF);
1304 //
1305 // Plate
1306 const float kRB24VMABCRBBx = 16.0;
1307 const float kRB24VMABCRBBy = 1.5;
1308 const float kRB24VMABCRBBz = 15.0;
1309
1310 // Relative position of tubes
1311 const float kRB24VMABCTz = 7.2;
1312 // Relative position of plate
1313 const float kRB24VMABCPz = 3.6;
1314 const float kRB24VMABCPy = -12.5;
1315
1316 TGeoVolume* voRB24VMABCRBP = new TGeoVolume(
1317 "RB24VMABCRBP", new TGeoBBox(kRB24VMABCRBBx / 2., kRB24VMABCRBBy / 2., kRB24VMABCRBBz / 2.), kMedSteelNF);
1318 //
1319 // Pirani Gauge (my best guess)
1320 //
1321 TGeoPcon* shRB24VMABCPirani = new TGeoPcon(0., 360., 15);
1322 // DN35/16 Coupling
1323 z = 0;
1324 shRB24VMABCPirani->DefineSection(0, z, 0.8, kRB24VMABCRBF3Ro);
1325 z += kRB24VMABCRBF3L; // 1.3
1326 shRB24VMABCPirani->DefineSection(1, z, 0.8, kRB24VMABCRBF3Ro);
1327 shRB24VMABCPirani->DefineSection(2, z, 0.8, 1.0);
1328 // Pipe
1329 z += 2.8;
1330 shRB24VMABCPirani->DefineSection(3, z, 0.8, 1.0);
1331 // Flange
1332 shRB24VMABCPirani->DefineSection(4, z, 0.8, 1.75);
1333 z += 1.6;
1334 shRB24VMABCPirani->DefineSection(5, z, 0.8, 1.75);
1335 shRB24VMABCPirani->DefineSection(6, z, 0.8, 1.0);
1336 z += 5.2;
1337 shRB24VMABCPirani->DefineSection(7, z, 0.8, 1.0);
1338 shRB24VMABCPirani->DefineSection(8, z, 0.8, 2.5);
1339 z += 2.0;
1340 shRB24VMABCPirani->DefineSection(9, z, 0.80, 2.50);
1341 shRB24VMABCPirani->DefineSection(10, z, 1.55, 1.75);
1342 z += 5.7;
1343 shRB24VMABCPirani->DefineSection(11, z, 1.55, 1.75);
1344 shRB24VMABCPirani->DefineSection(11, z, 0.00, 1.75);
1345 z += 0.2;
1346 shRB24VMABCPirani->DefineSection(12, z, 0.00, 1.75);
1347 shRB24VMABCPirani->DefineSection(13, z, 0.00, 0.75);
1348 z += 0.5;
1349 shRB24VMABCPirani->DefineSection(14, z, 0.00, 0.75);
1350 TGeoVolume* voRB24VMABCPirani = new TGeoVolume("RB24VMABCPirani", shRB24VMABCPirani, kMedSteelNF);
1351 //
1352 //
1353 //
1354
1355 //
1356 // Positioning of elements
1357 TGeoVolumeAssembly* voRB24VMABCRB = new TGeoVolumeAssembly("RB24VMABCRB");
1358 //
1359 voRB24VMABCRB->AddNode(voRB24VMABCRBI, 1, gGeoIdentity);
1360 // Plate
1361 voRB24VMABCRB->AddNode(voRB24VMABCRBP, 1,
1362 new TGeoTranslation(0., kRB24VMABCPy + kRB24VMABCRBBy / 2.,
1363 kRB24VMABCRBBz / 2. - kRB24VMABCRBT1L / 2. + kRB24VMABCPz));
1364 // Tube 2
1365 voRB24VMABCRB->AddNode(voRB24VMABCRBT2, 1, gGeoIdentity);
1366 // Flange Tube 2
1367 voRB24VMABCRB->AddNode(voRB24VMABCRBF2, 1, new TGeoCombiTrans(kRB24VMABCPy + kRB24VMABCRBF2L / 2., 0., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotxz));
1368 // Blank Flange Tube 2
1369 voRB24VMABCRB->AddNode(voRB24VMABCRBF2B, 1, new TGeoCombiTrans(kRB24VMABCPy - kRB24VMABCRBF2L / 2., 0., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotxz));
1370 // Tube 3
1371 voRB24VMABCRB->AddNode(voRB24VMABCRBT3, 1, gGeoIdentity);
1372 // Flange Tube 3
1373 voRB24VMABCRB->AddNode(voRB24VMABCRBF3, 1, new TGeoCombiTrans(0., 11.2 - kRB24VMABCRBF3L / 2., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotyz));
1374 // Pirani Gauge
1375 voRB24VMABCRB->AddNode(voRB24VMABCPirani, 1, new TGeoCombiTrans(0., 11.2, kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotyz));
1376 // Tube 4
1377 voRB24VMABCRB->AddNode(voRB24VMABCRBT4, 1, gGeoIdentity);
1378 // Inforcement
1379 voRB24VMABCRB->AddNode(voRB24VMABCRBT12, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L2 / 2. - kRB24VMABCRBT1L / 2. + 2.8));
1380
1381 // Pos 1.3 Bellows with end part LHCVBU__0002
1382 //
1383 // Connection Tube
1384 // Connection tube inner r
1385 const float kRB24VMABBEConTubeRin = 10.0 / 2.;
1386 // Connection tube outer r
1387 const float kRB24VMABBEConTubeRou = 10.3 / 2.;
1388 // Connection tube length
1389 const float kRB24VMABBEConTubeL1 = 0.9;
1390 const float kRB24VMABBEConTubeL2 = 2.6;
1391
1392 // Mother volume
1393 TGeoPcon* shRB24VMABBEBellowM = new TGeoPcon(0., 360., 6);
1394 // Connection Tube and Flange
1395 z = 0.;
1396 shRB24VMABBEBellowM->DefineSection(0, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1397 z += kRB24VMABBEConTubeL1;
1398 shRB24VMABBEBellowM->DefineSection(1, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1399 shRB24VMABBEBellowM->DefineSection(2, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1400 z += newRB24B1BellowUndL;
1401 shRB24VMABBEBellowM->DefineSection(3, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1402 shRB24VMABBEBellowM->DefineSection(4, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1403 z += kRB24VMABBEConTubeL2;
1404 shRB24VMABBEBellowM->DefineSection(5, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1405 TGeoVolume* voRB24VMABBEBellowM = new TGeoVolume("RB24VMABBEBellowM", shRB24VMABBEBellowM, kMedVacNF);
1406 voRB24VMABBEBellowM->SetVisibility(0);
1407
1408 // Connection tube left
1409 TGeoVolume* voRB24VMABBECT1 = new TGeoVolume(
1410 "RB24VMABBECT1", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou, kRB24VMABBEConTubeL1 / 2.), kMedSteelNF);
1411 // Connection tube right
1412 TGeoVolume* voRB24VMABBECT2 = new TGeoVolume(
1413 "RB24VMABBECT2", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou, kRB24VMABBEConTubeL2 / 2.), kMedSteelNF);
1414 z = kRB24VMABBEConTubeL1 / 2.;
1415 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT1, 1, new TGeoTranslation(0., 0., z));
1416 z += kRB24VMABBEConTubeL1 / 2.;
1417 z += newRB24B1BellowUndL / 2.;
1418 voRB24VMABBEBellowM->AddNode(voRB24B1Bellow, 2, new TGeoTranslation(0., 0., z));
1419 z += newRB24B1BellowUndL / 2.;
1420 z += kRB24VMABBEConTubeL2 / 2.;
1421 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT2, 1, new TGeoTranslation(0., 0., z));
1422 z += kRB24VMABBEConTubeL2 / 2.;
1423
1424 voRB24VMABCRB->AddNode(voRB24VMABBEBellowM, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L / 2.));
1425
1426 // Pos 1.2 Rotable flange LHCVBU__0013[*]
1427 // Front
1428 voRB24VMABCRB->AddNode(voRB24B1RFlange, 3, new TGeoCombiTrans(0., 0., -kRB24VMABCRBT1L / 2. + 0.86, rot180));
1429 // End
1430 z = kRB24VMABCRBT1L / 2. + newRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2;
1431 voRB24VMABCRB->AddNode(voRB24B1RFlange, 4, new TGeoTranslation(0., 0., z - 0.86));
1432
1433 // Pos 2 Trans. Tube Flange LHCVSR__0062
1434 // Pos 2.1 Transition Tube LHCVSR__0063
1435 // Pos 2.2 Transition Flange LHCVSR__0060
1436 //
1437 // Transition Tube with Flange
1438 TGeoPcon* shRB24VMABCTT = new TGeoPcon(0., 360., 7);
1439 z = 0.;
1440 shRB24VMABCTT->DefineSection(0, z, 6.3 / 2., 11.16 / 2.);
1441 z += 0.25;
1442 shRB24VMABCTT->DefineSection(1, z, 6.3 / 2., 11.16 / 2.);
1443 shRB24VMABCTT->DefineSection(2, z, 6.3 / 2., 9.30 / 2.);
1444 z += 0.25;
1445 shRB24VMABCTT->DefineSection(3, z, 6.3 / 2., 9.30 / 2.);
1446 shRB24VMABCTT->DefineSection(4, z, 6.3 / 2., 6.70 / 2.);
1447 z += (20.35 - 0.63);
1448 shRB24VMABCTT->DefineSection(5, z, 6.3 / 2., 6.7 / 2.);
1449 z += 0.63;
1450 shRB24VMABCTT->DefineSection(6, z, 6.3 / 2., 6.7 / 2.);
1451 TGeoVolume* voRB24VMABCTT = new TGeoVolume("RB24VMABCTT", shRB24VMABCTT, kMedSteelNF);
1452 voRB24VMABCRB->AddNode(voRB24VMABCTT, 1, new TGeoTranslation(0., 0., -kRB24VMABCRBT1L / 2. - 1.));
1453
1454 // Pos 3 RF Contact D63 LHCVSR__0057
1455 // Pos 3.1 RF Contact Flange LHCVSR__0017
1456 //
1457 TGeoPcon* shRB24VMABCCTFlange = new TGeoPcon(0., 360., 6);
1458 const float kRB24VMABCCTFlangeRin = 6.36 / 2.; // Inner radius
1459 const float kRB24VMABCCTFlangeL = 1.30; // Length
1460
1461 z = 0.;
1462 shRB24VMABCCTFlange->DefineSection(0, z, kRB24VMABCCTFlangeRin, 6.5 / 2.);
1463 z += 0.15;
1464 shRB24VMABCCTFlange->DefineSection(1, z, kRB24VMABCCTFlangeRin, 6.5 / 2.);
1465 shRB24VMABCCTFlange->DefineSection(2, z, kRB24VMABCCTFlangeRin, 6.9 / 2.);
1466 z += 0.9;
1467 shRB24VMABCCTFlange->DefineSection(3, z, kRB24VMABCCTFlangeRin, 6.9 / 2.);
1468 shRB24VMABCCTFlange->DefineSection(4, z, kRB24VMABCCTFlangeRin, 11.16 / 2.);
1469 z += 0.25;
1470 shRB24VMABCCTFlange->DefineSection(5, z, kRB24VMABCCTFlangeRin, 11.16 / 2.);
1471 TGeoVolume* voRB24VMABCCTFlange = new TGeoVolume("RB24VMABCCTFlange", shRB24VMABCCTFlange, kMedCuNF);
1472 //
1473 // Pos 3.2 RF-Contact LHCVSR__0056
1474 //
1475 TGeoPcon* shRB24VMABCCT = new TGeoPcon(0., 360., 4);
1476 const float kRB24VMABCCTRin = 6.30 / 2.; // Inner radius
1477 const float kRB24VMABCCTCRin = 7.29 / 2.; // Max. inner radius conical section
1478 const float kRB24VMABCCTL = 11.88; // Length
1479 const float kRB24VMABCCTSL = 10.48; // Length of straight section
1480 const float kRB24VMABCCTd = 0.03; // Thickness
1481 z = 0;
1482 shRB24VMABCCT->DefineSection(0, z, kRB24VMABCCTCRin, kRB24VMABCCTCRin + kRB24VMABCCTd);
1483 z = kRB24VMABCCTL - kRB24VMABCCTSL;
1484 shRB24VMABCCT->DefineSection(1, z, kRB24VMABCCTRin + 0.35, kRB24VMABCCTRin + 0.35 + kRB24VMABCCTd);
1485 z = kRB24VMABCCTL - kRB24VMABCCTFlangeL;
1486 shRB24VMABCCT->DefineSection(2, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1487 z = kRB24VMABCCTL;
1488 shRB24VMABCCT->DefineSection(3, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1489
1490 TGeoVolume* voRB24VMABCCT = new TGeoVolume("RB24VMABCCT", shRB24VMABCCT, kMedCuNF);
1491
1492 TGeoVolumeAssembly* voRB24VMABRFCT = new TGeoVolumeAssembly("RB24VMABRFCT");
1493 voRB24VMABRFCT->AddNode(voRB24VMABCCT, 1, gGeoIdentity);
1494 voRB24VMABRFCT->AddNode(voRB24VMABCCTFlange, 1, new TGeoTranslation(0., 0., kRB24VMABCCTL - kRB24VMABCCTFlangeL));
1495
1496 z = kRB24VMABCRBT1L / 2. + newRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 - kRB24VMABCCTL + 1.;
1497 voRB24VMABCRB->AddNode(voRB24VMABRFCT, 1, new TGeoTranslation(0., 0., z));
1498
1499 //
1500 // Assembling RB24/1
1501 //
1502
1503 // part which is placed in the cave
1504 // ->
1505 TGeoVolumeAssembly* voRB24C = new TGeoVolumeAssembly("RB24C");
1506 voRB24C->AddNode(voRB24cCuTubeM, 1, gGeoIdentity);
1507 z = -kRB24cCuTubeL / 2 + kRB24CuTubeFL / 2.;
1508 voRB24C->AddNode(voRB24CuTubeF, 1, new TGeoTranslation(0., 0., z));
1509 // VMABC close to compensator magnet
1510 // z = -kRB24cCuTubeL / 2. - (kRB24VMABCL - kRB24VMABCRBT1L / 2) + 1.;
1511 // voRB24C->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z));
1512 z = -kRB24cCuTubeL / 2. - kRB24B1L;
1513 voRB24C->AddNode(voRB24B1BellowM, 2, new TGeoTranslation(0., 0., z));
1514
1515 // <-
1516
1517 //
1518 // RB24/2
1519 //
1520 // Copper Tube RB24/2
1521 // mainly inside the compensator magnet
1522 const float kRB242CuTubeL = 350.0;
1523 // 20 cm straight - 20 cm transition to final oval - 270 oval - 20 cm transition to final oval - 20 cm straight
1524 //
1525 // mother volume for transition region
1526 TGeoVolume* voRB242CuOvTransMo = new TGeoVolume("voRB24CuOvTransMo", new TGeoTube(0., 4.75, 10.), kMedAir);
1527 const int nTrans = 10;
1528 TGeoVolume* voRB242CuOvTransV[nTrans];
1529 TGeoVolume* voRB242CuOvTransI[nTrans];
1530 float dovX = 4.;
1531 float dovY = 4.;
1532 float dovZ = -9.0;
1533 for (int i = 0; i < nTrans; i++) {
1534 dovX -= 0.0625;
1535 dovY += 0.075;
1536 char vname[20];
1537 snprintf(vname, 20, "voRB242CuOvTransV%d", i);
1538 voRB242CuOvTransV[i] = new TGeoVolume(vname, new TGeoEltu(dovX, dovY, 1.0), kMedCuHC);
1539 snprintf(vname, 20, "voRB242CuOvTransI%d", i);
1540 voRB242CuOvTransI[i] = new TGeoVolume(vname, new TGeoEltu(dovX - 0.2, dovY - 0.2, 1.0), kMedVacHC);
1541 voRB242CuOvTransV[i]->AddNode(voRB242CuOvTransI[i], 1, gGeoIdentity);
1542 voRB242CuOvTransMo->AddNode(voRB242CuOvTransV[i], 1, new TGeoTranslation(0., 0., dovZ));
1543 dovZ += 2.;
1544 }
1545 //
1546 TGeoVolume* voRB242CuTubeM = new TGeoVolume("voRB242CuTubeM", new TGeoTube(0., kRB24CuTubeRo, 10.), kMedVacHC);
1547 TGeoVolume* voRB242CuTube = new TGeoVolume("voRB242CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, 10.), kMedCuHC);
1548 voRB242CuTubeM->AddNode(voRB242CuTube, 1, gGeoIdentity);
1549 TGeoVolume* voRB242CuOvalM = new TGeoVolume("voRB242CuOvalM", new TGeoEltu(3.375, 4.75, 135.), kMedCuHC);
1550 TGeoVolume* voRB242CuOval = new TGeoVolume("voRB242CuOval", new TGeoEltu(3.175, 4.55, 135.), kMedVacHC);
1551 voRB242CuOvalM->AddNode(voRB242CuOval, 1, gGeoIdentity);
1552 //
1553 TGeoVolumeAssembly* voRB242 = new TGeoVolumeAssembly("RB242");
1554 voRB242->AddNode(voRB242CuOvalM, 1, gGeoIdentity);
1555 z = -kRB242CuTubeL / 2 + kRB24CuTubeFL / 2.;
1556 voRB242->AddNode(voRB24CuTubeF, 3, new TGeoTranslation(0., 0., z));
1557 z = +kRB242CuTubeL / 2 - kRB24CuTubeFL / 2.;
1558 voRB242->AddNode(voRB24CuTubeF, 4, new TGeoTranslation(0., 0., z));
1559 z = 135. + 10.;
1560 voRB242->AddNode(voRB242CuOvTransMo, 1, new TGeoCombiTrans(0., 0., z, rot180));
1561 z = -135. - 10.;
1562 voRB242->AddNode(voRB242CuOvTransMo, 2, new TGeoTranslation(0., 0., z));
1563 z = -135. - 30.;
1564 voRB242->AddNode(voRB242CuTubeM, 1, new TGeoTranslation(0., 0., z));
1565 z = 135. + 30.;
1566 voRB242->AddNode(voRB242CuTubeM, 2, new TGeoTranslation(0., 0., z));
1567 z = -kRB24cCuTubeL / 2 - kRB24B1L - kRB242CuTubeL / 2.;
1568 voRB24C->AddNode(voRB242, 1, new TGeoTranslation(0., 0., z));
1569 //
1570 // RB24/3
1571 //
1572 // Copper Tube RB24/3
1573 // the lenth of the tube is 296.85 on the drawing but this is inconsistent with the total length tube + bellow
1574 const float kRB243CuTubeL = 297.85 - (kRB24VMABCL - kRB24B1L);
1575
1576 TGeoVolume* voRB243CuTubeM = new TGeoVolume("voRB243CuTubeM", new TGeoTube(0., kRB24CuTubeRo, (kRB243CuTubeL) / 2.), kMedVacNF);
1577 TGeoVolume* voRB243CuTube = new TGeoVolume("voRB243CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, (kRB243CuTubeL) / 2.), kMedCuNF);
1578 voRB243CuTubeM->AddNode(voRB243CuTube, 1, gGeoIdentity);
1579
1580 TGeoVolumeAssembly* voRB243 = new TGeoVolumeAssembly("RB243");
1581 TGeoVolumeAssembly* voRB243A = new TGeoVolumeAssembly("RB243A");
1582
1583 voRB243A->AddNode(voRB243CuTube, 1, gGeoIdentity);
1584 z = -kRB243CuTubeL / 2 + kRB24CuTubeFL / 2.;
1585 voRB243A->AddNode(voRB24CuTubeF, 5, new TGeoTranslation(0., 0., z));
1586 z = +kRB243CuTubeL / 2 - kRB24CuTubeFL / 2.;
1587 voRB243A->AddNode(voRB24CuTubeF, 6, new TGeoTranslation(0., 0., z));
1588
1589 z = +kRB243CuTubeL / 2 + (kRB24VMABCRBT1L / 2) + 1;
1590 voRB243A->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z));
1591
1592 z = -kRB243CuTubeL / 2. - kRB24VMABCL;
1593 voRB243->AddNode(voRB243A, 1, new TGeoTranslation(0., 0., z));
1594 z = -(1.5 * kRB243CuTubeL + 2. * kRB24VMABCL);
1595 voRB243->AddNode(voRB243A, 2, new TGeoTranslation(0., 0., z));
1596
1597 z = -2. * (kRB243CuTubeL + kRB24VMABCL) - (kRB24VMABCL - kRB24VMABCRBT1L / 2) + 1.;
1598 voRB243->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z));
1599
1600 z = -kRB24cCuTubeL / 2 - kRB24B1L - kRB242CuTubeL;
1601 voRB24C->AddNode(voRB243, 1, new TGeoTranslation(0., 0., z));
1602
1603 //
1604 //
1605 caveRB24->AddNode(voRB24C, 1, new TGeoCombiTrans(0., 0., -kRB24CL / 2 + kRB24cCuTubeL / 2, rot180));
1606
1607 //
1609 // //
1610 // The Absorber Vacuum system //
1611 // //
1613 //
1614 // Rotable Flange starts at: 82.00 cm from IP
1615 // Length of rotable flange section: 10.68 cm
1616 // Weld 0.08 cm
1617 // Length of straight section 207.21 cm
1618 // =======================================================================
1619 // 299.97 cm [0.03 cm missing ?]
1620 // Length of opening cone 252.09 cm
1621 // Weld 0.15 cm
1622 // Length of compensator 30.54 cm
1623 // Weld 0.15 cm
1624 // Length of fixed flange 2.13 - 0.97 1.16 cm
1625 // =======================================================================
1626 // 584.06 cm [584.80 installed] [0.74 cm missing]
1627 // RB26/3
1628 // Length of split flange 2.13 - 1.2 0.93 cm
1629 // Weld 0.15 cm
1630 // Length of fixed point section 16.07 cm
1631 // Weld 0.15 cm
1632 // Length of opening cone 629.20 cm
1633 // Weld 0.30 cm
1634 // Kength of the compensator 41.70 cm
1635 // Weld 0.30 cm
1636 // Length of fixed flange 2.99 - 1.72 1.27 cm
1637 // =================================================
1638 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1639 //
1640 // RB26/4-5
1641 // Length of split flange 2.13 - 1.2 0.93 cm
1642 // Weld 0.15 cm
1643 // Length of fixed point section 16.07 cm
1644 // Weld 0.15 cm
1645 // Length of opening cone 629.20 cm
1646 // Weld 0.30 cm
1647 // Length of closing cone
1648 // Weld
1649 // Lenth of straight section
1650 // Kength of the compensator 41.70 cm
1651 // Weld 0.30 cm
1652 // Length of fixed flange 2.99 - 1.72 1.27 cm
1653 // =================================================
1654 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1655
1657 // //
1658 // RB26/1-2 //
1659 // Drawing LHCV2a_0050 [as installed] //
1660 // Drawing LHCV2a_0008 //
1661 // Drawing LHCV2a_0001 //
1663 // Pos1 Vacuum Tubes LHCVC2A__0010
1664 // Pos2 Compensator LHCVC2A__0064
1665 // Pos3 Rotable Flange LHCVFX___0016
1666 // Pos4 Fixed Flange LHCVFX___0006
1667 // Pos5 Bellow Tooling LHCVFX___0003
1668 //
1669 //
1670 //
1672 // RB26/1-2 Vacuum Tubes //
1673 // Drawing LHCVC2a_0010 //
1675 const float kRB26s12TubeL0 = 459.45; // 0.15 cm added for welding
1676 const float kRB26s12TubeL2 = 47.21; // part of this tube outside barrel region
1677 const float kRB26s12TubeL = kRB26s12TubeL0 - kRB26s12TubeL2; // 392.115
1678 //
1679 // 184.905
1680 // 0.877
1681 // Add 1 cm on outer diameter for insulation
1682 //
1683 //
1684 // the section which is placed into the central barrel (ending at z = -505)
1685 TGeoPcon* shRB26s12Tube = new TGeoPcon(0., 360., 4);
1686 // Section 1: straight section
1687 shRB26s12Tube->DefineSection(0, 0.00, 5.84 / 2., 6.00 / 2.);
1688 shRB26s12Tube->DefineSection(1, 207.21, 5.84 / 2., 6.00 / 2.);
1689 // Section 2: 0.72 deg opening cone
1690 shRB26s12Tube->DefineSection(2, 207.21, 5.84 / 2., 6.14 / 2.);
1691 shRB26s12Tube->DefineSection(3, kRB26s12TubeL, 5.84 / 2 + 2.576, 6.14 / 2. + 2.576);
1692
1693 // the section which is placed into the muon spectrometer (starting at z = -505)
1694 TGeoPcon* shRB26s12msTube = new TGeoPcon(0., 360., 3);
1695 // conical part
1696 shRB26s12msTube->DefineSection(0, 0.00, shRB26s12Tube->GetRmin(3), shRB26s12Tube->GetRmax(3));
1697 shRB26s12msTube->DefineSection(1, 452.30 - kRB26s12TubeL, 12.0 / 2., 12.3 / 2.);
1698 // straight part until compensator
1699 shRB26s12msTube->DefineSection(2, kRB26s12TubeL2, 12.0 / 2., 12.3 / 2.);
1700
1701 TGeoVolume* voRB26s12Tube = new TGeoVolume("RB26s12Tube", shRB26s12Tube, kMedSteelHC);
1702 TGeoVolume* voRB26s12msTube = new TGeoVolume("RB26s12msTube", shRB26s12msTube, kMedSteelHC);
1703 // Add the insulation layer
1704 TGeoVolume* voRB26s12TubeIns = new TGeoVolume("RB26s12TubeIns", makeInsulationFromTemplate(shRB26s12Tube), kMedInsu);
1705 TGeoVolume* voRB26s12msTubeIns = new TGeoVolume("RB26s12msTubeIns", makeInsulationFromTemplate(shRB26s12msTube), kMedInsu);
1706 voRB26s12Tube->AddNode(voRB26s12TubeIns, 1, gGeoIdentity);
1707 voRB26s12msTube->AddNode(voRB26s12msTubeIns, 1, gGeoIdentity);
1708
1709 TGeoVolume* voRB26s12TubeM = new TGeoVolume("RB26s12TubeM", makeMotherFromTemplate(shRB26s12Tube), kMedVacHC);
1710 voRB26s12TubeM->AddNode(voRB26s12Tube, 1, gGeoIdentity);
1711 TGeoVolume* voRB26s12msTubeM = new TGeoVolume("RB26s12msTubeM", makeMotherFromTemplate(shRB26s12msTube), kMedVacHC);
1712 voRB26s12msTubeM->AddNode(voRB26s12msTube, 1, gGeoIdentity);
1713
1715 // RB26/2 Axial Compensator //
1716 // Drawing LHCVC2a_0064 //
1718 const float kRB26s2CompL = 30.65; // Length of the compensator
1719 const float kRB26s2BellowRo = 14.38 / 2.; // Bellow outer radius [Pos 1]
1720 const float kRB26s2BellowRi = 12.12 / 2.; // Bellow inner radius [Pos 1]
1721 const int kRB26s2NumberOfPlies = 14; // Number of plies [Pos 1]
1722 const float kRB26s2BellowUndL = 10.00; // Length of undulated region [Pos 1] [+10 mm installed including pretension ?]
1723 const float kRB26s2PlieThickness = 0.025; // Plie thickness [Pos 1]
1724 const float kRB26s2ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
1725 // Plie radius
1726 const float kRB26s2PlieR = (kRB26s2BellowUndL - 4. * kRB26s2ConnectionPlieR + 2. * kRB26s2PlieThickness +
1727 (2. * kRB26s2NumberOfPlies - 2.) * kRB26s2PlieThickness) /
1728 (4. * kRB26s2NumberOfPlies - 2.);
1729 const float kRB26s2CompTubeInnerR = 12.00 / 2.; // Connection tubes inner radius [Pos 2 + 3]
1730 const float kRB26s2CompTubeOuterR = 12.30 / 2.; // Connection tubes outer radius [Pos 2 + 3]
1731 const float kRB26s2WeldingTubeLeftL = 9.00 / 2.; // Left connection tube half length [Pos 2]
1732 const float kRB26s2WeldingTubeRightL = 11.65 / 2.; // Right connection tube half length [Pos 3] [+ 0.15 cm for welding]
1733 const float kRB26s2RingOuterR = 18.10 / 2.; // Ring inner radius [Pos 4]
1734 const float kRB26s2RingL = 0.40 / 2.; // Ring half length [Pos 4]
1735 const float kRB26s2RingZ = 6.50; // Ring z-position [Pos 4]
1736 const float kRB26s2ProtOuterR = 18.20 / 2.; // Protection tube outer radius [Pos 5]
1737 const float kRB26s2ProtL = 15.00 / 2.; // Protection tube half length [Pos 5]
1738 const float kRB26s2ProtZ = 6.70; // Protection tube z-position [Pos 5]
1739
1740 // Mother volume
1741 //
1742 TGeoPcon* shRB26s2Compensator = new TGeoPcon(0., 360., 6);
1743 shRB26s2Compensator->DefineSection(0, 0.0, 0., kRB26s2CompTubeOuterR);
1744 shRB26s2Compensator->DefineSection(1, kRB26s2RingZ, 0., kRB26s2CompTubeOuterR);
1745 shRB26s2Compensator->DefineSection(2, kRB26s2RingZ, 0., kRB26s2ProtOuterR);
1746 shRB26s2Compensator->DefineSection(3, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2ProtOuterR);
1747 shRB26s2Compensator->DefineSection(4, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2CompTubeOuterR);
1748 shRB26s2Compensator->DefineSection(5, kRB26s2CompL, 0., kRB26s2CompTubeOuterR);
1749 TGeoVolume* voRB26s2Compensator = new TGeoVolume("RB26s2Compensator", shRB26s2Compensator, kMedVacHC);
1750
1751 //
1752 // [Pos 1] Bellow
1753 //
1754 //
1755 TGeoVolume* voRB26s2Bellow =
1756 new TGeoVolume("RB26s2Bellow", new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRo, kRB26s2BellowUndL / 2.), kMedVacHC);
1757 //
1758 // Upper part of the undulation
1759 //
1760 TGeoTorus* shRB26s2PlieTorusU = new TGeoTorus(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1761 shRB26s2PlieTorusU->SetName("RB26s2TorusU");
1762 TGeoTube* shRB26s2PlieTubeU = new TGeoTube(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2BellowRo, kRB26s2PlieR);
1763 shRB26s2PlieTubeU->SetName("RB26s2TubeU");
1764 TGeoCompositeShape* shRB26s2UpperPlie = new TGeoCompositeShape("RB26s2UpperPlie", "RB26s2TorusU*RB26s2TubeU");
1765
1766 TGeoVolume* voRB26s2WiggleU = new TGeoVolume("RB26s2UpperPlie", shRB26s2UpperPlie, kMedSteelHC);
1767 //
1768 // Lower part of the undulation
1769 TGeoTorus* shRB26s2PlieTorusL = new TGeoTorus(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1770 shRB26s2PlieTorusL->SetName("RB26s2TorusL");
1771 TGeoTube* shRB26s2PlieTubeL = new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR);
1772 shRB26s2PlieTubeL->SetName("RB26s2TubeL");
1773 TGeoCompositeShape* shRB26s2LowerPlie = new TGeoCompositeShape("RB26s2LowerPlie", "RB26s2TorusL*RB26s2TubeL");
1774
1775 TGeoVolume* voRB26s2WiggleL = new TGeoVolume("RB26s2LowerPlie", shRB26s2LowerPlie, kMedSteelHC);
1776
1777 //
1778 // Connection between upper and lower part of undulation
1779 TGeoVolume* voRB26s2WiggleC1 = new TGeoVolume(
1780 "RB26s2PlieConn1",
1781 new TGeoTube(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieThickness / 2.), kMedSteelHC);
1782 //
1783 // One wiggle
1784 TGeoVolumeAssembly* voRB26s2Wiggle = new TGeoVolumeAssembly("RB26s2Wiggle");
1785 z0 = -kRB26s2PlieThickness / 2.;
1786 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 1, new TGeoTranslation(0., 0., z0));
1787 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1788 voRB26s2Wiggle->AddNode(voRB26s2WiggleU, 1, new TGeoTranslation(0., 0., z0));
1789 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1790 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 2, new TGeoTranslation(0., 0., z0));
1791 z0 += kRB26s2PlieR - kRB26s2PlieThickness;
1792 voRB26s2Wiggle->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
1793 // Positioning of the volumes
1794 z0 = -kRB26s2BellowUndL / 2. + kRB26s2ConnectionPlieR;
1795 voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
1796 z0 += kRB26s2ConnectionPlieR;
1797 zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness;
1798 for (int iw = 0; iw < kRB26s2NumberOfPlies; iw++) {
1799 float zpos = z0 + iw * zsh;
1800 voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness));
1801 }
1802
1803 voRB26s2Compensator->AddNode(voRB26s2Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s2WeldingTubeLeftL + kRB26s2BellowUndL / 2.));
1804
1805 //
1806 // [Pos 2] Left Welding Tube
1807 //
1808 TGeoTube* shRB26s2CompLeftTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeLeftL);
1809 TGeoVolume* voRB26s2CompLeftTube = new TGeoVolume("RB26s2CompLeftTube", shRB26s2CompLeftTube, kMedSteelHC);
1810 voRB26s2Compensator->AddNode(voRB26s2CompLeftTube, 1, new TGeoTranslation(0., 0., kRB26s2WeldingTubeLeftL));
1811 //
1812 // [Pos 3] Right Welding Tube
1813 //
1814 TGeoTube* shRB26s2CompRightTube =
1815 new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeRightL);
1816 TGeoVolume* voRB26s2CompRightTube = new TGeoVolume("RB26s2CompRightTube", shRB26s2CompRightTube, kMedSteelHC);
1817 voRB26s2Compensator->AddNode(voRB26s2CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s2CompL - kRB26s2WeldingTubeRightL));
1818 //
1819 // [Pos 4] Ring
1820 //
1821 TGeoTube* shRB26s2CompRing = new TGeoTube(kRB26s2CompTubeOuterR, kRB26s2RingOuterR, kRB26s2RingL);
1822 TGeoVolume* voRB26s2CompRing = new TGeoVolume("RB26s2CompRing", shRB26s2CompRing, kMedSteelHC);
1823 voRB26s2Compensator->AddNode(voRB26s2CompRing, 1, new TGeoTranslation(0., 0., kRB26s2RingZ + kRB26s2RingL));
1824
1825 //
1826 // [Pos 5] Outer Protecting Tube
1827 //
1828 TGeoTube* shRB26s2CompProtTube = new TGeoTube(kRB26s2RingOuterR, kRB26s2ProtOuterR, kRB26s2ProtL);
1829 TGeoVolume* voRB26s2CompProtTube = new TGeoVolume("RB26s2CompProtTube", shRB26s2CompProtTube, kMedSteelHC);
1830 voRB26s2Compensator->AddNode(voRB26s2CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s2ProtZ + kRB26s2ProtL));
1831
1833 // Rotable Flange //
1834 // Drawing LHCVFX_0016 //
1836 const float kRB26s1RFlangeTubeRi = 5.84 / 2.; // Tube inner radius
1837 const float kRB26s1RFlangeTubeRo = 6.00 / 2.; // Tube outer radius
1838
1839 // Pos 1 Clamp Ring LHCVFX__0015
1840 const float kRB26s1RFlangeCrL = 1.40; // Lenth of the clamp ring
1841 const float kRB26s1RFlangeCrRi1 = 6.72 / 2.; // Ring inner radius section 1
1842 const float kRB26s1RFlangeCrRi2 = 6.06 / 2.; // Ring inner radius section 2
1843 const float kRB26s1RFlangeCrRo = 8.60 / 2.; // Ring outer radius
1844 const float kRB26s1RFlangeCrD = 0.800; // Width section 1
1845
1846 TGeoPcon* shRB26s1RFlangeCr = new TGeoPcon(0., 360., 4);
1847 z0 = 0.;
1848 shRB26s1RFlangeCr->DefineSection(0, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1849 z0 += kRB26s1RFlangeCrD;
1850 shRB26s1RFlangeCr->DefineSection(1, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1851 shRB26s1RFlangeCr->DefineSection(2, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1852 z0 = kRB26s1RFlangeCrL;
1853 shRB26s1RFlangeCr->DefineSection(3, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1854 TGeoVolume* voRB26s1RFlangeCr = new TGeoVolume("RB26s1RFlangeCr", shRB26s1RFlangeCr, kMedSteelHC);
1855
1856 // Pos 2 Insert LHCVFX__0015
1857 const float kRB26s1RFlangeIsL = 4.88; // Lenth of the insert
1858 const float kRB26s1RFlangeIsR = 6.70 / 2.; // Ring radius
1859 const float kRB26s1RFlangeIsD = 0.80; // Ring Width
1860
1861 TGeoPcon* shRB26s1RFlangeIs = new TGeoPcon(0., 360., 4);
1862 z0 = 0.;
1863 shRB26s1RFlangeIs->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1864 z0 += kRB26s1RFlangeIsD;
1865 shRB26s1RFlangeIs->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1866 shRB26s1RFlangeIs->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1867 z0 = kRB26s1RFlangeIsL;
1868 shRB26s1RFlangeIs->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1869 TGeoVolume* voRB26s1RFlangeIs = new TGeoVolume("RB26s1RFlangeIs", shRB26s1RFlangeIs, kMedSteelHC);
1870 // 4.88 + 3.7 = 8.58 (8.7 to avoid overlap)
1871 // Pos 3 Fixed Point Section LHCVC2A_0021
1872 const float kRB26s1RFlangeFpL = 5.88; // Length of the fixed point section (0.08 cm added for welding)
1873 const float kRB26s1RFlangeFpZ = 3.82; // Position of the ring
1874 const float kRB26s1RFlangeFpD = 0.59; // Width of the ring
1875 const float kRB26s1RFlangeFpR = 7.00 / 2.; // Radius of the ring
1876
1877 TGeoPcon* shRB26s1RFlangeFp = new TGeoPcon(0., 360., 6);
1878 z0 = 0.;
1879 shRB26s1RFlangeFp->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1880 z0 += kRB26s1RFlangeFpZ;
1881 shRB26s1RFlangeFp->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1882 shRB26s1RFlangeFp->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
1883 z0 += kRB26s1RFlangeFpD;
1884 shRB26s1RFlangeFp->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
1885 shRB26s1RFlangeFp->DefineSection(4, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1886 z0 = kRB26s1RFlangeFpL;
1887 shRB26s1RFlangeFp->DefineSection(5, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1888 TGeoVolume* voRB26s1RFlangeFp = new TGeoVolume("RB26s1RFlangeFp", shRB26s1RFlangeFp, kMedSteelHC);
1889
1890 // Put everything in a mother volume
1891 TGeoPcon* shRB26s1RFlange = new TGeoPcon(0., 360., 8);
1892 z0 = 0.;
1893 shRB26s1RFlange->DefineSection(0, z0, 0., kRB26s1RFlangeCrRo);
1894 z0 += kRB26s1RFlangeCrL;
1895 shRB26s1RFlange->DefineSection(1, z0, 0., kRB26s1RFlangeCrRo);
1896 shRB26s1RFlange->DefineSection(2, z0, 0., kRB26s1RFlangeTubeRo);
1897 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpZ;
1898 shRB26s1RFlange->DefineSection(3, z0, 0., kRB26s1RFlangeTubeRo);
1899 shRB26s1RFlange->DefineSection(4, z0, 0., kRB26s1RFlangeFpR);
1900 z0 += kRB26s1RFlangeFpD;
1901 shRB26s1RFlange->DefineSection(5, z0, 0., kRB26s1RFlangeFpR);
1902 shRB26s1RFlange->DefineSection(6, z0, 0., kRB26s1RFlangeTubeRo);
1903 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
1904 shRB26s1RFlange->DefineSection(7, z0, 0., kRB26s1RFlangeTubeRo);
1905 TGeoVolume* voRB26s1RFlange = new TGeoVolume("RB26s1RFlange", shRB26s1RFlange, kMedVacHC);
1906
1907 voRB26s1RFlange->AddNode(voRB26s1RFlangeIs, 1, gGeoIdentity);
1908 voRB26s1RFlange->AddNode(voRB26s1RFlangeCr, 1, gGeoIdentity);
1909 voRB26s1RFlange->AddNode(voRB26s1RFlangeFp, 1, new TGeoTranslation(0., 0., kRB26s1RFlangeIsL));
1910
1912 // Fixed Flange //
1913 // Drawing LHCVFX_0006 //
1915 const float kRB26s2FFlangeL = 2.13; // Length of the flange
1916 const float kRB26s2FFlangeD1 = 0.97; // Length of section 1
1917 const float kRB26s2FFlangeD2 = 0.29; // Length of section 2
1918 const float kRB26s2FFlangeD3 = 0.87; // Length of section 3
1919 const float kRB26s2FFlangeRo = 17.15 / 2.; // Flange outer radius
1920 const float kRB26s2FFlangeRi1 = 12.30 / 2.; // Flange inner radius section 1
1921 const float kRB26s2FFlangeRi2 = 12.00 / 2.; // Flange inner radius section 2
1922 const float kRB26s2FFlangeRi3 = 12.30 / 2.; // Flange inner radius section 3
1923 z0 = 0;
1924 TGeoPcon* shRB26s2FFlange = new TGeoPcon(0., 360., 6);
1925 z0 = 0.;
1926 shRB26s2FFlange->DefineSection(0, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
1927 z0 += kRB26s2FFlangeD1;
1928 shRB26s2FFlange->DefineSection(1, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
1929 shRB26s2FFlange->DefineSection(2, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
1930 z0 += kRB26s2FFlangeD2;
1931 shRB26s2FFlange->DefineSection(3, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
1932 shRB26s2FFlange->DefineSection(4, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
1933 z0 += kRB26s2FFlangeD3;
1934 shRB26s2FFlange->DefineSection(5, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
1935 TGeoVolume* voRB26s2FFlange = new TGeoVolume("RB26s2FFlange", shRB26s2FFlange, kMedSteelHC);
1936
1937 TGeoVolume* voRB26s2FFlangeM = new TGeoVolume("RB26s2FFlangeM", makeMotherFromTemplate(shRB26s2FFlange, 2, 5), kMedVacHC);
1938 voRB26s2FFlangeM->AddNode(voRB26s2FFlange, 1, gGeoIdentity);
1939
1941 // //
1942 // RB26/3 //
1943 // Drawing LHCV2a_0048 //
1944 // Drawing LHCV2a_0002 //
1946 //
1947 // Pos 1 Vacuum Tubes LHCVC2A__0003
1948 // Pos 2 Fixed Point LHCVFX___0005
1949 // Pos 3 Split Flange LHCVFX___0007
1950 // Pos 4 Fixed Flange LHCVFX___0004
1951 // Pos 5 Axial Compensator LHCVC2A__0065
1952 //
1953 //
1954 //
1955 //
1957 // Vacuum Tube //
1958 // Drawing LHCVC2A_0003 //
1960 const float kRB26s3TubeL = 629.35 + 0.3; // 0.3 cm added for welding
1961 const float kRB26s3TubeR1 = 12. / 2.;
1962 const float kRB26s3TubeR2 = kRB26s3TubeR1 + 215.8 * TMath::Tan(0.829 / 180. * TMath::Pi());
1963
1964 TGeoPcon* shRB26s3Tube = new TGeoPcon(0., 360., 7);
1965 // Section 1: straight section
1966 shRB26s3Tube->DefineSection(0, 0.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
1967 shRB26s3Tube->DefineSection(1, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
1968 // Section 2: 0.829 deg opening cone
1969 shRB26s3Tube->DefineSection(2, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.20);
1970
1971 shRB26s3Tube->DefineSection(3, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.20);
1972 shRB26s3Tube->DefineSection(4, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.30);
1973
1974 shRB26s3Tube->DefineSection(5, 622.20, 30.00 / 2., 30.60 / 2.);
1975 shRB26s3Tube->DefineSection(6, kRB26s3TubeL, 30.00 / 2., 30.60 / 2.);
1976
1977 TGeoVolume* voRB26s3Tube = new TGeoVolume("RB26s3Tube", shRB26s3Tube, kMedSteelHC);
1978 // Add the insulation layer
1979 TGeoVolume* voRB26s3TubeIns = new TGeoVolume("RB26s3TubeIns", makeInsulationFromTemplate(shRB26s3Tube), kMedInsu);
1980 voRB26s3Tube->AddNode(voRB26s3TubeIns, 1, gGeoIdentity);
1981
1982 TGeoVolume* voRB26s3TubeM = new TGeoVolume("RB26s3TubeM", makeMotherFromTemplate(shRB26s3Tube), kMedVacHC);
1983 voRB26s3TubeM->AddNode(voRB26s3Tube, 1, gGeoIdentity);
1984
1986 // Fixed Point //
1987 // Drawing LHCVFX_0005 //
1989 const float kRB26s3FixedPointL = 16.37; // Length of the fixed point section (0.3 cm added for welding)
1990 const float kRB26s3FixedPointZ = 9.72; // Position of the ring (0.15 cm added for welding)
1991 const float kRB26s3FixedPointD = 0.595; // Width of the ring
1992 const float kRB26s3FixedPointR = 13.30 / 2.; // Radius of the ring
1993 const float kRB26s3FixedPointRi = 12.00 / 2.; // Inner radius of the tube
1994 const float kRB26s3FixedPointRo1 = 12.30 / 2.; // Outer radius of the tube (in)
1995 const float kRB26s3FixedPointRo2 = 12.40 / 2.; // Outer radius of the tube (out)
1996 const float kRB26s3FixedPointDs = 1.5; // Width of straight section behind ring
1997 const float kRB26s3FixedPointDc = 3.15; // Width of conical section behind ring (0.15 cm added for welding)
1998
1999 TGeoPcon* shRB26s3FixedPoint = new TGeoPcon(0., 360., 8);
2000 z0 = 0.;
2001 shRB26s3FixedPoint->DefineSection(0, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2002 z0 += kRB26s3FixedPointZ;
2003 shRB26s3FixedPoint->DefineSection(1, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2004 shRB26s3FixedPoint->DefineSection(2, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
2005 z0 += kRB26s3FixedPointD;
2006 shRB26s3FixedPoint->DefineSection(3, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
2007 shRB26s3FixedPoint->DefineSection(4, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2008 z0 += kRB26s3FixedPointDs;
2009 shRB26s3FixedPoint->DefineSection(5, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2010 z0 += kRB26s3FixedPointDc;
2011 shRB26s3FixedPoint->DefineSection(6, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2012 z0 = kRB26s3FixedPointL;
2013 shRB26s3FixedPoint->DefineSection(7, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2014 TGeoVolume* voRB26s3FixedPoint = new TGeoVolume("RB26s3FixedPoint", shRB26s3FixedPoint, kMedSteelHC);
2015
2016 TGeoVolume* voRB26s3FixedPointM = new TGeoVolume("RB26s3FixedPointM", makeMotherFromTemplate(shRB26s3FixedPoint), kMedVacHC);
2017 voRB26s3FixedPointM->AddNode(voRB26s3FixedPoint, 1, gGeoIdentity);
2018
2020 // Split Flange //
2021 // Drawing LHCVFX_0005 //
2023 const float kRB26s3SFlangeL = 2.13; // Length of the flange
2024 const float kRB26s3SFlangeD1 = 0.57; // Length of section 1
2025 const float kRB26s3SFlangeD2 = 0.36; // Length of section 2
2026 const float kRB26s3SFlangeD3 = 0.50 + 0.70; // Length of section 3
2027 const float kRB26s3SFlangeRo = 17.15 / 2.; // Flange outer radius
2028 const float kRB26s3SFlangeRi1 = 12.30 / 2.; // Flange inner radius section 1
2029 const float kRB26s3SFlangeRi2 = 12.00 / 2.; // Flange inner radius section 2
2030 const float kRB26s3SFlangeRi3 = 12.30 / 2.; // Flange inner radius section 3
2031 z0 = 0;
2032 TGeoPcon* shRB26s3SFlange = new TGeoPcon(0., 360., 6);
2033 z0 = 0.;
2034 shRB26s3SFlange->DefineSection(0, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2035 z0 += kRB26s3SFlangeD1;
2036 shRB26s3SFlange->DefineSection(1, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2037 shRB26s3SFlange->DefineSection(2, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2038 z0 += kRB26s3SFlangeD2;
2039 shRB26s3SFlange->DefineSection(3, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2040 shRB26s3SFlange->DefineSection(4, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2041 z0 += kRB26s3SFlangeD3;
2042 shRB26s3SFlange->DefineSection(5, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2043 TGeoVolume* voRB26s3SFlange = new TGeoVolume("RB26s3SFlange", shRB26s3SFlange, kMedSteelHC);
2044
2045 TGeoVolume* voRB26s3SFlangeM = new TGeoVolume("RB26s3SFlangeM", makeMotherFromTemplate(shRB26s3SFlange, 0, 3), kMedVacHC);
2046 voRB26s3SFlangeM->AddNode(voRB26s3SFlange, 1, gGeoIdentity);
2047
2049 // RB26/3 Fixed Flange //
2050 // Drawing LHCVFX___0004 //
2052 const float kRB26s3FFlangeL = 2.99; // Length of the flange
2053 const float kRB26s3FFlangeD1 = 1.72; // Length of section 1
2054 const float kRB26s3FFlangeD2 = 0.30; // Length of section 2
2055 const float kRB26s3FFlangeD3 = 0.97; // Length of section 3
2056 const float kRB26s3FFlangeRo = 36.20 / 2.; // Flange outer radius
2057 const float kRB26s3FFlangeRi1 = 30.60 / 2.; // Flange inner radius section 1
2058 const float kRB26s3FFlangeRi2 = 30.00 / 2.; // Flange inner radius section 2
2059 const float kRB26s3FFlangeRi3 = 30.60 / 2.; // Flange inner radius section 3
2060 z0 = 0;
2061 TGeoPcon* shRB26s3FFlange = new TGeoPcon(0., 360., 6);
2062 z0 = 0.;
2063 shRB26s3FFlange->DefineSection(0, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2064 z0 += kRB26s3FFlangeD1;
2065 shRB26s3FFlange->DefineSection(1, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2066 shRB26s3FFlange->DefineSection(2, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2067 z0 += kRB26s3FFlangeD2;
2068 shRB26s3FFlange->DefineSection(3, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2069 shRB26s3FFlange->DefineSection(4, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2070 z0 += kRB26s3FFlangeD3;
2071 shRB26s3FFlange->DefineSection(5, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2072 TGeoVolume* voRB26s3FFlange = new TGeoVolume("RB26s3FFlange", shRB26s3FFlange, kMedSteelHC);
2073
2074 TGeoVolume* voRB26s3FFlangeM = new TGeoVolume("RB26s3FFlangeM", makeMotherFromTemplate(shRB26s3FFlange, 2, 5), kMedVacHC);
2075 voRB26s3FFlangeM->AddNode(voRB26s3FFlange, 1, gGeoIdentity);
2076
2078 // RB26/3 Axial Compensator //
2079 // Drawing LHCVC2a_0065 //
2081 const float kRB26s3CompL = 42.3; // Length of the compensator (0.3 cm added for welding)
2082 const float kRB26s3BellowRo = 34.00 / 2.; // Bellow outer radius [Pos 1]
2083 const float kRB26s3BellowRi = 30.10 / 2.; // Bellow inner radius [Pos 1]
2084 const int kRB26s3NumberOfPlies = 13; // Number of plies [Pos 1]
2085 const float kRB26s3BellowUndL = 17.70; // Length of undulated region [Pos 1]
2086 const float kRB26s3PlieThickness = 0.06; // Plie thickness [Pos 1]
2087 const float kRB26s3ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2088 // Plie radius
2089 const float kRB26s3PlieR = (kRB26s3BellowUndL - 4. * kRB26s3ConnectionPlieR + 2. * kRB26s3PlieThickness +
2090 (2. * kRB26s3NumberOfPlies - 2.) * kRB26s3PlieThickness) /
2091 (4. * kRB26s3NumberOfPlies - 2.);
2092
2093 //
2094 // The welding tubes have 3 sections with different radii and 2 transition regions.
2095 // Section 1: connection to the outside
2096 // Section 2: commection to the bellow
2097 // Section 3: between 1 and 2
2098 const float kRB26s3CompTubeInnerR1 = 30.0 / 2.; // Outer Connection tubes inner radius [Pos 4 + 3]
2099 const float kRB26s3CompTubeOuterR1 = 30.6 / 2.; // Outer Connection tubes outer radius [Pos 4 + 3]
2100 const float kRB26s3CompTubeInnerR2 = 29.4 / 2.; // Connection tubes inner radius [Pos 4 + 3]
2101 const float kRB26s3CompTubeOuterR2 = 30.0 / 2.; // Connection tubes outer radius [Pos 4 + 3]
2102 const float kRB26s3CompTubeInnerR3 = 30.6 / 2.; // Connection tubes inner radius at bellow [Pos 4 + 3]
2103 const float kRB26s3CompTubeOuterR3 = 32.2 / 2.; // Connection tubes outer radius at bellow [Pos 4 + 3]
2104
2105 const float kRB26s3WeldingTubeLeftL1 = 2.0; // Left connection tube length [Pos 4]
2106 const float kRB26s3WeldingTubeLeftL2 = 3.4; // Left connection tube length [Pos 4]
2107 const float kRB26s3WeldingTubeLeftL = 7.0; // Left connection tube total length [Pos 4]
2108 const float kRB26s3WeldingTubeRightL1 = 2.3; // Right connection tube length [Pos 3] (0.3 cm added for welding)
2109 const float kRB26s3WeldingTubeRightL2 = 13.4; // Right connection tube length [Pos 3]
2110
2111 const float kRB26s3WeldingTubeT1 = 0.6; // Length of first r-transition [Pos 4 + 3]
2112 const float kRB26s3WeldingTubeT2 = 1.0; // Length of 2nd r-transition [Pos 4 + 3]
2113
2114 const float kRB26s3RingOuterR = 36.1 / 2.; // Ring inner radius [Pos 4]
2115 const float kRB26s3RingL = 0.8 / 2.; // Ring half length [Pos 4]
2116 const float kRB26s3RingZ = 3.7; // Ring z-position [Pos 4]
2117 const float kRB26s3ProtOuterR = 36.2 / 2.; // Protection tube outer radius [Pos 2]
2118 const float kRB26s3ProtL = 27.0 / 2.; // Protection tube half length [Pos 2]
2119 const float kRB26s3ProtZ = 4.0; // Protection tube z-position [Pos 2]
2120
2121 // Mother volume
2122 //
2123 TGeoPcon* shRB26s3Compensator = new TGeoPcon(0., 360., 6);
2124 shRB26s3Compensator->DefineSection(0, 0.0, 0., kRB26s3CompTubeOuterR1);
2125 shRB26s3Compensator->DefineSection(1, kRB26s3RingZ, 0., kRB26s3CompTubeOuterR1);
2126 shRB26s3Compensator->DefineSection(2, kRB26s3RingZ, 0., kRB26s3ProtOuterR);
2127 shRB26s3Compensator->DefineSection(3, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3ProtOuterR);
2128 shRB26s3Compensator->DefineSection(4, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3CompTubeOuterR1);
2129 shRB26s3Compensator->DefineSection(5, kRB26s3CompL, 0., kRB26s3CompTubeOuterR1);
2130 TGeoVolume* voRB26s3Compensator = new TGeoVolume("RB26s3Compensator", shRB26s3Compensator, kMedVacHC);
2131
2132 //
2133 // [Pos 1] Bellow
2134 //
2135 //
2136
2137 //
2138 // Upper part of the undulation
2139 //
2140 TGeoTorus* shRB26s3PlieTorusU = new TGeoTorus(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2141 shRB26s3PlieTorusU->SetName("RB26s3TorusU");
2142 TGeoTube* shRB26s3PlieTubeU = new TGeoTube(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3BellowRo, kRB26s3PlieR);
2143 shRB26s3PlieTubeU->SetName("RB26s3TubeU");
2144 TGeoCompositeShape* shRB26s3UpperPlie = new TGeoCompositeShape("RB26s3UpperPlie", "RB26s3TorusU*RB26s3TubeU");
2145
2146 TGeoVolume* voRB26s3WiggleU = new TGeoVolume("RB26s3UpperPlie", shRB26s3UpperPlie, kMedSteelHC);
2147 //
2148 // Lower part of the undulation
2149 TGeoTorus* shRB26s3PlieTorusL = new TGeoTorus(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2150 shRB26s3PlieTorusL->SetName("RB26s3TorusL");
2151 TGeoTube* shRB26s3PlieTubeL = new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR);
2152 shRB26s3PlieTubeL->SetName("RB26s3TubeL");
2153 TGeoCompositeShape* shRB26s3LowerPlie = new TGeoCompositeShape("RB26s3LowerPlie", "RB26s3TorusL*RB26s3TubeL");
2154
2155 TGeoVolume* voRB26s3WiggleL = new TGeoVolume("RB26s3LowerPlie", shRB26s3LowerPlie, kMedSteelHC);
2156
2157 //
2158 // Connection between upper and lower part of undulation
2159 TGeoVolume* voRB26s3WiggleC1 = new TGeoVolume(
2160 "RB26s3PlieConn1",
2161 new TGeoTube(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieThickness / 2.), kMedSteelHC);
2162 //
2163 // One wiggle
2164 TGeoVolumeAssembly* voRB26s3Wiggle = new TGeoVolumeAssembly("RB26s3Wiggle");
2165 z0 = -kRB26s3PlieThickness / 2.;
2166 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 1, new TGeoTranslation(0., 0., z0));
2167 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2168 voRB26s3Wiggle->AddNode(voRB26s3WiggleU, 1, new TGeoTranslation(0., 0., z0));
2169 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2170 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 2, new TGeoTranslation(0., 0., z0));
2171 z0 += kRB26s3PlieR - kRB26s3PlieThickness;
2172 voRB26s3Wiggle->AddNode(voRB26s3WiggleL, 1, new TGeoTranslation(0., 0., z0));
2173 voRB26s3Wiggle->GetShape()->ComputeBBox(); // enforce recomputing of BBox
2174
2175 //
2176 // The bellow itself
2177 float zBellowTot = kRB26s3NumberOfPlies * (static_cast<TGeoBBox*>(voRB26s3Wiggle->GetShape()))->GetDZ();
2178 TGeoVolume* voRB26s3Bellow = new TGeoVolume("RB26s3Bellow", new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRo, zBellowTot), kMedVacHC);
2179
2180 // Positioning of the volumes
2181 z0 = -kRB26s2BellowUndL / 2. + kRB26s2ConnectionPlieR;
2182 voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
2183 z0 += kRB26s2ConnectionPlieR;
2184 zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness;
2185 for (int iw = 0; iw < kRB26s2NumberOfPlies; iw++) {
2186 float zpos = z0 + iw * zsh;
2187 voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness));
2188 }
2189
2190 voRB26s3Compensator->AddNode(voRB26s3Bellow, 1, new TGeoTranslation(0., 0., kRB26s3WeldingTubeLeftL + zBellowTot));
2191
2192 //
2193 // [Pos 2] Outer Protecting Tube
2194 //
2195 TGeoTube* shRB26s3CompProtTube = new TGeoTube(kRB26s3RingOuterR, kRB26s3ProtOuterR, kRB26s3ProtL);
2196 TGeoVolume* voRB26s3CompProtTube = new TGeoVolume("RB26s3CompProtTube", shRB26s3CompProtTube, kMedSteelHC);
2197 voRB26s3Compensator->AddNode(voRB26s3CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s3ProtZ + kRB26s3ProtL));
2198
2199 //
2200 // [Pos 3] Right Welding Tube
2201 //
2202 TGeoPcon* shRB26s3CompRightTube = new TGeoPcon(0., 360., 5);
2203 z0 = 0.;
2204 shRB26s3CompRightTube->DefineSection(0, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2205 z0 += kRB26s3WeldingTubeT2;
2206 shRB26s3CompRightTube->DefineSection(1, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2207 z0 += kRB26s3WeldingTubeRightL2;
2208 shRB26s3CompRightTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2209 z0 += kRB26s3WeldingTubeT1;
2210 shRB26s3CompRightTube->DefineSection(3, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2211 z0 += kRB26s3WeldingTubeRightL1;
2212 shRB26s3CompRightTube->DefineSection(4, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2213
2214 TGeoVolume* voRB26s3CompRightTube = new TGeoVolume("RB26s3CompRightTube", shRB26s3CompRightTube, kMedSteelHC);
2215 voRB26s3Compensator->AddNode(voRB26s3CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s3CompL - z0));
2216
2217 //
2218 // [Pos 4] Left Welding Tube
2219 //
2220 TGeoPcon* shRB26s3CompLeftTube = new TGeoPcon(0., 360., 5);
2221 z0 = 0.;
2222 shRB26s3CompLeftTube->DefineSection(0, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2223 z0 += kRB26s3WeldingTubeLeftL1;
2224 shRB26s3CompLeftTube->DefineSection(1, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2225 z0 += kRB26s3WeldingTubeT1;
2226 shRB26s3CompLeftTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2227 z0 += kRB26s3WeldingTubeLeftL2;
2228 shRB26s3CompLeftTube->DefineSection(3, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2229 z0 += kRB26s3WeldingTubeT2;
2230 shRB26s3CompLeftTube->DefineSection(4, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2231
2232 TGeoVolume* voRB26s3CompLeftTube = new TGeoVolume("RB26s3CompLeftTube", shRB26s3CompLeftTube, kMedSteelHC);
2233 voRB26s3Compensator->AddNode(voRB26s3CompLeftTube, 1, gGeoIdentity);
2234 //
2235 // [Pos 5] Ring
2236 //
2237 TGeoTube* shRB26s3CompRing = new TGeoTube(kRB26s3CompTubeOuterR2, kRB26s3RingOuterR, kRB26s3RingL);
2238 TGeoVolume* voRB26s3CompRing = new TGeoVolume("RB26s3CompRing", shRB26s3CompRing, kMedSteelHC);
2239 voRB26s3Compensator->AddNode(voRB26s3CompRing, 1, new TGeoTranslation(0., 0., kRB26s3RingZ + kRB26s3RingL));
2240
2242 // //
2243 // RB26/4-5 //
2244 // Drawing LHCV2a_0012 [as installed] //
2246 // Pos1 Vacuum Tubes LHCVC2A__0014
2247 // Pos2 Compensator LHCVC2A__0066
2248 // Pos3 Fixed Point Section LHCVC2A__0016
2249 // Pos4 Split Flange LHCVFX___0005
2250 // Pos5 RotableFlange LHCVFX___0009
2252
2254 // RB26/4-5 Vacuum Tubes //
2255 // Drawing LHCVC2a_0014 //
2257 const float kRB26s45TubeL = 593.12 + 0.3; // 0.3 cm added for welding
2258
2259 TGeoPcon* shRB26s45Tube = new TGeoPcon(0., 360., 11);
2260 // Section 1: straight section
2261 shRB26s45Tube->DefineSection(0, 0.00, 30.00 / 2., 30.60 / 2.);
2262 shRB26s45Tube->DefineSection(1, 1.20, 30.00 / 2., 30.60 / 2.);
2263 shRB26s45Tube->DefineSection(2, 1.20, 30.00 / 2., 30.80 / 2.);
2264 shRB26s45Tube->DefineSection(3, 25.10, 30.00 / 2., 30.80 / 2.);
2265 // Section 2: 0.932 deg opening cone
2266 shRB26s45Tube->DefineSection(4, 486.10, 45.00 / 2., 45.80 / 2.);
2267 // Section 3: straight section 4 mm
2268 shRB26s45Tube->DefineSection(5, 512.10, 45.00 / 2., 45.80 / 2.);
2269 // Section 4: straight section 3 mm
2270 shRB26s45Tube->DefineSection(6, 512.10, 45.00 / 2., 45.60 / 2.);
2271 shRB26s45Tube->DefineSection(7, 527.70, 45.00 / 2., 45.60 / 2.);
2272 // Section 4: closing cone
2273 shRB26s45Tube->DefineSection(8, 591.30, 10.00 / 2., 10.60 / 2.);
2274 shRB26s45Tube->DefineSection(9, 591.89, 10.00 / 2., 10.30 / 2.);
2275
2276 shRB26s45Tube->DefineSection(10, kRB26s45TubeL, 10.00 / 2., 10.30 / 2.);
2277 TGeoVolume* voRB26s45Tube = new TGeoVolume("RB26s45Tube", shRB26s45Tube, kMedSteelHC);
2278
2279 TGeoVolume* voRB26s45TubeM = new TGeoVolume("RB26s45TubeM", makeMotherFromTemplate(shRB26s45Tube), kMedVacHC);
2280 voRB26s45TubeM->AddNode(voRB26s45Tube, 1, gGeoIdentity);
2281
2283 // RB26/5 Axial Compensator //
2284 // Drawing LHCVC2a_0066 //
2286 const float kRB26s5CompL = 27.60; // Length of the compensator (0.30 cm added for welding)
2287 const float kRB26s5BellowRo = 12.48 / 2.; // Bellow outer radius [Pos 1]
2288 const float kRB26s5BellowRi = 10.32 / 2.; // Bellow inner radius [Pos 1]
2289 const int kRB26s5NumberOfPlies = 15; // Number of plies [Pos 1]
2290 const float kRB26s5BellowUndL = 10.50; // Length of undulated region [Pos 1]
2291 const float kRB26s5PlieThickness = 0.025; // Plie thickness [Pos 1]
2292 const float kRB26s5ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2293 const float kRB26s5ConnectionR = 11.2 / 2.; // Bellow connection radius [Pos 1]
2294 // Plie radius
2295 const float kRB26s5PlieR = (kRB26s5BellowUndL - 4. * kRB26s5ConnectionPlieR + 2. * kRB26s5PlieThickness +
2296 (2. * kRB26s5NumberOfPlies - 2.) * kRB26s5PlieThickness) /
2297 (4. * kRB26s5NumberOfPlies - 2.);
2298 const float kRB26s5CompTubeInnerR = 10.00 / 2.; // Connection tubes inner radius [Pos 2 + 3]
2299 const float kRB26s5CompTubeOuterR = 10.30 / 2.; // Connection tubes outer radius [Pos 2 + 3]
2300 const float kRB26s5WeldingTubeLeftL = 3.70 / 2.; // Left connection tube half length [Pos 2]
2301 const float kRB26s5WeldingTubeRightL = 13.40 / 2.; // Right connection tube half length [Pos 3] (0.3 cm added for welding)
2302 const float kRB26s5RingInnerR = 11.2 / 2.; // Ring inner radius [Pos 4]
2303 const float kRB26s5RingOuterR = 16.0 / 2.; // Ring inner radius [Pos 4]
2304 const float kRB26s5RingL = 0.4 / 2.; // Ring half length [Pos 4]
2305 const float kRB26s5RingZ = 14.97; // Ring z-position [Pos 4]
2306 const float kRB26s5ProtOuterR = 16.2 / 2.; // Protection tube outer radius [Pos 5]
2307 const float kRB26s5ProtL = 13.0 / 2.; // Protection tube half length [Pos 5]
2308 const float kRB26s5ProtZ = 2.17; // Protection tube z-position [Pos 5]
2309 const float kRB26s5DetailZR = 11.3 / 2.; // Detail Z max radius
2310
2311 // Mother volume
2312 //
2313 TGeoPcon* shRB26s5Compensator = new TGeoPcon(0., 360., 8);
2314 shRB26s5Compensator->DefineSection(0, 0.0, 0., kRB26s5CompTubeOuterR);
2315 shRB26s5Compensator->DefineSection(1, kRB26s5ProtZ, 0., kRB26s5CompTubeOuterR);
2316 shRB26s5Compensator->DefineSection(2, kRB26s5ProtZ, 0., kRB26s5ProtOuterR);
2317 shRB26s5Compensator->DefineSection(3, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5ProtOuterR);
2318 shRB26s5Compensator->DefineSection(4, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5DetailZR);
2319 shRB26s5Compensator->DefineSection(5, kRB26s5CompL - 8., 0., kRB26s5DetailZR);
2320 shRB26s5Compensator->DefineSection(6, kRB26s5CompL - 8., 0., kRB26s5CompTubeOuterR);
2321 shRB26s5Compensator->DefineSection(7, kRB26s5CompL, 0., kRB26s5CompTubeOuterR);
2322 TGeoVolume* voRB26s5Compensator = new TGeoVolume("RB26s5Compensator", shRB26s5Compensator, kMedVacHC);
2323
2324 //
2325 // [Pos 1] Bellow
2326 //
2327 //
2328 TGeoVolume* voRB26s5Bellow =
2329 new TGeoVolume("RB26s5Bellow", new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRo, kRB26s5BellowUndL / 2.), kMedVacHC);
2330 //
2331 // Upper part of the undulation
2332 //
2333 TGeoTorus* shRB26s5PlieTorusU = new TGeoTorus(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2334 shRB26s5PlieTorusU->SetName("RB26s5TorusU");
2335 TGeoTube* shRB26s5PlieTubeU = new TGeoTube(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5BellowRo, kRB26s5PlieR);
2336 shRB26s5PlieTubeU->SetName("RB26s5TubeU");
2337 TGeoCompositeShape* shRB26s5UpperPlie = new TGeoCompositeShape("RB26s5UpperPlie", "RB26s5TorusU*RB26s5TubeU");
2338
2339 TGeoVolume* voRB26s5WiggleU = new TGeoVolume("RB26s5UpperPlie", shRB26s5UpperPlie, kMedSteelHC);
2340 //
2341 // Lower part of the undulation
2342 TGeoTorus* shRB26s5PlieTorusL = new TGeoTorus(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2343 shRB26s5PlieTorusL->SetName("RB26s5TorusL");
2344 TGeoTube* shRB26s5PlieTubeL = new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR);
2345 shRB26s5PlieTubeL->SetName("RB26s5TubeL");
2346 TGeoCompositeShape* shRB26s5LowerPlie = new TGeoCompositeShape("RB26s5LowerPlie", "RB26s5TorusL*RB26s5TubeL");
2347
2348 TGeoVolume* voRB26s5WiggleL = new TGeoVolume("RB26s5LowerPlie", shRB26s5LowerPlie, kMedSteelHC);
2349
2350 //
2351 // Connection between upper and lower part of undulation
2352 TGeoVolume* voRB26s5WiggleC1 = new TGeoVolume("RB26s5PlieConn1",
2353 new TGeoTube(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieThickness / 2.), kMedSteelHC);
2354 //
2355 // One wiggle
2356 TGeoVolumeAssembly* voRB26s5Wiggle = new TGeoVolumeAssembly("RB26s5Wiggle");
2357 z0 = -kRB26s5PlieThickness / 2.;
2358 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 1, new TGeoTranslation(0., 0., z0));
2359 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2360 voRB26s5Wiggle->AddNode(voRB26s5WiggleU, 1, new TGeoTranslation(0., 0., z0));
2361 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2362 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 2, new TGeoTranslation(0., 0., z0));
2363 z0 += kRB26s5PlieR - kRB26s5PlieThickness;
2364 voRB26s5Wiggle->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0));
2365 // Positioning of the volumes
2366 z0 = -kRB26s5BellowUndL / 2. + kRB26s5ConnectionPlieR;
2367 voRB26s5Bellow->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0));
2368 z0 += kRB26s5ConnectionPlieR;
2369 zsh = 4. * kRB26s5PlieR - 2. * kRB26s5PlieThickness;
2370 for (int iw = 0; iw < kRB26s5NumberOfPlies; iw++) {
2371 float zpos = z0 + iw * zsh;
2372 voRB26s5Bellow->AddNode(voRB26s5Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s5PlieThickness));
2373 }
2374
2375 voRB26s5Compensator->AddNode(voRB26s5Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s5WeldingTubeLeftL + kRB26s5BellowUndL / 2.));
2376
2377 //
2378 // [Pos 2] Left Welding Tube
2379 //
2380 TGeoPcon* shRB26s5CompLeftTube = new TGeoPcon(0., 360., 3);
2381 z0 = 0;
2382 shRB26s5CompLeftTube->DefineSection(0, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2383 z0 += 2 * kRB26s5WeldingTubeLeftL - (kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2384 shRB26s5CompLeftTube->DefineSection(1, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2385 z0 += (kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2386 shRB26s5CompLeftTube->DefineSection(2, z0, kRB26s5ConnectionR - 0.15, kRB26s5ConnectionR);
2387 TGeoVolume* voRB26s5CompLeftTube = new TGeoVolume("RB26s5CompLeftTube", shRB26s5CompLeftTube, kMedSteelHC);
2388 voRB26s5Compensator->AddNode(voRB26s5CompLeftTube, 1, gGeoIdentity);
2389 //
2390 // [Pos 3] Right Welding Tube
2391 //
2392 TGeoPcon* shRB26s5CompRightTube = new TGeoPcon(0., 360., 11);
2393 // Detail Z
2394 shRB26s5CompRightTube->DefineSection(0, 0., kRB26s5CompTubeInnerR + 0.22, 11.2 / 2.);
2395 shRB26s5CompRightTube->DefineSection(1, 0.05, kRB26s5CompTubeInnerR + 0.18, 11.2 / 2.);
2396 shRB26s5CompRightTube->DefineSection(2, 0.22, kRB26s5CompTubeInnerR, 11.2 / 2. - 0.22);
2397 shRB26s5CompRightTube->DefineSection(3, 0.44, kRB26s5CompTubeInnerR, 11.2 / 2.);
2398 shRB26s5CompRightTube->DefineSection(4, 1.70, kRB26s5CompTubeInnerR, 11.2 / 2.);
2399 shRB26s5CompRightTube->DefineSection(5, 2.10, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2400 shRB26s5CompRightTube->DefineSection(6, 2.80, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2401 shRB26s5CompRightTube->DefineSection(7, 2.80, kRB26s5CompTubeInnerR, 11.3 / 2.);
2402 shRB26s5CompRightTube->DefineSection(8, 3.40, kRB26s5CompTubeInnerR, 11.3 / 2.);
2403 // Normal pipe
2404 shRB26s5CompRightTube->DefineSection(9, 3.50, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2405 shRB26s5CompRightTube->DefineSection(10, 2. * kRB26s5WeldingTubeRightL, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2406
2407 TGeoVolume* voRB26s5CompRightTube = new TGeoVolume("RB26s5CompRightTube", shRB26s5CompRightTube, kMedSteelHC);
2408 voRB26s5Compensator->AddNode(voRB26s5CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s5CompL - 2. * kRB26s5WeldingTubeRightL));
2409 //
2410 // [Pos 4] Ring
2411 //
2412 TGeoTube* shRB26s5CompRing = new TGeoTube(kRB26s5RingInnerR, kRB26s5RingOuterR, kRB26s5RingL);
2413 TGeoVolume* voRB26s5CompRing = new TGeoVolume("RB26s5CompRing", shRB26s5CompRing, kMedSteelHC);
2414 voRB26s5Compensator->AddNode(voRB26s5CompRing, 1, new TGeoTranslation(0., 0., kRB26s5RingZ + kRB26s5RingL));
2415
2416 //
2417 // [Pos 5] Outer Protecting Tube
2418 //
2419 TGeoTube* shRB26s5CompProtTube = new TGeoTube(kRB26s5RingOuterR, kRB26s5ProtOuterR, kRB26s5ProtL);
2420 TGeoVolume* voRB26s5CompProtTube = new TGeoVolume("RB26s5CompProtTube", shRB26s5CompProtTube, kMedSteelHC);
2421 voRB26s5Compensator->AddNode(voRB26s5CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s5ProtZ + kRB26s5ProtL));
2422
2424 // RB26/4 Fixed Point Section //
2425 // Drawing LHCVC2a_0016 //
2427 const float kRB26s4TubeRi = 30.30 / 2.; // Tube inner radius (0.3 cm added for welding)
2428 const float kRB26s4TubeRo = 30.60 / 2.; // Tube outer radius
2429 const float kRB26s4FixedPointL = 12.63; // Length of the fixed point section
2430 const float kRB26s4FixedPointZ = 10.53; // Position of the ring (0.15 added for welding)
2431 const float kRB26s4FixedPointD = 0.595; // Width of the ring
2432 const float kRB26s4FixedPointR = 31.60 / 2.; // Radius of the ring
2433
2434 TGeoPcon* shRB26s4FixedPoint = new TGeoPcon(0., 360., 6);
2435 z0 = 0.;
2436 shRB26s4FixedPoint->DefineSection(0, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2437 z0 += kRB26s4FixedPointZ;
2438 shRB26s4FixedPoint->DefineSection(1, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2439 shRB26s4FixedPoint->DefineSection(2, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2440 z0 += kRB26s4FixedPointD;
2441 shRB26s4FixedPoint->DefineSection(3, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2442 shRB26s4FixedPoint->DefineSection(4, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2443 z0 = kRB26s4FixedPointL;
2444 shRB26s4FixedPoint->DefineSection(5, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2445 TGeoVolume* voRB26s4FixedPoint = new TGeoVolume("RB26s4FixedPoint", shRB26s4FixedPoint, kMedSteelHC);
2446
2447 TGeoVolume* voRB26s4FixedPointM = new TGeoVolume("RB26s4FixedPointM", makeMotherFromTemplate(shRB26s4FixedPoint), kMedVacHC);
2448 voRB26s4FixedPointM->AddNode(voRB26s4FixedPoint, 1, gGeoIdentity);
2449
2451 // RB26/4 Split Flange //
2452 // Drawing LHCVFX__0005 //
2454 const float kRB26s4SFlangeL = 2.99; // Length of the flange
2455 const float kRB26s4SFlangeD1 = 0.85; // Length of section 1
2456 const float kRB26s4SFlangeD2 = 0.36; // Length of section 2
2457 const float kRB26s4SFlangeD3 = 0.73 + 1.05; // Length of section 3
2458 const float kRB26s4SFlangeRo = 36.20 / 2.; // Flange outer radius
2459 const float kRB26s4SFlangeRi1 = 30.60 / 2.; // Flange inner radius section 1
2460 const float kRB26s4SFlangeRi2 = 30.00 / 2.; // Flange inner radius section 2
2461 const float kRB26s4SFlangeRi3 = 30.60 / 2.; // Flange inner radius section 3
2462 z0 = 0;
2463 TGeoPcon* shRB26s4SFlange = new TGeoPcon(0., 360., 6);
2464 z0 = 0.;
2465 shRB26s4SFlange->DefineSection(0, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2466 z0 += kRB26s4SFlangeD1;
2467 shRB26s4SFlange->DefineSection(1, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2468 shRB26s4SFlange->DefineSection(2, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2469 z0 += kRB26s4SFlangeD2;
2470 shRB26s4SFlange->DefineSection(3, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2471 shRB26s4SFlange->DefineSection(4, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2472 z0 += kRB26s4SFlangeD3;
2473 shRB26s4SFlange->DefineSection(5, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2474 TGeoVolume* voRB26s4SFlange = new TGeoVolume("RB26s4SFlange", shRB26s4SFlange, kMedSteelHC);
2475
2476 TGeoVolume* voRB26s4SFlangeM = new TGeoVolume("RB26s4SFlangeM", makeMotherFromTemplate(shRB26s4SFlange, 0, 3), kMedVacHC);
2477 voRB26s4SFlangeM->AddNode(voRB26s4SFlange, 1, gGeoIdentity);
2478
2480 // RB26/5 Rotable Flange //
2481 // Drawing LHCVFX__0009 //
2483 const float kRB26s5RFlangeL = 1.86; // Length of the flange
2484 const float kRB26s5RFlangeD1 = 0.61; // Length of section 1
2485 const float kRB26s5RFlangeD2 = 0.15; // Length of section 2
2486 const float kRB26s5RFlangeD3 = 0.60; // Length of section 3
2487 const float kRB26s5RFlangeD4 = 0.50; // Length of section 4
2488 const float kRB26s5RFlangeRo = 15.20 / 2.; // Flange outer radius
2489 const float kRB26s5RFlangeRi1 = 10.30 / 2.; // Flange inner radius section 1
2490 const float kRB26s5RFlangeRi2 = 10.00 / 2.; // Flange inner radius section 2
2491 const float kRB26s5RFlangeRi3 = 10.30 / 2.; // Flange inner radius section 3
2492 const float kRB26s5RFlangeRi4 = 10.50 / 2.; // Flange inner radius section 4
2493
2494 z0 = 0;
2495 TGeoPcon* shRB26s5RFlange = new TGeoPcon(0., 360., 8);
2496 z0 = 0.;
2497 shRB26s5RFlange->DefineSection(0, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2498 z0 += kRB26s5RFlangeD4;
2499 shRB26s5RFlange->DefineSection(1, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2500 shRB26s5RFlange->DefineSection(2, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2501 z0 += kRB26s5RFlangeD3;
2502 shRB26s5RFlange->DefineSection(3, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2503 shRB26s5RFlange->DefineSection(4, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2504 z0 += kRB26s5RFlangeD2;
2505 shRB26s5RFlange->DefineSection(5, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2506 shRB26s5RFlange->DefineSection(6, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2507 z0 += kRB26s5RFlangeD1;
2508 shRB26s5RFlange->DefineSection(7, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2509 TGeoVolume* voRB26s5RFlange = new TGeoVolume("RB26s5RFlange", shRB26s5RFlange, kMedSteelHC);
2510
2511 TGeoVolume* voRB26s5RFlangeM = new TGeoVolume("RB26s5RFlangeM", makeMotherFromTemplate(shRB26s5RFlange, 4, 7), kMedVacHC);
2512 voRB26s5RFlangeM->AddNode(voRB26s5RFlange, 1, gGeoIdentity);
2513
2514 //
2515 // Assemble RB26/1-2
2516 //
2517 TGeoVolumeAssembly* asRB26s12 = new TGeoVolumeAssembly("RB26s12");
2518 z0 = 0.;
2519 // asRB26s12->AddNode(voRB26s1RFlange, 1, gGeoIdentity);
2520 barrel->AddNode(voRB26s1RFlange, 1, new TGeoCombiTrans(0., 30., -82, rot180));
2521 z0 += kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
2522 barrel->AddNode(voRB26s12TubeM, 1, new TGeoCombiTrans(0., 30., -82. - z0, rot180));
2523 z0 += kRB26s12TubeL;
2524 asRB26s12->AddNode(voRB26s12msTubeM, 1, new TGeoTranslation(0., 0., z0));
2525 z0 += kRB26s12TubeL2;
2526 asRB26s12->AddNode(voRB26s2Compensator, 1, new TGeoTranslation(0., 0., z0));
2527 z0 += kRB26s2CompL;
2528 z0 -= kRB26s2FFlangeD1;
2529 asRB26s12->AddNode(voRB26s2FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2530 z0 += kRB26s2FFlangeL;
2531 const float kRB26s12L = z0;
2532
2533 //
2534 // Assemble RB26/3
2535 //
2536 TGeoVolumeAssembly* asRB26s3 = new TGeoVolumeAssembly("RB26s3");
2537 z0 = 0.;
2538 asRB26s3->AddNode(voRB26s3SFlangeM, 1, gGeoIdentity);
2539 z0 += kRB26s3SFlangeL;
2540 z0 -= kRB26s3SFlangeD3;
2541 asRB26s3->AddNode(voRB26s3FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2542 z0 += kRB26s3FixedPointL;
2543 asRB26s3->AddNode(voRB26s3TubeM, 1, new TGeoTranslation(0., 0., z0));
2544 z0 += kRB26s3TubeL;
2545 asRB26s3->AddNode(voRB26s3Compensator, 1, new TGeoTranslation(0., 0., z0));
2546 z0 += kRB26s3CompL;
2547 z0 -= kRB26s3FFlangeD1;
2548 asRB26s3->AddNode(voRB26s3FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2549 z0 += kRB26s3FFlangeL;
2550 const float kRB26s3L = z0;
2551
2552 //
2553 // Assemble RB26/4-5
2554 //
2555 TGeoVolumeAssembly* asRB26s45 = new TGeoVolumeAssembly("RB26s45");
2556 z0 = 0.;
2557 asRB26s45->AddNode(voRB26s4SFlangeM, 1, gGeoIdentity);
2558 z0 += kRB26s4SFlangeL;
2559 z0 -= kRB26s4SFlangeD3;
2560 asRB26s45->AddNode(voRB26s4FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2561 z0 += kRB26s4FixedPointL;
2562 asRB26s45->AddNode(voRB26s45TubeM, 1, new TGeoTranslation(0., 0., z0));
2563 z0 += kRB26s45TubeL;
2564 asRB26s45->AddNode(voRB26s5Compensator, 1, new TGeoTranslation(0., 0., z0));
2565 z0 += kRB26s5CompL;
2566 z0 -= kRB26s5RFlangeD3;
2567 z0 -= kRB26s5RFlangeD4;
2568 asRB26s45->AddNode(voRB26s5RFlangeM, 1, new TGeoTranslation(0., 0., z0));
2569 z0 += kRB26s5RFlangeL;
2570 const float kRB26s45L = z0;
2571
2572 //
2573 // Assemble RB26
2574 //
2575 TGeoVolumeAssembly* asRB26Pipe = new TGeoVolumeAssembly("RB26Pipe");
2576 z0 = 0.;
2577 asRB26Pipe->AddNode(asRB26s12, 1, new TGeoTranslation(0., 0., z0));
2578 z0 += kRB26s12L;
2579 asRB26Pipe->AddNode(asRB26s3, 1, new TGeoTranslation(0., 0., z0));
2580 z0 += kRB26s3L;
2581 asRB26Pipe->AddNode(asRB26s45, 1, new TGeoTranslation(0., 0., z0));
2582 z0 += kRB26s45L;
2583 top->AddNode(asRB26Pipe, 1, new TGeoCombiTrans(0., 0., -82., rot180));
2584}
2585
2586void PipeRun4::createMaterials()
2587{
2588 //
2589 // Define materials for beam pipe
2590 //
2591 int isxfld = 2.;
2592 float sxmgmx = 10.;
2594
2595 // Steel (Inox)
2596 float asteel[4] = {55.847, 51.9961, 58.6934, 28.0855};
2597 float zsteel[4] = {26., 24., 28., 14.};
2598 float wsteel[4] = {.715, .18, .1, .005};
2599 // AlBe - alloy
2600 float aAlBe[2] = {26.98, 9.01}; // al=2.702 be=1.8477
2601 float zAlBe[2] = {13.00, 4.00};
2602 float wAlBe[2] = {0.4, 0.6};
2603 // Polyamid
2604 float aPA[4] = {16., 14., 12., 1.};
2605 float zPA[4] = {8., 7., 6., 1.};
2606 float wPA[4] = {1., 1., 6., 11.};
2607 // Polyimide film
2608 float aPI[4] = {16., 14., 12., 1.};
2609 float zPI[4] = {8., 7., 6., 1.};
2610 float wPI[4] = {5., 2., 22., 10.};
2611 // Rohacell
2612 float aRohacell[4] = {16., 14., 12., 1.};
2613 float zRohacell[4] = {8., 7., 6., 1.};
2614 float wRohacell[4] = {2., 1., 9., 13.};
2615 // Air
2616 float aAir[4] = {12.0107, 14.0067, 15.9994, 39.948};
2617 float zAir[4] = {6., 7., 8., 18.};
2618 float wAir[4] = {0.000124, 0.755267, 0.231781, 0.012827};
2619 float dAir = 1.20479E-3;
2620 float dAir1 = 1.20479E-11;
2621 // Insulation powder
2622 // Si O Ti Al
2623 float ains[4] = {28.0855, 15.9994, 47.867, 26.982};
2624 float zins[4] = {14., 8., 22., 13.};
2625 float wins[4] = {0.3019, 0.4887, 0.1914, 0.018};
2626 //
2627 //
2628 // Anticorodal
2629 //
2630 // Al Si7 Mg 0.6
2631 //
2632 float aaco[3] = {26.982, 28.0855, 24.035};
2633 float zaco[3] = {13., 14., 12.};
2634 float waco[3] = {0.924, 0.07, 0.006};
2635 // Kapton
2636 //
2637 float aKapton[4] = {1.00794, 12.0107, 14.010, 15.9994};
2638 float zKapton[4] = {1., 6., 7., 8.};
2639 float wKapton[4] = {0.026362, 0.69113, 0.07327, 0.209235};
2640 float dKapton = 1.42;
2641 // NEG coating
2642 // Ti V Zr
2643 float aNEG[4] = {47.87, 50.94, 91.24};
2644 float zNEG[4] = {22.00, 23.00, 40.00};
2645 float wNEG[4] = {1. / 3., 1. / 3., 1. / 3.};
2646 float dNEG = 5.6; // ?
2647
2648 //---------------------------------
2649 // Aluminium AA 5083 for MFT: Al Manganese(Mn) Magnesium(Mg) Chrome(Cr)
2650 float aALU5083[4] = {26.982, 54.938, 24.305, 51.996}; // Mg pas meme a que la ligne Anticorodal!
2651 float zALU5083[4] = {13., 25., 12., 24.};
2652 float wALU5083[4] = {0.947, 0.007, 0.044, 0.0015};
2653 // Aluminium AA 2219 for MFT: Al Cu Mn Ti V Zr
2654 float aALU2219[6] = {26.982, 63.546, 54.938, 47.867, 50.941, 91.224};
2655 float zALU2219[6] = {13., 29., 25., 22., 23., 40.};
2656 float wALU2219[6] = {0.93, 0.063, 0.003, 0.0006, 0.001, 0.0018};
2657 // Aluminium AA 7075 for beam pipe support (wings): Al Zn Mg Cu
2658 float aALU7075[4] = {26.982, 65.38, 24.305, 63.546};
2659 float zALU7075[4] = {13., 30., 12., 29.};
2660 float wALU7075[4] = {0.902, 0.06, 0.024, 0.014};
2661 //---------------------------------
2662
2663 // ****************
2664 // Defines tracking media parameters.
2665 //
2666 float epsil = .1; // Tracking precision,
2667 float stemax = -0.01; // Maximum displacement for multiple scat
2668 float tmaxfd = -20.; // Maximum angle due to field deflection
2669 float deemax = -.3; // Maximum fractional energy loss, DLS
2670 float stmin = -.8;
2671 // ***************
2672 //
2673
2674 auto& matmgr = o2::base::MaterialManager::Instance();
2675
2676 // Beryllium
2677 matmgr.Material("PIPE", 5, "BERILLIUM$", 9.01, 4., 1.848, 35.3, 36.7);
2678 matmgr.Medium("PIPE", 5, "BE", 5, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2679
2680 // Copper
2681 matmgr.Material("PIPE", 10, "COPPER", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2682 matmgr.Material("PIPE", 30, "COPPER_NF", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2683 matmgr.Material("PIPE", 50, "COPPER_HC", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2684 matmgr.Material("PIPE", 70, "COPPER_NFHC", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2685
2686 matmgr.Medium("PIPE", 10, "CU", 10, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2687 matmgr.Medium("PIPE", 30, "CU_NF", 30, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2688 matmgr.Medium("PIPE", 50, "CU_HC", 50, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2689 matmgr.Medium("PIPE", 70, "CU_NFHC", 70, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2690
2691 // Air
2692 matmgr.Mixture("PIPE", 15, "AIR$ ", aAir, zAir, dAir, 4, wAir);
2693 matmgr.Mixture("PIPE", 35, "AIR_HIGH$ ", aAir, zAir, dAir, 4, wAir);
2694 matmgr.Mixture("PIPE", 55, "AIR_NF ", aAir, zAir, dAir, 4, wAir);
2695 matmgr.Medium("PIPE", 15, "AIR", 15, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2696 matmgr.Medium("PIPE", 35, "AIR_HIGH", 35, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2697 matmgr.Medium("PIPE", 55, "AIR_NF", 55, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2698
2699 // Insulation
2700 matmgr.Mixture("PIPE", 14, "INSULATION0$", ains, zins, 0.41, 4, wins);
2701 matmgr.Medium("PIPE", 14, "INS_C0", 14, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2702
2703 //
2704 // Vacuum
2705 matmgr.Mixture("PIPE", 16, "VACUUM$ ", aAir, zAir, dAir1, 4, wAir);
2706 matmgr.Mixture("PIPE", 36, "VACUUM$_NF", aAir, zAir, dAir1, 4, wAir);
2707 matmgr.Mixture("PIPE", 56, "VACUUM$_HC ", aAir, zAir, dAir1, 4, wAir);
2708 matmgr.Mixture("PIPE", 76, "VACUUM$_NFHC", aAir, zAir, dAir1, 4, wAir);
2709
2710 matmgr.Medium("PIPE", 16, "VACUUM", 16, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2711 matmgr.Medium("PIPE", 36, "VACUUM_NF", 36, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2712 matmgr.Medium("PIPE", 56, "VACUUM_HC", 56, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2713 matmgr.Medium("PIPE", 76, "VACUUM_NFHC", 76, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2714
2715 //
2716 // Steel
2717 matmgr.Mixture("PIPE", 19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
2718 matmgr.Mixture("PIPE", 39, "STAINLESS STEEL$_NF", asteel, zsteel, 7.88, 4, wsteel);
2719 matmgr.Mixture("PIPE", 59, "STAINLESS STEEL$_HC", asteel, zsteel, 7.88, 4, wsteel);
2720 matmgr.Mixture("PIPE", 79, "STAINLESS STEEL$_NFHC", asteel, zsteel, 7.88, 4, wsteel);
2721
2722 matmgr.Medium("PIPE", 19, "INOX", 19, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2723 matmgr.Medium("PIPE", 39, "INOX_NF", 39, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2724 matmgr.Medium("PIPE", 59, "INOX_HC", 59, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2725 matmgr.Medium("PIPE", 79, "INOX_NFHC", 79, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2726
2727 //----------------- for the MFT ----------------------
2728 matmgr.Mixture("PIPE", 63, "ALUMINIUM5083$", aALU5083, zALU5083, 2.66, 4, wALU5083); // from aubertduval.fr
2729 matmgr.Mixture("PIPE", 64, "ALUMINIUM2219$", aALU2219, zALU2219, 2.84, 6, wALU2219); // from aubertduval.fr
2730 matmgr.Medium("PIPE", 63, "AA5083", 63, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2731 matmgr.Medium("PIPE", 64, "AA2219", 64, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2732
2733 //----------------------------------------------------
2734 matmgr.Mixture("PIPE", 65, "PI$", aPI, zPI, 1.42, -4, wPI);
2735 matmgr.Medium("PIPE", 65, "POLYIMIDE", 65, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2736
2737 //---------------------------------
2738 // Carbon Fiber M55J
2739 matmgr.Material("PIPE", 66, "M55J6K$", 12.0107, 6, 1.92, 999, 999);
2740 matmgr.Medium("PIPE", 66, "M55J6K", 66, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2741
2742 // Rohacell
2743 matmgr.Mixture("PIPE", 67, "Rohacell$", aRohacell, zRohacell, 0.03, -4, wRohacell);
2744 matmgr.Medium("PIPE", 67, "ROHACELL", 67, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2745
2746 // Titanium
2747 matmgr.Material("PIPE", 22, "Titanium$", 47.867, 22, 4.54, 3.560, 27.80);
2748 matmgr.Medium("PIPE", 22, "TITANIUM", 22, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2749
2750 // Alu 7075 (ZICRAL)
2751 matmgr.Mixture("PIPE", 68, "ALUMINIUM7075$", aALU7075, zALU7075, 2.810, -4, wALU7075);
2752 matmgr.Medium("PIPE", 68, "AA7075", 68, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2753
2754 // Al-Be alloy
2755 matmgr.Mixture("PIPE", 11, "AlBe$", aAlBe, zAlBe, 2.07, 2, wAlBe);
2756 matmgr.Medium("PIPE", 11, "AlBe", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2757}
2758
2759TGeoPcon* PipeRun4::makeMotherFromTemplate(const TGeoPcon* shape, int imin, int imax, float r0, int nz)
2760{
2761 //
2762 // Create a mother shape from a template setting some min radii to 0
2763 //
2764 int nz0 = shape->GetNz();
2765 // if nz > -1 the number of planes is given by nz
2766 if (nz != -1) {
2767 nz0 = nz;
2768 }
2769 TGeoPcon* mother = new TGeoPcon(0., 360., nz0);
2770
2771 if (imin == -1 || imax == -1) {
2772 imin = 0;
2773 imax = shape->GetNz();
2774 } else if (imax >= nz0) {
2775 imax = nz0 - 1;
2776 printf("Warning: imax reset to nz-1 %5d %5d %5d %5d\n", imin, imax, nz, nz0);
2777 }
2778
2779 // construct the sections dynamically since duplications have to be avoided
2780 std::vector<double> pconparams;
2781 pconparams.reserve(nz0);
2782 pconparams.push_back(0.);
2783 pconparams.push_back(360);
2784 pconparams.push_back(nz0);
2785 int zplanecounter = 0;
2786
2787 auto addSection = [&pconparams, &zplanecounter](double z, double rmin, double rmax) {
2788 pconparams.push_back(z);
2789 pconparams.push_back(rmin);
2790 pconparams.push_back(rmax);
2791 zplanecounter++;
2792 };
2793
2794 double zlast, rminlast, rmaxlast;
2795 for (int i = 0; i < shape->GetNz(); i++) {
2796 double rmin = shape->GetRmin(i);
2797 if ((i >= imin) && (i <= imax)) {
2798 rmin = r0;
2799 }
2800 double rmax = shape->GetRmax(i);
2801 double z = shape->GetZ(i);
2802 if (i == 0 || (z != zlast || rmin != rminlast || rmax != rmaxlast)) {
2803 addSection(z, rmin, rmax);
2804 }
2805 zlast = z;
2806 rminlast = rmin;
2807 rmaxlast = rmax;
2808 }
2809 // correct dimension (unless the user chose the number of sections)
2810 if (nz == -1) {
2811 pconparams[2] = zplanecounter;
2812 // reinit polycon from parameters
2813 mother->SetDimensions(pconparams.data());
2814 } else {
2815 for (int i = 0; i < zplanecounter; i++) {
2816 mother->DefineSection(i, pconparams[3 + 3 * i], pconparams[4 + 3 * i], pconparams[5 + 3 * i]);
2817 }
2818 }
2819
2820 return mother;
2821}
2822
2823TGeoPcon* PipeRun4::makeInsulationFromTemplate(TGeoPcon* shape)
2824{
2825 //
2826 // Create an beam pipe insulation layer shape from a template
2827 //
2828 int nz = shape->GetNz();
2829 TGeoPcon* insu = new TGeoPcon(0., 360., nz);
2830
2831 for (int i = 0; i < nz; i++) {
2832 double z = shape->GetZ(i);
2833 double rmin = shape->GetRmin(i);
2834 double rmax = shape->GetRmax(i);
2835 rmax += 0.5;
2836 shape->DefineSection(i, z, rmin, rmax);
2837 rmin = rmax - 0.5;
2838 insu->DefineSection(i, z, rmin, rmax);
2839 }
2840 return insu;
2841}
2842
2843TGeoVolume* PipeRun4::makeBellow(const char* ext, int nc, float rMin, float rMax, float dU, float rPlie,
2844 float dPlie)
2845{
2846 // nc Number of convolution
2847 // rMin Inner radius of the bellow
2848 // rMax Outer radius of the bellow
2849 // dU Undulation length
2850 // rPlie Plie radius
2851 // dPlie Plie thickness
2852 auto& matmgr = o2::base::MaterialManager::Instance();
2853 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
2854 const TGeoMedium* kMedSteel = matmgr.getTGeoMedium("PIPE_INOX");
2855 //
2856 // Upper part of the undulation
2857 //
2858 std::string name, nameA, nameB;
2859 TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie);
2860 nameA = fmt::format("{:s}TorusU", ext);
2861 shPlieTorusU->SetName(nameA.c_str());
2862 TGeoTube* shPlieTubeU = new TGeoTube(rMax - rPlie, rMax, rPlie);
2863 nameB = fmt::format("{:s}TubeU", ext);
2864 shPlieTubeU->SetName(nameB.c_str());
2865 name = fmt::format("{:s}UpperPlie", ext);
2866 TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
2867
2868 TGeoVolume* voWiggleU = new TGeoVolume(name.c_str(), shUpperPlie, kMedSteel);
2869 //
2870 // Lower part of the undulation
2871 TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie);
2872 nameA = fmt::format("{:s}TorusL", ext);
2873 shPlieTorusL->SetName(nameA.c_str());
2874 TGeoTube* shPlieTubeL = new TGeoTube(rMin, rMin + rPlie, rPlie);
2875 nameB = fmt::format("{:s}TubeL", ext);
2876 shPlieTubeL->SetName(nameB.c_str());
2877 name = fmt::format("{:s}LowerPlie", ext);
2878 TGeoCompositeShape* shLowerPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
2879
2880 TGeoVolume* voWiggleL = new TGeoVolume(name.c_str(), shLowerPlie, kMedSteel);
2881
2882 //
2883 // Connection between upper and lower part of undulation
2884 TGeoVolume* voWiggleC1 = new TGeoVolume(fmt::format("{:s}PlieConn1", ext).c_str(), new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie / 2.), kMedSteel);
2885 //
2886 // One wiggle
2887 float dz = rPlie - dPlie / 2.;
2888 float z0 = -dPlie / 2.;
2889 TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(fmt::format("{:s}Wiggle", ext).c_str());
2890 asWiggle->AddNode(voWiggleC1, 1, new TGeoTranslation(0., 0., z0));
2891 z0 += dz;
2892 asWiggle->AddNode(voWiggleU, 1, new TGeoTranslation(0., 0., z0));
2893 z0 += dz;
2894 asWiggle->AddNode(voWiggleC1, 2, new TGeoTranslation(0., 0., z0));
2895 z0 += dz;
2896 asWiggle->AddNode(voWiggleL, 1, new TGeoTranslation(0., 0., z0));
2897 asWiggle->GetShape()->ComputeBBox(); // enforce recomputing of BBox
2898 //
2899 float zBellowTot = nc * (static_cast<TGeoBBox*>(asWiggle->GetShape()))->GetDZ();
2900 TGeoVolume* voBellow = new TGeoVolume(fmt::format("{:s}BellowUS", ext).c_str(), new TGeoTube(rMin, rMax, zBellowTot), kMedVac);
2901 // Positioning of the volumes
2902 z0 = -dU / 2. + rPlie;
2903 voBellow->AddNode(voWiggleL, 2, new TGeoTranslation(0., 0., z0));
2904 z0 += rPlie;
2905 float zsh = 4. * rPlie - 2. * dPlie;
2906 for (int iw = 0; iw < nc; iw++) {
2907 float zpos = z0 + iw * zsh;
2908 voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos - dPlie));
2909 }
2910 return voBellow;
2911}
2912
2913TGeoVolume* PipeRun4::makeBellowCside(const char* ext, int nc, float rMin, float rMax, float rPlie, float dPlie)
2914{
2915 // nc Number of convolution
2916 // rMin Inner radius of the bellow
2917 // rMax Outer radius of the bellow
2918 // dU Undulation length
2919 // rPlie Plie radius
2920 // dPlie Plie thickness
2921 auto& matmgr = o2::base::MaterialManager::Instance();
2922 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
2923 const TGeoMedium* kMedAlu5083 = matmgr.getTGeoMedium("PIPE_AA5083"); // fm
2924
2925 float dU = nc * (4. * rPlie - 2. * dPlie);
2926
2927 std::string name, nameA, nameB;
2928 name = fmt::format("{:s}BellowUS", ext);
2929 // TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac);
2930 TGeoVolumeAssembly* voBellow = new TGeoVolumeAssembly(name.c_str());
2931 //
2932 // Upper part of the undulation
2933 //
2934
2935 TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie);
2936 nameA = fmt::format("{:s}TorusU", ext);
2937 shPlieTorusU->SetName(nameA.c_str());
2938 TGeoTube* shPlieTubeU = new TGeoTube(rMax - rPlie, rMax, rPlie);
2939 nameB = fmt::format("{:s}TubeU", ext);
2940 shPlieTubeU->SetName(nameB.c_str());
2941 name = fmt::format("{:s}UpperPlie", ext);
2942 TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
2943
2944 TGeoVolume* voWiggleU = new TGeoVolume(name.c_str(), shUpperPlie, kMedAlu5083);
2945 voWiggleU->SetLineColor(kOrange); // fm
2946
2947 // First Lower part of the ondulation
2948 TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie);
2949 nameA = fmt::format("{:s}TorusL", ext);
2950 shPlieTorusL->SetName(nameA.c_str());
2951 TGeoTranslation* t1 = new TGeoTranslation("t1", 0, 0, -rPlie / 2.);
2952 t1->RegisterYourself();
2953
2954 TGeoTube* shPlieTubeL = new TGeoTube(rMin, rMin + rPlie, rPlie / 2.);
2955 nameB = fmt::format("{:s}TubeL", ext);
2956 shPlieTubeL->SetName(nameB.c_str());
2957 name = fmt::format("{:s}LowerPlie", ext);
2958 TGeoCompositeShape* shLowerPlie1 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}:t1", nameA, nameB).c_str());
2959
2960 TGeoVolume* voWiggleL1 = new TGeoVolume(name.c_str(), shLowerPlie1, kMedAlu5083);
2961 voWiggleL1->SetLineColor(kOrange); // fm
2962
2963 // Second Lower part of the undulation
2964 TGeoTranslation* t2 = new TGeoTranslation("t2", 0, 0, rPlie / 2.);
2965 t2->RegisterYourself();
2966
2967 TGeoCompositeShape* shLowerPlie2 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}:t2", nameA, nameB).c_str());
2968
2969 TGeoVolume* voWiggleL2 = new TGeoVolume(name.c_str(), shLowerPlie2, kMedAlu5083);
2970 voWiggleL2->SetLineColor(kOrange); // fm
2971
2972 // Connection between upper and lower part of undulation
2973 name = fmt::format("{:s}PlieConn1", ext);
2974 TGeoVolume* voWiggleC1 = new TGeoVolume(name.c_str(), new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie / 2.), kMedAlu5083);
2975 voWiggleC1->SetLineColor(kOrange); // fm
2976
2977 //
2978 // Vacuum Part
2979 //
2980
2981 //--Upper part of the ondulation
2982
2983 TGeoTorus* vacPlieTorusU = new TGeoTorus(rMax - rPlie, 0., rPlie - dPlie);
2984 nameA = fmt::format("{:s}vacTorusU", ext);
2985 vacPlieTorusU->SetName(nameA.c_str());
2986 TGeoTube* vacPlieTubeU = new TGeoTube(0., rMax - rPlie, rPlie - dPlie);
2987 nameB = fmt::format("{:s}vacTubeU", ext);
2988 vacPlieTubeU->SetName(nameB.c_str());
2989 name = fmt::format("{:s}vacUpperPlie", ext);
2990 TGeoCompositeShape* vacUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}+{:s}", nameA, nameB).c_str());
2991
2992 TGeoVolume* voVacWiggleU = new TGeoVolume(name.c_str(), vacUpperPlie, kMedVac);
2993 voVacWiggleU->SetVisibility(0);
2994
2995 // First Lower part of the undulation
2996 TGeoTorus* vacPlieTorusL = new TGeoTorus(rMin + rPlie, 0., rPlie);
2997 nameA = fmt::format("{:s}vacTorusL", ext);
2998 vacPlieTorusL->SetName(nameA.c_str());
2999
3000 TGeoTube* vacPlieTubeL = new TGeoTube(0., rMin + rPlie, rPlie / 2.);
3001 nameB = fmt::format("{:s}vacTubeL", ext);
3002 vacPlieTubeL->SetName(nameB.c_str());
3003 name = fmt::format("{:s}vacLowerPlie", ext);
3004 TGeoCompositeShape* vacLowerPlie1 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}:t1-{:s}", nameB, nameA).c_str());
3005
3006 TGeoVolume* voVacWiggleL1 = new TGeoVolume(name.c_str(), vacLowerPlie1, kMedVac);
3007 voVacWiggleL1->SetVisibility(0);
3008
3009 // Second Lower part of the undulation
3010 TGeoCompositeShape* vacLowerPlie2 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}:t2-{:s}", nameB, nameA).c_str());
3011
3012 TGeoVolume* voVacWiggleL2 = new TGeoVolume(name.c_str(), vacLowerPlie2, kMedVac);
3013 voVacWiggleL2->SetVisibility(0);
3014
3015 // One wiggle
3016 float dz = rPlie - dPlie / 2.;
3017 float z0 = 2. * rPlie;
3018 name = fmt::format("{:s}Wiggle", ext);
3019 TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name.c_str());
3020
3021 asWiggle->AddNode(voWiggleL1, 1, new TGeoTranslation(0., 0., z0));
3022 asWiggle->AddNode(voVacWiggleL1, 1, new TGeoTranslation(0., 0., z0));
3023 z0 -= dz;
3024 asWiggle->AddNode(voWiggleC1, 1, new TGeoTranslation(0., 0., z0));
3025 z0 -= dz;
3026 asWiggle->AddNode(voWiggleU, 1, new TGeoTranslation(0., 0., z0));
3027 asWiggle->AddNode(voVacWiggleU, 1, new TGeoTranslation(0., 0., z0));
3028 z0 -= dz;
3029 asWiggle->AddNode(voWiggleC1, 2, new TGeoTranslation(0., 0., z0));
3030 z0 -= dz;
3031 asWiggle->AddNode(voWiggleL2, 1, new TGeoTranslation(0., 0., z0));
3032 asWiggle->AddNode(voVacWiggleL2, 1, new TGeoTranslation(0., 0., z0));
3033
3034 // Positioning of the volumes
3035 z0 = +dU / 2.;
3036 float zsh = 4. * dz;
3037 // for (int iw = 0; iw < 1; iw++) {
3038 for (int iw = 0; iw < nc; iw++) {
3039 float zpos = z0 - iw * zsh;
3040 voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos));
3041 }
3042 return voBellow;
3043}
3044
3045TGeoVolume* PipeRun4::makeSupportBar(const char* tag, float Rin, float Rout, float length, float skinLength)
3046{
3047 //
3048 // make a support bar with the specified dimensions of the collar and arms
3049 //
3050
3051 // Dimensions :
3052
3053 const float kSupportXdim = length; // 20.67;
3054 const float kBeamPipeRingZdim = 5.25 / 2;
3055 /* thin layer of material between pipe and support; to be put back later */
3056 const float kVespelRmax = Rin + 0.08;
3057 const float kVespelRmin = Rin;
3058 const float kBeampipeCarbonCollarRmin = Rin + 0.18; // 2.4;
3059 const float kBeampipeCarbonCollarRmax = Rout; // 2.7;
3060
3061 const float kFixationCarbonCollarRmin = 1.5;
3062 const float kFixationCarbonCollarRmax = 1.7;
3063 const float kFixationCarbonCollarDZ = 2.5;
3064
3065 const float kSkinThickness = 0.1;
3066 const float kSkinXdim = skinLength; // 14.25;
3067 const float kSkinYdim = 1.;
3068 const float kSkinZdim = kFixationCarbonCollarDZ;
3069 const float kCarbonEarsXdim = 1.01;
3070 const float kCarbonEarsYdim = 0.2;
3071 const float kCarbonEarsZdim = kFixationCarbonCollarDZ;
3072
3073 const TGeoMedium* kMedRohacell = gGeoManager->GetMedium("PIPE_ROHACELL");
3074 const TGeoMedium* kMedPolyimide = gGeoManager->GetMedium("PIPE_POLYIMIDE");
3075 const TGeoMedium* kMedCarbonFiber = gGeoManager->GetMedium("PIPE_M55J6K");
3076
3077 TGeoVolume* beamPipeSupport = new TGeoVolumeAssembly(Form("BeampipeSupport_%s", tag));
3078
3079 // Support Bar
3080 TGeoVolumeAssembly* supportBar = new TGeoVolumeAssembly(Form("BPS_SupportBar_%s", tag));
3081
3082 TGeoBBox* carbonSkinBPS = new TGeoBBox(kSkinXdim / 2., kSkinYdim / 2., kSkinZdim / 2.);
3083 carbonSkinBPS->SetName(Form("carbonSkinBPS_%s", tag));
3084
3085 TGeoBBox* foambarBPS = new TGeoBBox(Form("foambarBPS_%s", tag), kSkinXdim / 2. - kSkinThickness, kSkinYdim / 2. - kSkinThickness,
3086 kSkinZdim / 2. - kSkinThickness / 2.);
3087 TGeoBBox* carbonEarsBPS = new TGeoBBox(kCarbonEarsXdim / 2., kCarbonEarsYdim / 2., kCarbonEarsZdim / 2.);
3088 carbonEarsBPS->SetName(Form("carbonEarsBPS_%s", tag));
3089
3090 // TODO: could reuse those?..
3091 TGeoTranslation* transBP1 = new TGeoTranslation(Form("transBP1_%s", tag), (kSkinXdim + kCarbonEarsXdim) / 2., 0., 0.);
3092 transBP1->RegisterYourself();
3093 TGeoTranslation* transBP2 = new TGeoTranslation(Form("transBP2_%s", tag), -(kSkinXdim + kCarbonEarsXdim) / 2., 0., 0.);
3094 transBP2->RegisterYourself();
3095 TGeoCompositeShape* supportBarCarbon = new TGeoCompositeShape(
3096 Form("BPS_supportBarCarbon_%s", tag), Form("(carbonSkinBPS_%s-foambarBPS_%s)+carbonEarsBPS_%s:transBP1_%s+carbonEarsBPS_%s:transBP2_%s", tag, tag, tag, tag, tag, tag));
3097
3098 TGeoVolume* supportBarCarbonVol = new TGeoVolume(Form("BPS_supportBarCarbon_%s", tag), supportBarCarbon, kMedCarbonFiber);
3099 supportBarCarbonVol->SetLineColor(kGray + 3);
3100
3101 supportBar->AddNode(supportBarCarbonVol, 1, new TGeoTranslation(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0));
3102 supportBar->AddNode(supportBarCarbonVol, 2, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
3103
3104 TGeoVolume* foamVol = new TGeoVolume(Form("supportBarFoam_%s", tag), foambarBPS, kMedRohacell);
3105 foamVol->SetLineColor(kGray);
3106 supportBar->AddNode(foamVol, 1, new TGeoTranslation(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0));
3107 supportBar->AddNode(foamVol, 2, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
3108
3109 beamPipeSupport->AddNode(supportBar, 1);
3110
3111 // Fixation to wings
3112 TGeoVolumeAssembly* fixationToWings = new TGeoVolumeAssembly(Form("BPS_fixationToWings_%s", tag));
3113
3114 float delatX = 0.1;
3115
3116 TGeoTubeSeg* fixationTube = new TGeoTubeSeg(kFixationCarbonCollarRmin, kFixationCarbonCollarRmax, kFixationCarbonCollarDZ / 2., -90., 90.);
3117 fixationTube->SetName(Form("fixationTube_%s", tag));
3118 TGeoBBox* fixationToBar = new TGeoBBox(kCarbonEarsXdim / 2. + delatX, kCarbonEarsYdim / 2., kCarbonEarsZdim / 2.);
3119 fixationToBar->SetName(Form("fixationToBar_%s", tag));
3120
3121 TGeoTranslation* transBP3 = new TGeoTranslation(Form("transBP3_%s", tag), kFixationCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX, kCarbonEarsYdim, 0.);
3122 transBP3->RegisterYourself();
3123 TGeoTranslation* transBP4 = new TGeoTranslation(Form("transBP4_%s", tag), kFixationCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX, -kCarbonEarsYdim, 0.);
3124 transBP4->RegisterYourself();
3125 TGeoCompositeShape* fixationToWing = new TGeoCompositeShape(Form("fixationToWing_%s", tag), Form("fixationTube_%s+fixationToBar_%s:transBP3_%s+fixationToBar_%s:transBP4_%s", tag, tag, tag, tag, tag));
3126
3127 TGeoVolume* fixationToWingVol = new TGeoVolume(Form("fixationToWing_%s", tag), fixationToWing, kMedCarbonFiber);
3128 fixationToWingVol->SetLineColor(kGray + 2);
3129
3130 fixationToWings->AddNode(fixationToWingVol, 1, new TGeoTranslation(-kSupportXdim, 0, 0));
3131 fixationToWings->AddNode(fixationToWingVol, 2, new TGeoCombiTrans(+kSupportXdim, 0, 0, new TGeoRotation("rot", 0., 0., 180.)));
3132
3133 beamPipeSupport->AddNode(fixationToWings, 1);
3134
3135 // Fixation to pipe
3136
3137 TGeoVolumeAssembly* fixationToPipe = new TGeoVolumeAssembly(Form("fixationToPipe_%s", tag));
3138
3139 TGeoTubeSeg* pipeSupportTubeCarbon = new TGeoTubeSeg(kBeampipeCarbonCollarRmin, kBeampipeCarbonCollarRmax, kFixationCarbonCollarDZ / 2., 0., 180.);
3140 pipeSupportTubeCarbon->SetName(Form("pipeSupportTubeCarbon_%s", tag));
3141
3142 TGeoBBox* fixationTubeToBar = new TGeoBBox(kCarbonEarsXdim / 2. + delatX, kCarbonEarsYdim / 2., kCarbonEarsZdim / 2.);
3143 fixationTubeToBar->SetName(Form("fixationTubeToBar_%s", tag));
3144 TGeoBBox* hole = new TGeoBBox((kBeampipeCarbonCollarRmax - kVespelRmin) / 2., kCarbonEarsYdim / 2., kCarbonEarsZdim / 2. + 1e-3);
3145 hole->SetName(Form("hole_%s", tag));
3146
3147 TGeoTranslation* transBP5 = new TGeoTranslation(Form("transBP5_%s", tag), kBeampipeCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX, kCarbonEarsYdim, 0.);
3148 transBP5->RegisterYourself();
3149 TGeoTranslation* transBP6 = new TGeoTranslation(Form("transBP6_%s", tag), -(kBeampipeCarbonCollarRmax + kCarbonEarsXdim / 2. - delatX), kCarbonEarsYdim, 0.);
3150 transBP6->RegisterYourself();
3151 TGeoTranslation* transBP7 = new TGeoTranslation(Form("transBP7_%s", tag), (kBeampipeCarbonCollarRmax + kVespelRmin) / 2., 0., 0.);
3152 transBP7->RegisterYourself();
3153 TGeoTranslation* transBP8 = new TGeoTranslation(Form("transBP8_%s", tag), -((kBeampipeCarbonCollarRmax + kVespelRmin) / 2.), 0., 0.);
3154 transBP8->RegisterYourself();
3155 TGeoCompositeShape* halfFixationToPipe = new TGeoCompositeShape(
3156 Form("halfFixationToPipe_%s", tag),
3157 Form("(pipeSupportTubeCarbon_%s-hole_%s:transBP7_%s-hole_%s:transBP8_%s)+fixationTubeToBar_%s:transBP5_%s+fixationTubeToBar_%s:transBP6_%s", tag, tag, tag, tag, tag, tag, tag, tag, tag));
3158
3159 TGeoVolume* halfFixationToPipeVol = new TGeoVolume(Form("halfFixationToPipe_%s", tag), halfFixationToPipe, kMedCarbonFiber);
3160 halfFixationToPipeVol->SetLineColor(kRed + 2);
3161
3162 fixationToPipe->AddNode(halfFixationToPipeVol, 1);
3163 fixationToPipe->AddNode(halfFixationToPipeVol, 2, new TGeoCombiTrans(0, 0, 0, new TGeoRotation("rot", 0., 0., 180.)));
3164
3165 beamPipeSupport->AddNode(fixationToPipe, 1);
3166
3167 // Beam Pipe Ring
3168
3169 TGeoVolumeAssembly* beamPipeRing = new TGeoVolumeAssembly(Form("beamPipeRing_%s", tag));
3170
3171 TGeoTube* beamPipeRingCarbon = new TGeoTube(kVespelRmax, kBeampipeCarbonCollarRmin, kBeamPipeRingZdim / 2.);
3172 TGeoVolume* beamPipeRingCarbonVol = new TGeoVolume(Form("beamPipeRingCarbon_%s", tag), beamPipeRingCarbon, kMedCarbonFiber);
3173 beamPipeRingCarbonVol->SetLineColor(kGreen + 2);
3174 beamPipeRing->AddNode(beamPipeRingCarbonVol, 1, new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
3175
3176 TGeoTube* beamPipeRingVespel = new TGeoTube(kVespelRmin, kVespelRmax, kBeamPipeRingZdim / 2.);
3177 TGeoVolume* beamPipeRingVespelVol = new TGeoVolume(Form("beamPipeRingVespel_%s", tag), beamPipeRingVespel, kMedPolyimide);
3178 beamPipeRingVespelVol->SetLineColor(kGreen + 4);
3179 beamPipeRing->AddNode(beamPipeRingVespelVol, 1, new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
3180
3181 beamPipeSupport->AddNode(beamPipeRing, 1);
3182 beamPipeSupport->SetVisibility(0);
3183
3184 return beamPipeSupport;
3185}
3186
3187// ----------------------------------------------------------------------------
3188FairModule* PipeRun4::CloneModule() const { return new PipeRun4(*this); }
Definition of the Detector class.
int32_t i
ClassImp(IdPath)
static void initFieldTrackingParams(int &mode, float &maxfield)
Definition Detector.cxx:143
static MaterialManager & Instance()
a common base class for passive modules - implementing generic functions
Definition PassiveBase.h:24
FairModule * CloneModule() const override
Clone this object (used in MT mode only)
void ConstructGeometry() override
Definition PipeRun4.cxx:67
GLint GLenum GLint x
Definition glcorearb.h:403
GLdouble GLdouble GLdouble GLdouble top
Definition glcorearb.h:4077
GLuint const GLchar * name
Definition glcorearb.h:781
GLuint GLsizei GLsizei * length
Definition glcorearb.h:790
GLdouble GLdouble GLdouble z
Definition glcorearb.h:843
GLuint GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat t1
Definition glcorearb.h:5034