Project
Loading...
Searching...
No Matches
OrtInterface.cxx
Go to the documentation of this file.
1// Copyright 2019-2020 CERN and copyright holders of ALICE O2.
2// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders.
3// All rights not expressly granted are reserved.
4//
5// This software is distributed under the terms of the GNU General Public
6// License v3 (GPL Version 3), copied verbatim in the file "COPYING".
7//
8// In applying this license CERN does not waive the privileges and immunities
9// granted to it by virtue of its status as an Intergovernmental Organization
10// or submit itself to any jurisdiction.
11
15
16#include "ML/OrtInterface.h"
18
19// ONNX includes
20#include <onnxruntime_cxx_api.h>
21
22#include <sstream>
23
24namespace o2
25{
26
27namespace ml
28{
29
30OrtModel::OrtModel() = default;
31OrtModel::OrtModel(std::unordered_map<std::string, std::string> optionsMap) { init(optionsMap); }
32OrtModel::~OrtModel() = default;
33void OrtModel::init(std::unordered_map<std::string, std::string> optionsMap)
34{
35 initOptions(optionsMap);
37}
38
39struct OrtModel::OrtVariables { // The actual implementation is hidden in the .cxx file
40 // ORT runtime objects
41 Ort::RunOptions runOptions;
42 std::unique_ptr<Ort::Env> env = nullptr;
43 std::unique_ptr<Ort::Session> session = nullptr;
44 Ort::SessionOptions sessionOptions;
45 Ort::AllocatorWithDefaultOptions allocator;
46 Ort::MemoryInfo memoryInfo = Ort::MemoryInfo("Cpu", OrtAllocatorType::OrtDeviceAllocator, 0, OrtMemType::OrtMemTypeDefault);
47 std::unique_ptr<Ort::IoBinding> ioBinding = nullptr;
48};
49
50// General purpose
51void OrtModel::initOptions(std::unordered_map<std::string, std::string> optionsMap)
52{
53 mPImplOrt = std::make_unique<OrtVariables>();
54
55 // Load from options map
56 if (!optionsMap.contains("model-path")) {
57 LOG(fatal) << "(ORT) Model path cannot be empty!";
58 }
59
60 if (!optionsMap["model-path"].empty()) {
61 mModelPath = optionsMap["model-path"];
62 mDeviceType = (optionsMap.contains("device-type") ? optionsMap["device-type"] : "CPU");
63 mDeviceId = (optionsMap.contains("device-id") ? std::stoi(optionsMap["device-id"]) : -1);
64 mAllocateDeviceMemory = (optionsMap.contains("allocate-device-memory") ? std::stoi(optionsMap["allocate-device-memory"]) : 0);
65 mIntraOpNumThreads = (optionsMap.contains("intra-op-num-threads") ? std::stoi(optionsMap["intra-op-num-threads"]) : 0);
66 mInterOpNumThreads = (optionsMap.contains("inter-op-num-threads") ? std::stoi(optionsMap["inter-op-num-threads"]) : 0);
67 mLoggingLevel = (optionsMap.contains("logging-level") ? std::stoi(optionsMap["logging-level"]) : 0);
68 mEnableProfiling = (optionsMap.contains("enable-profiling") ? std::stoi(optionsMap["enable-profiling"]) : 0);
69 mEnableOptimizations = (optionsMap.contains("enable-optimizations") ? std::stoi(optionsMap["enable-optimizations"]) : 0);
70 mEnvName = (optionsMap.contains("onnx-environment-name") ? optionsMap["onnx-environment-name"] : "onnx_model_inference");
71 mDeterministicMode = (optionsMap.contains("deterministic-compute") ? std::stoi(optionsMap["deterministic-compute"]) : 0);
72
73 if (mDeviceType == "CPU") {
74 (mPImplOrt->sessionOptions).SetIntraOpNumThreads(mIntraOpNumThreads);
75 (mPImplOrt->sessionOptions).SetInterOpNumThreads(mInterOpNumThreads);
76 if (mIntraOpNumThreads > 1 || mInterOpNumThreads > 1) {
77 (mPImplOrt->sessionOptions).SetExecutionMode(ExecutionMode::ORT_PARALLEL);
78 } else if (mIntraOpNumThreads == 1) {
79 (mPImplOrt->sessionOptions).SetExecutionMode(ExecutionMode::ORT_SEQUENTIAL);
80 }
81 if (mLoggingLevel < 2) {
82 LOG(info) << "(ORT) CPU execution provider set with " << mIntraOpNumThreads << " (mIntraOpNumThreads) and " << mInterOpNumThreads << " (mInterOpNumThreads) threads";
83 }
84 }
85
86 // OrtROCMProviderOptions rocm_options{};
87 // (mPImplOrt->sessionOptions).AppendExecutionProvider_ROCM(rocm_options);
88
89 (mPImplOrt->sessionOptions).DisableMemPattern();
90 (mPImplOrt->sessionOptions).DisableCpuMemArena();
91
92 if (mEnableProfiling) {
93 if (optionsMap.contains("profiling-output-path")) {
94 (mPImplOrt->sessionOptions).EnableProfiling((optionsMap["profiling-output-path"] + "/ORT_LOG_").c_str());
95 } else {
96 LOG(warning) << "(ORT) If profiling is enabled, optionsMap[\"profiling-output-path\"] should be set. Disabling profiling for now.";
97 (mPImplOrt->sessionOptions).DisableProfiling();
98 }
99 } else {
100 (mPImplOrt->sessionOptions).DisableProfiling();
101 }
102
103 if (mDeterministicMode > 0) {
104 (mPImplOrt->sessionOptions).AddConfigEntry("session_options.use_deterministic_compute", "1");
105 }
106
107 (mPImplOrt->sessionOptions).SetGraphOptimizationLevel(GraphOptimizationLevel(mEnableOptimizations));
108 (mPImplOrt->sessionOptions).SetLogSeverityLevel(OrtLoggingLevel(mLoggingLevel));
109
110 mInitialized = true;
111 } else {
112 LOG(fatal) << "(ORT) Model path cannot be empty!";
113 }
114}
115
117{
118 mPImplOrt->env = std::make_unique<Ort::Env>(
119 OrtLoggingLevel(mLoggingLevel),
120 (mEnvName.empty() ? "ORT" : mEnvName.c_str()),
121 // Integrate ORT logging into Fairlogger
122 [](void* param, OrtLoggingLevel severity, const char* category, const char* logid, const char* code_location, const char* message) {
123 if (severity == ORT_LOGGING_LEVEL_VERBOSE) {
124 LOG(debug) << "(ORT) [" << logid << "|" << category << "|" << code_location << "]: " << message;
125 } else if (severity == ORT_LOGGING_LEVEL_INFO) {
126 LOG(info) << "(ORT) [" << logid << "|" << category << "|" << code_location << "]: " << message;
127 } else if (severity == ORT_LOGGING_LEVEL_WARNING) {
128 LOG(warning) << "(ORT) [" << logid << "|" << category << "|" << code_location << "]: " << message;
129 } else if (severity == ORT_LOGGING_LEVEL_ERROR) {
130 LOG(error) << "(ORT) [" << logid << "|" << category << "|" << code_location << "]: " << message;
131 } else if (severity == ORT_LOGGING_LEVEL_FATAL) {
132 LOG(fatal) << "(ORT) [" << logid << "|" << category << "|" << code_location << "]: " << message;
133 } else {
134 LOG(info) << "(ORT) [" << logid << "|" << category << "|" << code_location << "]: " << message;
135 }
136 },
137 (void*)3);
138 (mPImplOrt->env)->DisableTelemetryEvents(); // Disable telemetry events
139}
140
142{
143 if (mAllocateDeviceMemory) {
144 memoryOnDevice(mDeviceId);
145 }
146 mPImplOrt->session = std::make_unique<Ort::Session>(*mPImplOrt->env, mModelPath.c_str(), mPImplOrt->sessionOptions);
147 mPImplOrt->ioBinding = std::make_unique<Ort::IoBinding>(*mPImplOrt->session);
148
149 setIO();
150
151 if (mLoggingLevel < 2) {
152 LOG(info) << "(ORT) Model loaded successfully! (inputs: " << printShape(mInputShapes, mInputNames) << ", outputs: " << printShape(mOutputShapes, mInputNames) << ")";
153 }
154}
155
156void OrtModel::memoryOnDevice(int32_t deviceIndex)
157{
158 if (deviceIndex >= 0) {
159 (mPImplOrt->runOptions).AddConfigEntry("disable_synchronize_execution_providers", "1");
160 (mPImplOrt->sessionOptions).AddConfigEntry("session.use_device_allocator_for_initializers", "1"); // See kOrtSessionOptionsUseDeviceAllocatorForInitializers, https://github.com/microsoft/onnxruntime/blob/main/include/onnxruntime/core/session/onnxruntime_session_options_config_keys.h
161 (mPImplOrt->sessionOptions).AddConfigEntry("session.use_env_allocators", "1"); // This should enable to use the volatile memory allocation defined in O2/GPU/GPUTracking/TPCClusterFinder/GPUTPCNNClusterizerHost.cxx; not working yet: ONNX still assigns new memory at init time
162 (mPImplOrt->sessionOptions).AddConfigEntry("session_options.enable_cpu_mem_arena", "0"); // This should enable to use the volatile memory allocation defined in O2/GPU/GPUTracking/TPCClusterFinder/GPUTPCNNClusterizerHost.cxx; not working yet: ONNX still assigns new memory at init time
163 // Arena memory shrinkage comes at performance cost
164 // For now prefer to use single allocation, enabled by O2/GPU/GPUTracking/Base/cuda/GPUReconstructionCUDA.cu -> SetONNXGPUStream -> rocm_options.arena_extend_strategy = 0;
165 (mPImplOrt->runOptions).AddConfigEntry("memory.enable_memory_arena_shrinkage", ("gpu:" + std::to_string(deviceIndex)).c_str()); // See kOrtRunOptionsConfigEnableMemoryArenaShrinkage, https://github.com/microsoft/onnxruntime/blob/90c263f471bbce724e77d8e62831d3a9fa838b2f/include/onnxruntime/core/session/onnxruntime_run_options_config_keys.h#L27
166
167 std::string dev_mem_str = "";
168 if (mDeviceType == "ROCM") {
169 dev_mem_str = "HipPinned";
170 }
171 if (mDeviceType == "CUDA") {
172 dev_mem_str = "Cuda";
173 }
174 mPImplOrt->memoryInfo = Ort::MemoryInfo(dev_mem_str.c_str(), OrtAllocatorType::OrtDeviceAllocator, deviceIndex, OrtMemType::OrtMemTypeDefault);
175 if (mLoggingLevel < 2) {
176 LOG(info) << "(ORT) Memory info set to on-device memory for device type " << mDeviceType << " with ID " << deviceIndex << " and mPImplOrt pointer " << mPImplOrt;
177 }
178 }
179}
180
182{
183 mPImplOrt->session = std::make_unique<Ort::Session>(*(mPImplOrt->env), mModelPath.c_str(), mPImplOrt->sessionOptions);
184}
185
186// Getters
187Ort::SessionOptions* OrtModel::getSessionOptions()
188{
189 return &mPImplOrt->sessionOptions;
190}
191
192Ort::MemoryInfo* OrtModel::getMemoryInfo()
193{
194 return &mPImplOrt->memoryInfo;
195}
196
198{
199 return (mPImplOrt->env).get();
200}
201
202template <class I, class O>
203std::vector<O> OrtModel::v2v(std::vector<I>& input, bool clearInput)
204{
205 if constexpr (std::is_same_v<I, O>) {
206 return input;
207 } else {
208 std::vector<O> output(input.size());
209 std::transform(std::begin(input), std::end(input), std::begin(output), [](I f) { return O(f); });
210 if (clearInput) {
211 input.clear();
212 }
213 return output;
214 }
215}
216
218{
219 for (size_t i = 0; i < (mPImplOrt->session)->GetInputCount(); ++i) {
220 mInputNames.push_back((mPImplOrt->session)->GetInputNameAllocated(i, mPImplOrt->allocator).get());
221 }
222 for (size_t i = 0; i < (mPImplOrt->session)->GetInputCount(); ++i) {
223 mInputShapes.emplace_back((mPImplOrt->session)->GetInputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape());
224 }
225 for (size_t i = 0; i < (mPImplOrt->session)->GetOutputCount(); ++i) {
226 mOutputNames.push_back((mPImplOrt->session)->GetOutputNameAllocated(i, mPImplOrt->allocator).get());
227 }
228 for (size_t i = 0; i < (mPImplOrt->session)->GetOutputCount(); ++i) {
229 mOutputShapes.emplace_back((mPImplOrt->session)->GetOutputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape());
230 }
231
232 mInputNamesChar.resize(mInputNames.size(), nullptr);
233 std::transform(std::begin(mInputNames), std::end(mInputNames), std::begin(mInputNamesChar),
234 [&](const std::string& str) { return str.c_str(); });
235 mOutputNamesChar.resize(mOutputNames.size(), nullptr);
236 std::transform(std::begin(mOutputNames), std::end(mOutputNames), std::begin(mOutputNamesChar),
237 [&](const std::string& str) { return str.c_str(); });
238
239 mInputShapesCopy = mInputShapes;
240 mOutputShapesCopy = mOutputShapes;
241 mInputSizePerNode.resize(mInputShapes.size(), 1);
242 mOutputSizePerNode.resize(mOutputShapes.size(), 1);
243 mInputsTotal = 1;
244 for (size_t i = 0; i < mInputShapes.size(); ++i) {
245 if (mInputShapes[i].size() > 0) {
246 for (size_t j = 1; j < mInputShapes[i].size(); ++j) {
247 if (mInputShapes[i][j] > 0) {
248 mInputsTotal *= mInputShapes[i][j];
249 mInputSizePerNode[i] *= mInputShapes[i][j];
250 }
251 }
252 }
253 }
254 mOutputsTotal = 1;
255 for (size_t i = 0; i < mOutputShapes.size(); ++i) {
256 if (mOutputShapes[i].size() > 0) {
257 for (size_t j = 1; j < mOutputShapes[i].size(); ++j) {
258 if (mOutputShapes[i][j] > 0) {
259 mOutputsTotal *= mOutputShapes[i][j];
260 mOutputSizePerNode[i] *= mOutputShapes[i][j];
261 }
262 }
263 }
264 }
265}
266
267void OrtModel::setEnv(Ort::Env* env)
268{
269 mPImplOrt->env.reset(env);
270}
271
272// Inference
273template <class I, class O>
274std::vector<O> OrtModel::inference(std::vector<I>& input)
275{
276 std::vector<int64_t> inputShape = mInputShapes[0];
277 inputShape[0] = input.size();
278 for (size_t i = 1; i < mInputShapes[0].size(); ++i) {
279 inputShape[0] /= mInputShapes[0][i];
280 }
281 std::vector<Ort::Value> inputTensor;
282 if constexpr (std::is_same_v<I, OrtDataType::Float16_t>) {
283 inputTensor.emplace_back(Ort::Value::CreateTensor<Ort::Float16_t>(mPImplOrt->memoryInfo, reinterpret_cast<Ort::Float16_t*>(input.data()), input.size(), inputShape.data(), inputShape.size()));
284 } else {
285 inputTensor.emplace_back(Ort::Value::CreateTensor<I>(mPImplOrt->memoryInfo, input.data(), input.size(), inputShape.data(), inputShape.size()));
286 }
287 // input.clear();
288 auto outputTensors = (mPImplOrt->session)->Run(mPImplOrt->runOptions, mInputNamesChar.data(), inputTensor.data(), inputTensor.size(), mOutputNamesChar.data(), mOutputNamesChar.size());
289 O* outputValues = outputTensors[0].template GetTensorMutableData<O>();
290 std::vector<O> outputValuesVec{outputValues, outputValues + inputShape[0] * mOutputShapes[0][1]};
291 outputTensors.clear();
292 return outputValuesVec;
293}
294
295template std::vector<float> o2::ml::OrtModel::inference<float, float>(std::vector<float>&);
296template std::vector<float> o2::ml::OrtModel::inference<OrtDataType::Float16_t, float>(std::vector<OrtDataType::Float16_t>&);
297template std::vector<OrtDataType::Float16_t> o2::ml::OrtModel::inference<OrtDataType::Float16_t, OrtDataType::Float16_t>(std::vector<OrtDataType::Float16_t>&);
298
299template <class I, class O>
300void OrtModel::inference(I* input, int64_t input_size, O* output)
301{
302 // std::vector<std::string> providers = Ort::GetAvailableProviders();
303 // for (const auto& provider : providers) {
304 // LOG(info) << "Available Execution Provider: " << provider;
305 // }
306 std::vector<int64_t> inputShape{input_size, (int64_t)mInputShapes[0][1]};
307 Ort::Value inputTensor = Ort::Value(nullptr);
308 if constexpr (std::is_same_v<I, OrtDataType::Float16_t>) {
309 inputTensor = Ort::Value::CreateTensor<Ort::Float16_t>(mPImplOrt->memoryInfo, reinterpret_cast<Ort::Float16_t*>(input), input_size * mInputShapes[0][1], inputShape.data(), inputShape.size());
310 } else {
311 inputTensor = Ort::Value::CreateTensor<I>(mPImplOrt->memoryInfo, input, input_size * mInputShapes[0][1], inputShape.data(), inputShape.size());
312 }
313 (mPImplOrt->ioBinding)->BindInput(mInputNames[0].c_str(), inputTensor);
314
315 std::vector<int64_t> outputShape{input_size, mOutputShapes[0][1]};
316 Ort::Value outputTensor = Ort::Value(nullptr);
317 if constexpr (std::is_same_v<O, OrtDataType::Float16_t>) {
318 outputTensor = Ort::Value::CreateTensor<Ort::Float16_t>(mPImplOrt->memoryInfo, reinterpret_cast<Ort::Float16_t*>(output), input_size * mOutputShapes[0][1], outputShape.data(), outputShape.size());
319 } else {
320 outputTensor = Ort::Value::CreateTensor<O>(mPImplOrt->memoryInfo, output, input_size * mOutputShapes[0][1], outputShape.data(), outputShape.size());
321 }
322 (mPImplOrt->ioBinding)->BindOutput(mOutputNames[0].c_str(), outputTensor);
323
324 (mPImplOrt->session)->Run(mPImplOrt->runOptions, *mPImplOrt->ioBinding);
325 // mPImplOrt->session->Run(
326 // mPImplOrt->runOptions,
327 // mInputNamesChar.data(),
328 // &inputTensor,
329 // mInputNamesChar.size(),
330 // mOutputNamesChar.data(),
331 // &outputTensor,
332 // mOutputNamesChar.size());
333}
334
335template void OrtModel::inference<OrtDataType::Float16_t, OrtDataType::Float16_t>(OrtDataType::Float16_t*, int64_t, OrtDataType::Float16_t*);
336template void OrtModel::inference<OrtDataType::Float16_t, float>(OrtDataType::Float16_t*, int64_t, float*);
337template void OrtModel::inference<float, OrtDataType::Float16_t>(float*, int64_t, OrtDataType::Float16_t*);
338template void OrtModel::inference<float, float>(float*, int64_t, float*);
339
340template <class I, class O>
341void OrtModel::inference(I** input, int64_t input_size, O* output)
342{
343 std::vector<Ort::Value> inputTensors(mInputShapesCopy.size());
344
345 for (size_t i = 0; i < mInputShapesCopy.size(); ++i) {
346
347 mInputShapesCopy[i][0] = input_size; // batch-size
348 mOutputShapesCopy[i][0] = input_size; // batch-size
349
350 if constexpr (std::is_same_v<I, OrtDataType::Float16_t>) {
351 inputTensors[i] = Ort::Value::CreateTensor<Ort::Float16_t>(
352 mPImplOrt->memoryInfo,
353 reinterpret_cast<Ort::Float16_t*>(input[i]),
354 mInputSizePerNode[i] * input_size,
355 mInputShapesCopy[i].data(),
356 mInputShapesCopy[i].size());
357 } else {
358 inputTensors[i] = Ort::Value::CreateTensor<I>(
359 mPImplOrt->memoryInfo,
360 input[i],
361 mInputSizePerNode[i] * input_size,
362 mInputShapesCopy[i].data(),
363 mInputShapesCopy[i].size());
364 }
365 }
366
367 Ort::Value outputTensor = Ort::Value(nullptr);
368 if constexpr (std::is_same_v<O, OrtDataType::Float16_t>) {
369 outputTensor = Ort::Value::CreateTensor<Ort::Float16_t>(
370 mPImplOrt->memoryInfo,
371 reinterpret_cast<Ort::Float16_t*>(output),
372 mOutputSizePerNode[0] * input_size, // assumes that there is only one output node
373 mOutputShapesCopy[0].data(),
374 mOutputShapesCopy[0].size());
375 } else {
376 outputTensor = Ort::Value::CreateTensor<O>(
377 mPImplOrt->memoryInfo,
378 output,
379 mOutputSizePerNode[0] * input_size, // assumes that there is only one output node
380 mOutputShapesCopy[0].data(),
381 mOutputShapesCopy[0].size());
382 }
383
384 // === Run inference ===
385 mPImplOrt->session->Run(
386 mPImplOrt->runOptions,
387 mInputNamesChar.data(),
388 inputTensors.data(),
389 mInputNamesChar.size(),
390 mOutputNamesChar.data(),
391 &outputTensor,
392 mOutputNamesChar.size());
393}
394
395template void OrtModel::inference<OrtDataType::Float16_t, OrtDataType::Float16_t>(OrtDataType::Float16_t**, int64_t, OrtDataType::Float16_t*);
396template void OrtModel::inference<OrtDataType::Float16_t, float>(OrtDataType::Float16_t**, int64_t, float*);
397template void OrtModel::inference<float, OrtDataType::Float16_t>(float**, int64_t, OrtDataType::Float16_t*);
398template void OrtModel::inference<float, float>(float**, int64_t, float*);
399
400template <class I, class O>
401std::vector<O> OrtModel::inference(std::vector<std::vector<I>>& inputs)
402{
403 std::vector<Ort::Value> input_tensors;
404
405 for (size_t i = 0; i < inputs.size(); ++i) {
406
407 mInputShapesCopy[i][0] = inputs[i].size() / mInputSizePerNode[i]; // batch-size
408
409 if constexpr (std::is_same_v<I, OrtDataType::Float16_t>) {
410 input_tensors.emplace_back(
411 Ort::Value::CreateTensor<Ort::Float16_t>(
412 mPImplOrt->memoryInfo,
413 reinterpret_cast<Ort::Float16_t*>(inputs[i].data()),
414 mInputSizePerNode[i] * mInputShapesCopy[i][0],
415 mInputShapesCopy[i].data(),
416 mInputShapesCopy[i].size()));
417 } else {
418 input_tensors.emplace_back(
419 Ort::Value::CreateTensor<I>(
420 mPImplOrt->memoryInfo,
421 inputs[i].data(),
422 mInputSizePerNode[i] * mInputShapesCopy[i][0],
423 mInputShapesCopy[i].data(),
424 mInputShapesCopy[i].size()));
425 }
426 }
427
428 int32_t totalOutputSize = mOutputsTotal * mInputShapesCopy[0][0];
429
430 // === Run inference ===
431 auto output_tensors = mPImplOrt->session->Run(
432 mPImplOrt->runOptions,
433 mInputNamesChar.data(),
434 input_tensors.data(),
435 input_tensors.size(),
436 mOutputNamesChar.data(),
437 mOutputNamesChar.size());
438
439 // === Extract output values ===
440 O* output_data = output_tensors[0].template GetTensorMutableData<O>();
441 std::vector<O> output_vec(output_data, output_data + totalOutputSize);
442 output_tensors.clear();
443 return output_vec;
444}
445
446template std::vector<float> OrtModel::inference<float, float>(std::vector<std::vector<float>>&);
447template std::vector<OrtDataType::Float16_t> OrtModel::inference<OrtDataType::Float16_t, OrtDataType::Float16_t>(std::vector<std::vector<OrtDataType::Float16_t>>&);
448
449// Release session
450void OrtModel::release(bool profilingEnabled)
451{
452 mPImplOrt.reset();
453}
454
455// private
456std::string OrtModel::printShape(const std::vector<int64_t>& v)
457{
458 std::stringstream ss("");
459 for (size_t i = 0; i < v.size() - 1; i++) {
460 ss << v[i] << "x";
461 }
462 ss << v[v.size() - 1];
463 return ss.str();
464}
465
466std::string OrtModel::printShape(const std::vector<std::vector<int64_t>>& v, std::vector<std::string>& n)
467{
468 std::stringstream ss("");
469 for (size_t i = 0; i < v.size(); i++) {
470 ss << n[i] << " -> (";
471 for (size_t j = 0; j < v[i].size() - 1; j++) {
472 ss << v[i][j] << "x";
473 }
474 ss << v[i][v[i].size() - 1] << "); ";
475 }
476 return ss.str();
477}
478
479} // namespace ml
480
481} // namespace o2
int32_t i
void output(const std::map< std::string, ChannelStat > &channels)
Definition rawdump.cxx:197
A header library for loading ONNX models and inferencing them on CPU and GPU.
uint32_t j
Definition RawData.h:0
std::ostringstream debug
void initOptions(std::unordered_map< std::string, std::string > optionsMap)
void memoryOnDevice(int32_t=0)
Ort::Env * getEnv()
void release(bool=false)
void setEnv(Ort::Env *)
std::vector< O > v2v(std::vector< I > &, bool=true)
Ort::MemoryInfo * getMemoryInfo()
std::vector< O > inference(std::vector< I > &)
virtual ~OrtModel()
void init(std::unordered_map< std::string, std::string > optionsMap)
Ort::SessionOptions * getSessionOptions()
GLdouble n
Definition glcorearb.h:1982
GLsizeiptr size
Definition glcorearb.h:659
const GLdouble * v
Definition glcorearb.h:832
GLdouble f
Definition glcorearb.h:310
GLuint GLsizei const GLchar * message
Definition glcorearb.h:2517
GLenum GLfloat param
Definition glcorearb.h:271
GLenum GLenum severity
Definition glcorearb.h:2513
a couple of static helper functions to create timestamp values for CCDB queries or override obsolete ...
std::string to_string(gsl::span< T, Size > span)
Definition common.h:52
void empty(int)
Ort::AllocatorWithDefaultOptions allocator
std::unique_ptr< Ort::Session > session
ONNX session.
Ort::SessionOptions sessionOptions
std::unique_ptr< Ort::IoBinding > ioBinding
std::unique_ptr< Ort::Env > env
LOG(info)<< "Compressed in "<< sw.CpuTime()<< " s"
const std::string str