Project
Loading...
Searching...
No Matches
Pipe.cxx
Go to the documentation of this file.
1// Copyright 2019-2020 CERN and copyright holders of ALICE O2.
2// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders.
3// All rights not expressly granted are reserved.
4//
5// This software is distributed under the terms of the GNU General Public
6// License v3 (GPL Version 3), copied verbatim in the file "COPYING".
7//
8// In applying this license CERN does not waive the privileges and immunities
9// granted to it by virtue of its status as an Intergovernmental Organization
10// or submit itself to any jurisdiction.
11
12#include "DetectorsPassive/Pipe.h"
15#include <TGeoCompositeShape.h>
16#include <TGeoCone.h>
17#include <TGeoPcon.h>
18#include <TGeoTorus.h>
19#include <TGeoTube.h>
20#include <TGeoEltu.h>
21#include <TVirtualMC.h>
22#include "TGeoManager.h" // for TGeoManager, gGeoManager
23#include "TGeoMaterial.h" // for TGeoMaterial
24#include "TGeoMedium.h" // for TGeoMedium
25#include "TGeoVolume.h" // for TGeoVolume
26#include <TGeoArb8.h> // for TGeoTrap
27#include <TGeoTrd1.h> // for TGeoTrap
28// force availability of assert
29#ifdef NDEBUG
30#undef NDEBUG
31#endif
32#include <cassert>
33
34//-------------------------------------------------------------------------
35// Beam pipe class for ALICE ITS & MFT upgrade
36// Imported from AliRoot AliPIPEupdrage
37// Original Authors:
38// F. Manso
39// A. Morsch
40// R. Tieulent
41// M. Sitta
42//-------------------------------------------------------------------------
43
44using namespace o2::passive;
45
46Pipe::~Pipe() = default;
47Pipe::Pipe() : PassiveBase("PIPE", "") {}
48Pipe::Pipe(const char* name, const char* title, float rho, float thick)
49 : PassiveBase(name, title), mBePipeRmax(rho), mBePipeThick(thick)
50{
51}
52Pipe::Pipe(const Pipe& rhs) = default;
53
54Pipe& Pipe::operator=(const Pipe& rhs)
55{
56 // self assignment
57 if (this == &rhs) {
58 return *this;
59 }
60
61 // base class assignment
62 PassiveBase::operator=(rhs);
63
64 return *this;
65}
66
68{
69 createMaterials();
70 //
71 // Class describing the beam pipe geometry
72 //
73 Float_t z, zsh, z0;
74 //
75 // Rotation Matrices
76 //
77 const Float_t kDegRad = TMath::Pi() / 180.;
78 // Rotation by 180 deg
79 TGeoRotation* rot180 = new TGeoRotation("rot180", 90., 180., 90., 90., 180., 0.);
80 TGeoRotation* rotyz = new TGeoRotation("rotyz", 90., 180., 0., 180., 90., 90.);
81 TGeoRotation* rotxz = new TGeoRotation("rotxz", 0., 0., 90., 90., 90., 180.);
82 //
83
84 // Media
86 const TGeoMedium* kMedAir = matmgr.getTGeoMedium("PIPE_AIR");
87 const TGeoMedium* kMedAirNF = matmgr.getTGeoMedium("PIPE_AIR_NF");
88 const TGeoMedium* kMedAirHigh = matmgr.getTGeoMedium("PIPE_AIR_HIGH");
89
90 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
91 const TGeoMedium* kMedVacNF = matmgr.getTGeoMedium("PIPE_VACUUM_NF");
92 const TGeoMedium* kMedVacHC = matmgr.getTGeoMedium("PIPE_VACUUM_HC");
93 const TGeoMedium* kMedVacNFHC = matmgr.getTGeoMedium("PIPE_VACUUM_NFHC");
94
95 const TGeoMedium* kMedInsu = matmgr.getTGeoMedium("PIPE_INS_C0");
96
97 const TGeoMedium* kMedSteel = matmgr.getTGeoMedium("PIPE_INOX");
98 const TGeoMedium* kMedSteelNF = matmgr.getTGeoMedium("PIPE_INOX_NF");
99 const TGeoMedium* kMedSteelHC = matmgr.getTGeoMedium("PIPE_INOX_HC");
100 const TGeoMedium* kMedSteelNFHC = matmgr.getTGeoMedium("PIPE_INOX_NFHC");
101
102 const TGeoMedium* kMedBe = matmgr.getTGeoMedium("PIPE_BE");
103
104 const TGeoMedium* kMedCu = matmgr.getTGeoMedium("PIPE_CU");
105 const TGeoMedium* kMedCuNF = matmgr.getTGeoMedium("PIPE_CU_NF");
106 const TGeoMedium* kMedCuHC = matmgr.getTGeoMedium("PIPE_CU_HC");
107 const TGeoMedium* kMedCuNFHC = matmgr.getTGeoMedium("PIPE_CU_NFHC");
108
109 const TGeoMedium* kMedAlu2219 = matmgr.getTGeoMedium("PIPE_AA2219");
110 const TGeoMedium* kMedRohacell = matmgr.getTGeoMedium("PIPE_ROHACELL");
111 const TGeoMedium* kMedPolyimide = matmgr.getTGeoMedium("PIPE_POLYIMIDE");
112 const TGeoMedium* kMedCarbonFiber = matmgr.getTGeoMedium("PIPE_M55J6K");
113 const TGeoMedium* kMedTitanium = matmgr.getTGeoMedium("PIPE_TITANIUM");
114 const TGeoMedium* kMedAlu7075 = matmgr.getTGeoMedium("PIPE_AA7075");
115
116 // Top volume
117 TGeoVolume* top = gGeoManager->GetVolume("cave");
118 TGeoVolume* barrel = gGeoManager->GetVolume("barrel");
119 TGeoVolume* caveRB24 = gGeoManager->GetVolume("caveRB24");
120 //
121 //
123 // //
124 // The Central Vacuum system //
125 // //
127 //
128 //
129 // The ALICE central beam-pipe according to drawing LHCVC2C_0001
130 // Drawings of sub-elements:
131 //
132 // Pos 7 - Minimised Flange: LHCVFX_P0025
133 // Pos 6 - Standard Flange: STDVFUHV0009
134 // Pos 8 - Bellow: LHCVBX__0001
135 //
136 // Absolute z-coordinates -82.0 - 400.0 cm
137 // Total length: 482.0 cm
138 // It consists of 3 main parts:
139 // CP/2 The flange on the non-absorber side: 36.5 cm
140 // CP/1 The central Be pipe: 405.0 cm
141 // CP/3 The double-bellow and flange on the absorber side: 40.5 cm
142
143 //
144 /*
145 // Starting position in z
146 const Float_t kCPz0 = -400.0;
147 // Length of the CP/1 section
148 const Float_t kCP1Length = 405.0;
149 // Length of the CP/2 section
150 const Float_t kCP2Length = 36.5;
151 // Length of the CP/3 section
152 const Float_t kCP3Length = 40.5;
153 // Position of the CP/2 section
154 // const Float_t kCP2pos = kCPz0 + kCP2Length / 2.;
155 // Position of the CP/3 section
156 const Float_t kCP3pos = kCPz0 + kCP2Length + kCP1Length + kCP3Length/2.;
157 */
158
160 // Authors: F. Manso, R. Tieulent
161 // Drawings from C. Gargiulo :
162 // \\cern.ch\dfs\Workspaces\c\cgargiul\EXPERIMENT\ALICE\ALICE_MECHANICS\ALICE_DATA_PACKAGE\IN\DETECTORS\ITS_UPGRADE\1-DESIGN\3D_cad_model\R14_20140311_ALI\
163 //
164 //
165 // central beam pipe
166 //------------------- Pipe version 4.7 March 2014 -----------------------------
167 TGeoVolumeAssembly* beamPipeCsideSection = new TGeoVolumeAssembly("BeamPipeCsideSection");
168 // If user set Rmax=0/Thick=0 use defaults, else use user input
169 const Float_t kBeryliumSectionOuterRadius = (mBePipeRmax > 0.) ? mBePipeRmax : 1.9;
170 const Float_t kBeryliumSectionThickness = (mBePipeThick > 0.) ? mBePipeThick : 0.08;
171 const Float_t kBeryliumSectionZmax = 44.4;
172 const Float_t kBeryliumSectionZmin = -44.4;
173
174 const Float_t kBellowSectionOuterRadius = 2.15;
175 const Float_t kCSideBPSOuterRadius = 2.22;
176 const Float_t kCSideBPSWallThickness = 0.15;
177 const Float_t kBellowSectionZmax = -55.35;
178 const Float_t kBellowOuterRadius = 2.8;
179 const Float_t kFirstConeAngle = 15. * TMath::DegToRad();
180 const Float_t kChangeThicknessAngle = 45. * TMath::DegToRad();
181 const Float_t kCSideBPSLength = 3.53;
182 const Float_t kDzFirstCone = (kCSideBPSOuterRadius - kBeryliumSectionOuterRadius) / TMath::Tan(kFirstConeAngle);
183 const Float_t kReduceThicknessPartAfterBPSLength = 1.52;
184 const Float_t kThinPartBeforeBellowLength = 1.025;
185
186 const Float_t kDistanceBetweenBellows = 2.5;
187
188 const Float_t kAdaptConeZmax = -77.43;
189 const Float_t kAdaptConeZmin = -80.6;
190 const Float_t kAdaptConeRmax = 3.0;
191 const Float_t kFlangeRmax = 4.3;
192 const Float_t kFlangeLength = 1.4;
193
194 const Float_t kBellowPlieRadius = 0.17; // radius of bellow plies
195 const Float_t kBellowPlieThickness = 0.03; // Thickness of bellow plies 300 microns
196 const Int_t kNBellowConvolutions = 7;
197
198 const Float_t kZ1 = kBeryliumSectionZmin; // z of Be - Al jonction on the C-side
199 const Float_t kZ2 =
200 kBellowSectionZmax + kDzFirstCone; // z of end of small diameter part (beginning of first cone before the bellow
201 const Float_t kZ3 = kBellowSectionZmax +
202 (kCSideBPSOuterRadius - kBellowSectionOuterRadius) /
203 TMath::Tan(kFirstConeAngle); // z of End of first cone part with 0.8mm thickness
204 const Float_t kZ4 = kBellowSectionZmax; // z of End of first Cone
205 const Float_t kZ5 = kBellowSectionZmax - kCSideBPSLength; // z of End of Beam Pipe support section
206 const Float_t kZ6 =
207 kBellowSectionZmax - kCSideBPSLength -
208 (kCSideBPSOuterRadius - kBellowSectionOuterRadius) /
209 TMath::Tan(kChangeThicknessAngle); // z of End of Beam Pipe support section after reduction of thickness
210 const Float_t kZ7 =
211 kZ6 - kReduceThicknessPartAfterBPSLength; // Z of end of 800 microns section after Beam Pipe Support
212 const Float_t kZ8 = kZ7 - (kBeryliumSectionThickness - kBellowPlieThickness) / TMath::Tan(kChangeThicknessAngle);
213 const Float_t kZ9 = kZ7 - kThinPartBeforeBellowLength; // Z of the start of first bellow
214 const Float_t kFirstBellowZmax = kZ9;
215
216 //---------------- Be pipe around the IP ----------
217 TGeoTube* berylliumTube =
218 new TGeoTube("IP_PIPEsh", kBeryliumSectionOuterRadius - kBeryliumSectionThickness, kBeryliumSectionOuterRadius,
219 (kBeryliumSectionZmax - kBeryliumSectionZmin) / 2);
220 TGeoVolume* voberylliumTube = new TGeoVolume("IP_PIPE", berylliumTube, kMedBe);
221 voberylliumTube->SetLineColor(kRed);
222
223 TGeoTube* berylliumTubeVacuum =
224 new TGeoTube("IP_PIPEVACUUMsh", 0., kBeryliumSectionOuterRadius,
225 (kBeryliumSectionZmax - kBeryliumSectionZmin) / 2);
226 TGeoVolume* voberylliumTubeVacuum = new TGeoVolume("IP_PIPEMOTHER", berylliumTubeVacuum, kMedVac);
227 voberylliumTubeVacuum->AddNode(voberylliumTube, 1, gGeoIdentity);
228 voberylliumTubeVacuum->SetVisibility(0);
229 voberylliumTubeVacuum->SetLineColor(kGreen);
230
231 beamPipeCsideSection->AddNode(voberylliumTubeVacuum, 1,
232 new TGeoTranslation(0., 0., (kBeryliumSectionZmax + kBeryliumSectionZmin) / 2));
233
234 //---------------- Al tube ------------------
235 TGeoPcon* aluBeforeBellows = new TGeoPcon(0., 360., 9);
236 aluBeforeBellows->DefineSection(0, kZ9, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
237 aluBeforeBellows->DefineSection(1, kZ8, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
238 aluBeforeBellows->DefineSection(2, kZ7, 0., kBellowSectionOuterRadius);
239 aluBeforeBellows->DefineSection(3, kZ6, 0., kBellowSectionOuterRadius);
240 aluBeforeBellows->DefineSection(4, kZ5, 0., kCSideBPSOuterRadius);
241 aluBeforeBellows->DefineSection(5, kZ4, 0., kCSideBPSOuterRadius);
242 aluBeforeBellows->DefineSection(6, kZ3, 0., kBellowSectionOuterRadius);
243 aluBeforeBellows->DefineSection(7, kZ2, 0., kBeryliumSectionOuterRadius);
244 aluBeforeBellows->DefineSection(8, kZ1, 0., kBeryliumSectionOuterRadius);
245 TGeoVolume* voaluBeforeBellows = new TGeoVolume("aluBeforeBellows", aluBeforeBellows, kMedAlu2219);
246 voaluBeforeBellows->SetLineColor(kBlue);
247 beamPipeCsideSection->AddNode(voaluBeforeBellows, 1, gGeoIdentity);
248
249 TGeoPcon* aluBeforeBellowsVacuum = new TGeoPcon(0., 360., 7);
250 aluBeforeBellowsVacuum->DefineSection(0, kZ9, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
251 aluBeforeBellowsVacuum->DefineSection(1, kZ6, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
252 aluBeforeBellowsVacuum->DefineSection(2, kZ5, 0., kCSideBPSOuterRadius - kCSideBPSWallThickness);
253 aluBeforeBellowsVacuum->DefineSection(3, kZ4, 0., kCSideBPSOuterRadius - kCSideBPSWallThickness);
254 aluBeforeBellowsVacuum->DefineSection(4, kZ3, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
255 aluBeforeBellowsVacuum->DefineSection(5, kZ2, 0., kBeryliumSectionOuterRadius - kBeryliumSectionThickness);
256 aluBeforeBellowsVacuum->DefineSection(6, kZ1, 0., kBeryliumSectionOuterRadius - kBeryliumSectionThickness);
257 TGeoVolume* voaluBeforeBellowsVacuum = new TGeoVolume("aluBeforeBellowsVacuum", aluBeforeBellowsVacuum, kMedVac);
258 voaluBeforeBellowsVacuum->SetVisibility(1);
259 voaluBeforeBellowsVacuum->SetLineColor(kGreen);
260 voaluBeforeBellows->AddNode(voaluBeforeBellowsVacuum, 1, gGeoIdentity);
261 //-------------------------------------------------
262
263 Float_t kBellowLength = kNBellowConvolutions * (4. * kBellowPlieRadius - 2. * kBellowPlieThickness);
264 // ------------------ First Bellow --------------------
265 TGeoVolume* vobellows1 =
266 MakeBellowCside("bellows1", kNBellowConvolutions, kBellowSectionOuterRadius - kBeryliumSectionThickness,
267 kBellowOuterRadius, kBellowPlieRadius, kBellowPlieThickness);
268 beamPipeCsideSection->AddNode(
269 vobellows1, 1, new TGeoTranslation(0., 0., kFirstBellowZmax - kBellowLength / 2. - 2. * kBellowPlieRadius));
270 //------------------------------------------------------
271
272 const Float_t kZ10 = kFirstBellowZmax - kBellowLength; // End of First bellow
273 const Float_t kZ12 = kZ10 - kThinPartBeforeBellowLength;
274 const Float_t kZ11 = kZ12 +
275 (kBeryliumSectionThickness - kBellowPlieThickness) /
276 TMath::Tan(kChangeThicknessAngle); // End of 300 microns thickness part after first bellow
277 const Float_t kZ13 = kZ12 - kDistanceBetweenBellows;
278 const Float_t kZ14 = kZ13 - (kBeryliumSectionThickness - kBellowPlieThickness) / TMath::Tan(kChangeThicknessAngle);
279 const Float_t kZ15 = kZ14 - kThinPartBeforeBellowLength;
280 const Float_t kSecondBellowZmax = kZ15;
281
282 //---------- Al tube between the bellows ----------
283 TGeoPcon* tube4 = new TGeoPcon(0., 360., 6);
284 tube4->DefineSection(0, kZ10, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
285 tube4->DefineSection(1, kZ11, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
286 tube4->DefineSection(2, kZ12, 0., kBellowSectionOuterRadius);
287 tube4->DefineSection(3, kZ13, 0., kBellowSectionOuterRadius);
288 tube4->DefineSection(4, kZ14, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
289 tube4->DefineSection(5, kZ15, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
290 TGeoVolume* votube4 = new TGeoVolume("votube4", tube4, kMedAlu2219);
291 votube4->SetLineColor(kBlue);
292 beamPipeCsideSection->AddNode(votube4, 1, gGeoIdentity);
293
294 TGeoTube* tube4Vacuum = new TGeoTube(0., kBellowSectionOuterRadius - kBeryliumSectionThickness, -(kZ15 - kZ10) / 2.);
295 TGeoVolume* votube4Vacuum = new TGeoVolume("tube4Vacuum", tube4Vacuum, kMedVac);
296 votube4Vacuum->SetVisibility(1);
297 votube4->AddNode(votube4Vacuum, 1, new TGeoTranslation(0., 0., (kZ10 + kZ15) / 2.));
298
299 // ------------------ Second Bellow --------------------
300 TGeoVolume* vobellows2 =
301 MakeBellowCside("bellows2", kNBellowConvolutions, kBellowSectionOuterRadius - kBeryliumSectionThickness,
302 kBellowOuterRadius, kBellowPlieRadius, kBellowPlieThickness);
303 beamPipeCsideSection->AddNode(
304 vobellows2, 1, new TGeoTranslation(0., 0., kSecondBellowZmax - kBellowLength / 2. - 2. * kBellowPlieRadius));
305 // -----------------------------------------------------
306
307 const Float_t kZ16 = kSecondBellowZmax - kBellowLength; // End of Second bellow
308 const Float_t kZ18 = kZ16 - kThinPartBeforeBellowLength;
309 const Float_t kZ17 = kZ18 +
310 (kBeryliumSectionThickness - kBellowPlieThickness) /
311 TMath::Tan(kChangeThicknessAngle); // End of 300 microns thickness part after first bellow
312 const Float_t kZ19 = kAdaptConeZmax; // Start of the Adpation Cone
313 const Float_t kZ20 = kAdaptConeZmin; // End of the Adpation Cone
314 const Float_t kZ21 = kAdaptConeZmin - kFlangeLength; // End of the Flange
315
316 //----------- 15 deg Conical adaptator + flange ----------
317 TGeoPcon* adaptator = new TGeoPcon(0., 360., 7);
318 adaptator->DefineSection(0, kZ16, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
319 adaptator->DefineSection(1, kZ17, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness + kBellowPlieThickness);
320 adaptator->DefineSection(2, kZ18, 0., kBellowSectionOuterRadius);
321 adaptator->DefineSection(3, kZ19, 0., kBellowSectionOuterRadius);
322 adaptator->DefineSection(4, kZ20, 0., kAdaptConeRmax);
323 adaptator->DefineSection(5, kZ20, 0., kFlangeRmax);
324 adaptator->DefineSection(6, kZ21, 0., kFlangeRmax);
325 TGeoVolume* voadaptator = new TGeoVolume("voadaptator", adaptator, kMedAlu2219);
326 voadaptator->SetLineColor(kBlue);
327 beamPipeCsideSection->AddNode(voadaptator, 1, gGeoIdentity);
328
329 TGeoPcon* adaptatorvide = new TGeoPcon(0., 360., 4);
330 adaptatorvide->DefineSection(0, kZ16, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
331 adaptatorvide->DefineSection(1, kZ19, 0., kBellowSectionOuterRadius - kBeryliumSectionThickness);
332 adaptatorvide->DefineSection(2, kZ20, 0., kAdaptConeRmax - kBeryliumSectionThickness);
333 adaptatorvide->DefineSection(3, kZ21, 0., kAdaptConeRmax - kBeryliumSectionThickness);
334 TGeoVolume* voadaptatorvide = new TGeoVolume("voadaptatorvide", adaptatorvide, kMedVac);
335 voadaptatorvide->SetVisibility(1);
336 // voadaptatorvide->SetLineColor(kGreen);
337 voadaptator->AddNode(voadaptatorvide, 1, gGeoIdentity);
338 //------------------------------------------------------
339
340 barrel->AddNode(beamPipeCsideSection, 1, new TGeoTranslation(0., 30., 0.));
341
343 // Beam Pipe support F.M. 2021 rev 2023 //
345
346 // Beam Pipe Support
347 TGeoVolume* beamPipeSupport = new TGeoVolumeAssembly("BeamPipeSupport");
348 const Float_t kBeamPipesupportZpos = kZ5;
349
350 // Dimensions :
351 const Float_t kSupportXdim = 20.67;
352 const Float_t kBeamPipeRingZdim = 3.6;
353 const Float_t kVespelRmax = 2.3;
354 const Float_t kVespelRmin = 2.22;
355 const Float_t kBeampipeCarbonCollarRmin = 2.5;
356 const Float_t kBeampipeCarbonCollarRmax = 2.7;
357 const Float_t kFixationCarbonCollarRmin = 1.5;
358 const Float_t kFixationCarbonCollarRmax = 1.7;
359 const Float_t kFixationCarbonCollarDZ = 2.5;
360 const Float_t kSkinThickness = 0.3;
361 const Float_t kSkinXdim = 14.2;
362 const Float_t kSkinYdim = 1.4;
363 const Float_t kSkinZdim = kFixationCarbonCollarDZ;
364 const Float_t kCarbonEarsXdim = 2.8;
365 const Float_t kCarbonEarsYdimIn = 1.1;
366 const Float_t kCarbonEarsYdimOut = 0.6;
367 const Float_t kCarbonEarsZdim = kFixationCarbonCollarDZ;
368 const Float_t kScrewDiameter = 0.4;
369 const Float_t kScrewHeadHeight = 0.2;
370 const Float_t kScrewHeadDiameter = 0.6;
371 const Float_t kScrewPositionIn = 3.25;
372 const Float_t kScrewPositionOut = 21.80;
373 const Float_t kScrewThreadLength = 1.0;
374 const Float_t holeSightDiameterOut = 0.60;
375 const Float_t holeSightDiameterIn = 0.25;
376
377 // Support Bar
378 TGeoVolumeAssembly* supportBar = new TGeoVolumeAssembly("BPS_SupportBar");
379 TGeoBBox* carbonSkinBPS = new TGeoBBox("carbonSkinBPS", kSkinXdim / 2., kSkinYdim / 2., kSkinZdim / 2.);
380 TGeoBBox* foambarBPS = new TGeoBBox("foambarBPS", kSkinXdim / 2. - kSkinThickness, kSkinYdim / 2. - kSkinThickness,
381 kSkinZdim / 2. - kSkinThickness / 2.);
382 TGeoBBox* carbonEarsBPSin = new TGeoBBox("carbonEarsBPSin", kCarbonEarsXdim / 2., kCarbonEarsYdimIn / 2., kCarbonEarsZdim / 2.);
383 TGeoBBox* carbonEarsBPSout = new TGeoBBox("carbonEarsBPSout", kCarbonEarsXdim / 2., kCarbonEarsYdimOut / 2., kCarbonEarsZdim / 2.);
384
385 //===== building the main support bar in carbon ====
386 TGeoTranslation* tBP1 = new TGeoTranslation("tBP1", (kSkinXdim + kCarbonEarsXdim) / 2., -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.);
387 TGeoTranslation* tBP2 = new TGeoTranslation("tBP2", -(kSkinXdim + kCarbonEarsXdim) / 2., 0., 0.);
388 tBP1->RegisterYourself();
389 tBP2->RegisterYourself();
390
391 TGeoRotation* rotScrew = new TGeoRotation("rotScrew", 0., 90., 0.);
392 rotScrew->RegisterYourself();
393
394 TGeoTube* holeScrew = new TGeoTube("holeScrew", 0., kScrewDiameter / 2., kCarbonEarsYdimIn / 2. + 0.001);
395 TGeoTube* holeSight = new TGeoTube("holeSight", 0., holeSightDiameterOut / 2., kSkinZdim / 2. + 0.001);
396 TGeoTranslation* tHoleSight = new TGeoTranslation("tHoleSight", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - 6.55, 0., 0.);
397 tHoleSight->RegisterYourself();
398 Double_t kXHoleIn = kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - kScrewPositionIn;
399 Double_t kXHoleOut = kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax - kScrewPositionOut;
400 TGeoCombiTrans* tHoleScrew1 = new TGeoCombiTrans("tHoleScrew1", kXHoleIn, -(kSkinYdim - kCarbonEarsYdimIn) / 2., -0.7, rotScrew);
401 TGeoCombiTrans* tHoleScrew2 = new TGeoCombiTrans("tHoleScrew2", kXHoleIn, -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.7, rotScrew);
402 TGeoCombiTrans* tHoleScrew3 = new TGeoCombiTrans("tHoleScrew3", kXHoleOut, -(kSkinYdim - kCarbonEarsYdimIn) / 2., -0.7, rotScrew);
403 TGeoCombiTrans* tHoleScrew4 = new TGeoCombiTrans("tHoleScrew4", kXHoleOut, -(kSkinYdim - kCarbonEarsYdimIn) / 2., 0.7, rotScrew);
404 tHoleScrew1->RegisterYourself();
405 tHoleScrew2->RegisterYourself();
406 tHoleScrew3->RegisterYourself();
407 tHoleScrew4->RegisterYourself();
408
409 TGeoCompositeShape* supportBarCarbon = new TGeoCompositeShape("BPS_supportBarCarbon", "(carbonSkinBPS-foambarBPS)+carbonEarsBPSin:tBP1-holeScrew:tHoleScrew1-holeScrew:tHoleScrew2+carbonEarsBPSout:tBP2-holeSight:tHoleSight-holeScrew:tHoleScrew3-holeScrew:tHoleScrew4");
410 TGeoVolume* supportBarCarbonVol = new TGeoVolume("BPS_supportBarCarbon", supportBarCarbon, kMedCarbonFiber);
411 supportBarCarbonVol->SetLineColor(kGray + 2);
412 supportBar->AddNode(supportBarCarbonVol, 1, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
413 TGeoRotation* rotBar1 = new TGeoRotation("rotBar1", 0., 180., 180.);
414 rotBar1->RegisterYourself();
415 TGeoCombiTrans* transBar1 = new TGeoCombiTrans("transBar1", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0, rotBar1);
416 transBar1->RegisterYourself();
417 supportBar->AddNode(supportBarCarbonVol, 2, transBar1);
418 //==================================================
419
420 //==== Adding the internal foam volumes ============
421 TGeoCompositeShape* foamVolume = new TGeoCompositeShape("foamVolume", "foambarBPS-holeSight:tHoleSight");
422 TGeoVolume* FoamVolume = new TGeoVolume("supportBarFoam", foamVolume, kMedRohacell);
423 FoamVolume->SetLineColor(kGreen);
424 TGeoRotation* rotBar2 = new TGeoRotation("rotBar2", 0., 0., 180.);
425 rotBar2->RegisterYourself();
426 TGeoCombiTrans* transBar2 = new TGeoCombiTrans("transBar2", kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax, 0, 0, rotBar2);
427 transBar2->RegisterYourself();
428 supportBar->AddNode(FoamVolume, 1, transBar1);
429 supportBar->AddNode(FoamVolume, 2, new TGeoTranslation(-(kSkinXdim / 2. + kCarbonEarsXdim + kBeampipeCarbonCollarRmax), 0, 0));
430 //==================================================
431
432 //================= Screws ====================
433 TGeoVolumeAssembly* screw = new TGeoVolumeAssembly("screw");
434 TGeoTube* headScrew = new TGeoTube("headScrew", 0., kScrewHeadDiameter / 2., kScrewHeadHeight / 2.);
435 TGeoVolume* HeadScrew = new TGeoVolume("HeadScrew", headScrew, kMedTitanium);
436 HeadScrew->SetLineColor(kRed);
437 TGeoTube* threadScrew = new TGeoTube("threadScrew", 0., kScrewDiameter / 2., kCarbonEarsYdimIn / 2.);
438 TGeoVolume* ThreadScrew = new TGeoVolume("ThreadScrew", threadScrew, kMedTitanium);
439 ThreadScrew->SetLineColor(kRed);
440 screw->AddNode(HeadScrew, 1, new TGeoTranslation(0., 0., -(kCarbonEarsYdimIn + kScrewHeadHeight) / 2.));
441 screw->AddNode(ThreadScrew, 1);
442 TGeoCombiTrans* tScrew1 = new TGeoCombiTrans("transScrew1", kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., -0.7, rotScrew);
443 TGeoCombiTrans* tScrew2 = new TGeoCombiTrans("transScrew2", kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., 0.7, rotScrew);
444 TGeoCombiTrans* tScrew3 = new TGeoCombiTrans("transScrew3", -kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., -0.7, rotScrew);
445 TGeoCombiTrans* tScrew4 = new TGeoCombiTrans("transScrew4", -kScrewPositionIn, (kCarbonEarsYdimIn - kSkinYdim) / 2., 0.7, rotScrew);
446 tScrew1->RegisterYourself();
447 tScrew2->RegisterYourself();
448 tScrew3->RegisterYourself();
449 tScrew4->RegisterYourself();
450 supportBar->AddNode(screw, 1, tScrew1);
451 supportBar->AddNode(screw, 2, tScrew2);
452 supportBar->AddNode(screw, 3, tScrew3);
453 supportBar->AddNode(screw, 4, tScrew4);
454 //==============================================
455
456 // === Optical sights (assuming the same than the MFT ones) ===
457 TGeoVolumeAssembly* fixationSight = new TGeoVolumeAssembly("fixationSight");
458 TGeoTube* screwSight = new TGeoTube("screwSight", holeSightDiameterIn / 2., holeSightDiameterOut / 2., kScrewThreadLength / 2.);
459 TGeoVolume* ScrewSight = new TGeoVolume("ScrewSight", screwSight, kMedSteel);
460 ScrewSight->SetLineColor(kBlue);
461 Double_t supportSightLength = 0.5;
462 TGeoTube* supportSight = new TGeoTube("supportSight", holeSightDiameterIn / 2., 1.4 / 2., supportSightLength / 2.);
463 TGeoVolume* SupportSight = new TGeoVolume("SupportSight", supportSight, kMedSteel);
464 SupportSight->SetLineColor(kBlue);
465 fixationSight->AddNode(ScrewSight, 1);
466 fixationSight->AddNode(SupportSight, 1, new TGeoTranslation(0., 0., (kScrewThreadLength + supportSightLength) / 2.));
467 SupportSight->SetVisibility(kTRUE);
468 fixationSight->SetVisibility(kTRUE);
469 TGeoTranslation* tSight1 = new TGeoTranslation("tSight1", 6.55, 0., (kSkinZdim - kScrewThreadLength) / 2.);
470 TGeoTranslation* tSight2 = new TGeoTranslation("tSight2", -6.55, 0., (kSkinZdim - kScrewThreadLength) / 2.);
471 tSight1->RegisterYourself();
472 tSight2->RegisterYourself();
473 supportBar->AddNode(fixationSight, 1, tSight1);
474 supportBar->AddNode(fixationSight, 2, tSight2);
475 // =====================
476
477 beamPipeSupport->AddNode(supportBar, 1);
478
479 //======================= Fixation to pipe ========================
480 TGeoTube* pipeSupportTubeCarbon = new TGeoTube(kBeampipeCarbonCollarRmin, kBeampipeCarbonCollarRmax, kFixationCarbonCollarDZ / 2.);
481 TGeoVolume* FixationToPipeVol = new TGeoVolume("FixationToPipe", pipeSupportTubeCarbon, kMedCarbonFiber);
482 FixationToPipeVol->SetLineColor(kGray + 2);
483 beamPipeSupport->AddNode(FixationToPipeVol, 1);
484 //==================================================================
485
486 //================ Beam Pipe Ring =================
487 TGeoVolumeAssembly* beamPipeRing = new TGeoVolumeAssembly("beamPipeRing");
488 TGeoTube* beamPipeRingCarbon = new TGeoTube(kVespelRmax, kBeampipeCarbonCollarRmin, kBeamPipeRingZdim / 2.);
489 TGeoVolume* beamPipeRingCarbonVol = new TGeoVolume("beamPipeRingCarbon", beamPipeRingCarbon, kMedCarbonFiber);
490 beamPipeRingCarbonVol->SetLineColor(kGray + 2);
491 beamPipeRing->AddNode(beamPipeRingCarbonVol, 1,
492 new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
493 TGeoTube* beamPipeRingVespel = new TGeoTube(kVespelRmin, kVespelRmax, (kBeamPipeRingZdim + 0.4) / 2.);
494 TGeoVolume* beamPipeRingVespelVol = new TGeoVolume("beamPipeRingVespel", beamPipeRingVespel, kMedPolyimide);
495 beamPipeRingVespelVol->SetLineColor(kGreen + 2);
496 beamPipeRing->AddNode(beamPipeRingVespelVol, 1,
497 new TGeoTranslation(0., 0, (kBeamPipeRingZdim - kFixationCarbonCollarDZ) / 2.));
498 beamPipeSupport->AddNode(beamPipeRing, 1);
499 beamPipeSupport->SetVisibility(1);
500 beamPipeSupport->IsVisible();
501 //==================================================
502
503 //============ Wings (connecting the support bars to the cage support) ===============
504 TGeoVolumeAssembly* Wing = new TGeoVolumeAssembly("Wing");
505
506 // Tige
507 Double_t lengthRod = 28.7 - 1.0 - 1.0 - 1.9; // sligtly decreased to accomodate to the fixation pieces
508 Double_t diameterRod = 1.815; // sligtly increased to account of the two ends of the rod
509 Double_t xRod = 22.1;
510 TGeoTube* Rod = new TGeoTube(0., diameterRod / 2., lengthRod / 2.);
511 TGeoVolume* rod = new TGeoVolume("rod", Rod, kMedAlu7075);
512 rod->SetLineColor(kGray);
513
514 // Connecteur Tige / Beam support
515 Double_t lengthFixRod = 4.0;
516 Double_t diameterFixRod = 3.0;
517 //---------------------------------------
518 TGeoTube* RodBracket = new TGeoTube("RodBracket", 0., diameterFixRod / 2., lengthFixRod / 2.);
519 TGeoBBox* BracketPlane = new TGeoBBox("BracketPlane", 3., 3., 3.);
520 TGeoTranslation* tBracketPlane = new TGeoTranslation("tBracketPlane", 0., 3. - kCarbonEarsYdimOut / 2., (lengthFixRod + 6.) / 2. - 2.6);
521 tBracketPlane->RegisterYourself();
522 TGeoCompositeShape* Bracket = new TGeoCompositeShape("Bracket", "RodBracket-BracketPlane:tBracketPlane");
523 TGeoVolume* bracket = new TGeoVolume("bracket", Bracket, kMedAlu7075);
524 //---------------------------------------
525
526 // Carbon box surrounding the aluminum rod
527 TGeoVolumeAssembly* carbonBox = new TGeoVolumeAssembly("carbonBox");
528 Double_t eCarbonBox = 0.1;
529 Double_t trdWidth = 8.6;
530 Double_t trdLength = 11.05 - 1.0 - 0.6; // on each side to accomodate the bracket and TRDPlate
531 TGeoTrd1* trdOut = new TGeoTrd1("trdOut", 1.405 / 2, 6.632 / 2, trdLength / 2, trdWidth / 2);
532 TGeoTrd1* trdIn = new TGeoTrd1("trdIn", 1.405 / 2 - eCarbonBox, 6.632 / 2 - eCarbonBox, trdLength / 2 + eCarbonBox, trdWidth / 2 - eCarbonBox);
533 TGeoCompositeShape* trd = new TGeoCompositeShape("trd", "trdOut-trdIn");
534 TGeoVolume* TRD = new TGeoVolume("TRD", trd, kMedCarbonFiber);
535 TRD->SetLineColor(kGray);
536
537 // To close the carbon box
538 TGeoTrd1* trdPlate = new TGeoTrd1("trdPlate", 1.405 / 2, 6.632 / 2, 1.0 / 2, trdWidth / 2);
539 TGeoVolume* TRDPlate = new TGeoVolume("TDRPlate", trdPlate, kMedAlu7075);
540
541 // To connect on the main cage
542 TGeoBBox* plateBox = new TGeoBBox("plateBox", 7.5 / 2., 9.5 / 2., 1.9 / 2.);
543 TGeoBBox* removeBox = new TGeoBBox("removeBox", 2.1 / 2 + 0.0001, 2.5 / 2. + 0.0001, 1.9 / 2. + 0.0001);
544 TGeoTranslation* tRemove1 = new TGeoTranslation("tRemove1", (7.5 - 2.1) / 2, -(9.5 - 2.5) / 2, 0.);
545 TGeoTranslation* tRemove2 = new TGeoTranslation("tRemove2", -(7.5 - 2.1) / 2, -(9.5 - 2.5) / 2, 0.);
546 tRemove1->RegisterYourself();
547 tRemove2->RegisterYourself();
548
549 // Connectors Rod / Cage
550 TGeoCompositeShape* PlateBox = new TGeoCompositeShape("PlateBox", "plateBox-removeBox:tRemove1-removeBox:tRemove2");
551 TGeoVolume* PLATEBox = new TGeoVolume("PLATEBox", PlateBox, kMedAlu7075);
552
553 TGeoRotation* PlateRot = new TGeoRotation("PlateRot", 0., 0., 0.);
554 TGeoRotation* FrontRot = new TGeoRotation("FrontRot", 180., 90., 0.);
555 TGeoCombiTrans* tFrontCarbonBox = new TGeoCombiTrans("tFrontCarbonBox", 0., 0., 0., FrontRot);
556 PlateRot->RegisterYourself();
557 FrontRot->RegisterYourself();
558 tFrontCarbonBox->RegisterYourself();
559 TGeoCombiTrans* tTRDPlate = new TGeoCombiTrans("tTRDPlate", 0., 0., -(trdLength + 1.0) / 2, FrontRot);
560 tTRDPlate->RegisterYourself();
561 TRDPlate->SetLineColor(kGray + 2);
562 TGeoCombiTrans* tPlateBox = new TGeoCombiTrans("tPlateBox", 0., 0., -(trdLength + 1.9) / 2 - 1.0, PlateRot);
563 tPlateBox->RegisterYourself();
564 PLATEBox->SetLineColor(kGray);
565
566 Double_t xyOut[16] = {0};
567 xyOut[0] = 3.316;
568 xyOut[1] = 4.3;
569 xyOut[2] = 0.7025;
570 xyOut[3] = -xyOut[1];
571 xyOut[4] = -xyOut[2];
572 xyOut[5] = -xyOut[1];
573 xyOut[6] = -xyOut[0];
574 xyOut[7] = xyOut[1];
575 //--------------
576 xyOut[8] = 1.3;
577 xyOut[9] = 1.3 - xyOut[1] + xyOut[8];
578 xyOut[10] = xyOut[8];
579 xyOut[11] = -xyOut[8] - xyOut[1] + xyOut[8];
580 xyOut[12] = -xyOut[8];
581 xyOut[13] = -xyOut[8] - xyOut[1] + xyOut[8];
582 xyOut[14] = -xyOut[8];
583 xyOut[15] = xyOut[8] - xyOut[1] + xyOut[8];
584 Double_t ARB8Length = 15.35;
585 TGeoArb8* ARB8Out = new TGeoArb8("ARB8Out", ARB8Length / 2, xyOut);
586
587 Double_t xyIn[16] = {0};
588 xyIn[0] = xyOut[0] - eCarbonBox;
589 xyIn[1] = xyOut[1] - eCarbonBox;
590 xyIn[2] = 0.7025 - eCarbonBox;
591 xyIn[3] = -xyIn[1];
592 xyIn[4] = -xyIn[2];
593 xyIn[5] = -xyIn[1];
594 xyIn[6] = -xyIn[0];
595 xyIn[7] = xyIn[1];
596 //--------------
597 xyIn[8] = xyOut[8] - eCarbonBox;
598 xyIn[9] = xyOut[8] - xyIn[1] + xyIn[8] - eCarbonBox;
599 xyIn[10] = xyIn[8];
600 xyIn[11] = -xyIn[8] - xyOut[1] + xyOut[8];
601 xyIn[12] = -xyIn[8];
602 xyIn[13] = -xyIn[8] - xyOut[1] + xyOut[8];
603 xyIn[14] = -xyIn[8];
604 xyIn[15] = xyIn[8] - xyOut[1] + xyOut[8];
605 TGeoArb8* ARB8In = new TGeoArb8("ARB8In", ARB8Length / 2 + 0.0001, xyIn);
606
607 TGeoCompositeShape* arb8 = new TGeoCompositeShape("arb8", "ARB8Out-ARB8In");
608 TGeoVolume* ARB8 = new TGeoVolume("ARB8", arb8, kMedCarbonFiber);
609 ARB8->SetLineColor(kGray);
610 TGeoRotation* RearRot = new TGeoRotation("RearRot", 0., 0., 0.);
611 TGeoCombiTrans* tRearCarbonBox = new TGeoCombiTrans("tRearCarbonBox", 0., 0., (ARB8Length + trdLength) / 2, RearRot);
612 RearRot->RegisterYourself();
613 tRearCarbonBox->RegisterYourself();
614 //===============================================================
615
616 carbonBox->AddNode(TRD, 1, tFrontCarbonBox);
617 carbonBox->AddNode(ARB8, 1, tRearCarbonBox);
618 carbonBox->AddNode(TRDPlate, 1, tTRDPlate);
619 carbonBox->AddNode(PLATEBox, 1, tPlateBox);
620
621 TGeoRotation* CarbonBoxRot1 = new TGeoRotation("CarbonBoxRot1", 90., 0., 0.);
622 Double_t xCarbonBox = xRod + trdWidth / 2 - xyOut[8];
623 Double_t zCarbonBox = -trdLength / 2 - ARB8Length - lengthFixRod + 1.3;
624 TGeoCombiTrans* tCarbonBox1 = new TGeoCombiTrans("tCarbonBox1", -xCarbonBox, 0., zCarbonBox, CarbonBoxRot1);
625 CarbonBoxRot1->RegisterYourself();
626 tCarbonBox1->RegisterYourself();
627 TGeoRotation* CarbonBoxRot2 = new TGeoRotation("CarbonBoxRot2", 270., 0., 0.);
628 TGeoCombiTrans* tCarbonBox2 = new TGeoCombiTrans("tCarbonBox2", xCarbonBox, 0., zCarbonBox, CarbonBoxRot2);
629 CarbonBoxRot2->RegisterYourself();
630 tCarbonBox2->RegisterYourself();
631
632 Wing->AddNode(rod, 1, new TGeoTranslation(xRod, 0., -(lengthRod / 2. + lengthFixRod) + 1.3));
633 Wing->AddNode(rod, 2, new TGeoTranslation(-xRod, 0., -(lengthRod / 2. + lengthFixRod) + 1.3));
634 bracket->SetLineColor(kGray);
635 Wing->AddNode(bracket, 1, new TGeoTranslation(xRod, 0., -lengthFixRod / 2. + 1.3));
636 Wing->AddNode(bracket, 2, new TGeoTranslation(-xRod, 0., -lengthFixRod / 2. + 1.3));
637 Wing->AddNode(carbonBox, 1, tCarbonBox1);
638 Wing->AddNode(carbonBox, 2, tCarbonBox2);
639
640 beamPipeSupport->AddNode(Wing, 1);
641 Double_t mGlobalShift = 2.45; // to be closest to the first bellow according to Corrado blueprints
642 barrel->AddNode(beamPipeSupport, 1, new TGeoTranslation(0., 30, kBeamPipesupportZpos + kFixationCarbonCollarDZ / 2. - mGlobalShift));
643
645
647 // Side A section after Beryllium
648 // Authors: M.Sitta - 19 Sep 2014
649 // Drawings from C. Gargiulo :
650 // \\cern.ch\dfs\Workspaces\c\cgargiul\EXPERIMENT\ALICE\ALICE_MECHANICS\ALICE_DATA_PACKAGE\IN\DETECTORS\ITS_UPGRADE\1-DESIGN\0-IF_Control_Drawing\20140207_ICD_ITS_MFT_BP
652
653 //---------------- Al tube ------------------
654 Float_t kAluminumSectionThickness = 0.08;
655
656 Float_t kAluminum1stSectionOuterRadius = 1.9;
657 Float_t kAluminum1stSectionZmin = kBeryliumSectionZmax;
658 Float_t kAluminum1stSectionLength = 20.8;
659 Float_t kAluminumConesAngle = 15. * TMath::DegToRad();
660
661 Float_t kAluminum2ndSectionOuterRadius = 2.5;
662 Float_t kAluminum2ndSectionTotalLength = 361.8; /* was 402.8 - avoid overlap till we know where the pump will be */
663
664 Float_t kBeamPipeSupportZpos = 177.5;
665 Float_t kBeamPipeSupportLength = 5.25;
666 Float_t kBeamPipeSupportThickness = 0.18;
667
668 Float_t kZToAluminiumSecondCone = 3.08;
669 Float_t kAluminum3rdSectionOuterRadius = 3.0;
670 Float_t kFlangeATotalLength = 2.14;
671 Float_t kFlangeASteelSectionLength = 0.8;
672 Float_t kFlangeAExternalRadius = 7.6;
673
674 Float_t kSupportRingZpos = 8.0;
675 Float_t kSupportRingLength = 0.6;
676 Float_t kSupportRingRmax = 3.1;
677
678 Float_t kAluminumFirstConeLength =
679 (kAluminum2ndSectionOuterRadius - kAluminum1stSectionOuterRadius) / TMath::Tan(kAluminumConesAngle);
680 Float_t kAluminumSecondConeLength =
681 (kAluminum3rdSectionOuterRadius - kAluminum2ndSectionOuterRadius) / TMath::Tan(kAluminumConesAngle);
682
683 Float_t kZ26 = kAluminum1stSectionZmin;
684 Float_t kZ27 = kZ26 + kAluminum1stSectionLength;
685 Float_t kZ28 = kZ27 + kAluminumFirstConeLength;
686 Float_t kZ30 = kBeamPipeSupportZpos;
687 Float_t kZ29 = kZ30 - (kBeamPipeSupportThickness - kAluminumSectionThickness);
688 Float_t kZ32 = kZ29 + kBeamPipeSupportLength;
689 Float_t kZ31 = kZ32 - (kBeamPipeSupportThickness - kAluminumSectionThickness);
690 Float_t kZ36 = kZ27 + kAluminum2ndSectionTotalLength - kFlangeASteelSectionLength;
691 Float_t kZ35 = kZ36 - (kFlangeATotalLength - kFlangeASteelSectionLength);
692 Float_t kZ34 = kZ35 - (kZToAluminiumSecondCone - kFlangeATotalLength);
693 Float_t kZ33 = kZ34 - kAluminumSecondConeLength;
694
695 Float_t rMin, rMax;
696 Float_t zPos;
697
698 // The Aluminum Section till Flange
699 TGeoPcon* aluSideA = new TGeoPcon(0., 360., 14);
700 rMax = kAluminum1stSectionOuterRadius;
701 rMin = rMax - kAluminumSectionThickness;
702 aluSideA->DefineSection(0, kZ26, rMin, rMax);
703 aluSideA->DefineSection(1, kZ27, rMin, rMax);
704
705 rMax = kAluminum2ndSectionOuterRadius;
706 rMin = rMax - kAluminumSectionThickness;
707 aluSideA->DefineSection(2, kZ28, rMin, rMax);
708 aluSideA->DefineSection(3, kZ29, rMin, rMax);
709
710 rMax = rMin + kBeamPipeSupportThickness;
711 aluSideA->DefineSection(4, kZ30, rMin, rMax);
712 aluSideA->DefineSection(5, kZ31, rMin, rMax);
713
714 aluSideA->DefineSection(6, kZ32, aluSideA->GetRmin(2), aluSideA->GetRmax(2));
715 aluSideA->DefineSection(7, kZ33, aluSideA->GetRmin(2), aluSideA->GetRmax(2));
716
717 rMax = kAluminum3rdSectionOuterRadius;
718 rMin = rMax - kAluminumSectionThickness;
719 aluSideA->DefineSection(8, kZ34, rMin, rMax);
720 aluSideA->DefineSection(9, kZ35, rMin, rMax);
721
722 rMax = kFlangeAExternalRadius;
723 aluSideA->DefineSection(10, kZ35, rMin, rMax);
724 aluSideA->DefineSection(11, kZ35 + kAluminumSectionThickness, rMin, rMax);
725
726 rMin = rMax - kAluminumSectionThickness;
727 aluSideA->DefineSection(12, kZ35 + kAluminumSectionThickness, rMin, rMax);
728 aluSideA->DefineSection(13, kZ36, rMin, rMax);
729
730 TGeoVolume* voaluSideA = new TGeoVolume("aluSideA", aluSideA, kMedAlu2219);
731 voaluSideA->SetLineColor(kBlue);
732 barrel->AddNode(voaluSideA, 1, new TGeoTranslation(0., 30., 0.));
733
734 // The Stainless Steel Flange Ring
735 rMax = kFlangeAExternalRadius;
736 rMin = rMax - kAluminumSectionThickness;
737 TGeoTube* flangeASteelRing = new TGeoTube(rMin, rMax, kFlangeASteelSectionLength / 2.);
738
739 TGeoVolume* voflangeASteelRing = new TGeoVolume("steelFlangeSideA", flangeASteelRing, kMedSteel);
740 voflangeASteelRing->SetLineColor(kRed);
741 zPos = aluSideA->GetZ(13) + flangeASteelRing->GetDz();
742 barrel->AddNode(voflangeASteelRing, 1, new TGeoTranslation(0., 30., zPos));
743
744 // The vacuum inside aluSideA and flangeASteelRing
745 TGeoPcon* aluSideAVac = new TGeoPcon(0., 360., 8);
746 aluSideAVac->DefineSection(0, aluSideA->GetZ(0), 0., aluSideA->GetRmin(0));
747 aluSideAVac->DefineSection(1, aluSideA->GetZ(1), 0., aluSideA->GetRmin(1));
748 aluSideAVac->DefineSection(2, aluSideA->GetZ(2), 0., aluSideA->GetRmin(2));
749 aluSideAVac->DefineSection(3, aluSideA->GetZ(7), 0., aluSideA->GetRmin(7));
750 aluSideAVac->DefineSection(4, aluSideA->GetZ(8), 0., aluSideA->GetRmin(8));
751 aluSideAVac->DefineSection(5, aluSideA->GetZ(11), 0., aluSideA->GetRmin(11));
752 aluSideAVac->DefineSection(6, aluSideA->GetZ(12), 0., aluSideA->GetRmin(12));
753 aluSideAVac->DefineSection(7, aluSideA->GetZ(13), 0., aluSideA->GetRmin(13));
754
755 TGeoVolume* voaluSideAVac = new TGeoVolume("aluSideAVac", aluSideAVac, kMedVac);
756 voaluSideAVac->SetLineColor(kGreen);
757 voaluSideAVac->SetVisibility(1);
758 voaluSideA->AddNode(voaluSideAVac, 1, gGeoIdentity);
759
760 // The support ring on A Side
761 TGeoTube* sideASuppRing = new TGeoTube(kAluminum2ndSectionOuterRadius, kSupportRingRmax, kSupportRingLength / 2.);
762
763 TGeoVolume* vosideASuppRing = new TGeoVolume("sideASuppRing", sideASuppRing, kMedAlu2219);
764 vosideASuppRing->SetLineColor(kBlue);
765 zPos = aluSideA->GetZ(13) + 2 * flangeASteelRing->GetDz() - kSupportRingZpos - sideASuppRing->GetDz();
766 barrel->AddNode(vosideASuppRing, 1, new TGeoTranslation(0., 30., zPos));
767
768 //-------------------------------------------------
769
771 // //
772 // RB24/1 //
773 // //
775 //
776 //
777 // Drawing LHCVC2U_0001
778 // Copper Tube RB24/1 393.5 cm
779 // Warm module VMACA 18.0 cm
780 // Annular Ion Pump 35.0 cm
781 // Valve 7.5 cm
782 // Warm module VMABC 28.0 cm
783 // ================================
784 // 462.0 cm
785 //
786
787 // Copper Tube RB24/1
788 const Float_t kRB24CuTubeL = 381.5;
789 const Float_t kRB24cCuTubeL = 155.775;
790 const Float_t kRB24bCuTubeL = kRB24CuTubeL - kRB24cCuTubeL;
791 const Float_t kRB24CuTubeRi = 8.0 / 2.;
792 const Float_t kRB24CuTubeRo = 8.4 / 2.;
793 const Float_t kRB24CuTubeFRo = 7.6;
794 const Float_t kRB24CuTubeFL = 1.86;
795 const Float_t kRB24CL = 2. * 597.9;
796 //
797 // introduce cut at end of barrel 714.6m
798 //
799 // barrel part
800 TGeoVolume* voRB24CuTubeM =
801 new TGeoVolume("voRB24CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB24bCuTubeL / 2.), kMedVac);
802 voRB24CuTubeM->SetVisibility(0);
803 TGeoVolume* voRB24CuTube =
804 new TGeoVolume("voRB24CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB24bCuTubeL / 2.), kMedCu);
805 voRB24CuTubeM->AddNode(voRB24CuTube, 1, gGeoIdentity);
806 // outside barrel
807 TGeoVolume* voRB24cCuTubeM =
808 new TGeoVolume("voRB24cCuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB24cCuTubeL / 2.), kMedVacNFHC);
809 voRB24CuTubeM->SetVisibility(0);
810 TGeoVolume* voRB24cCuTube =
811 new TGeoVolume("voRB24cCuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB24cCuTubeL / 2.), kMedCuNFHC);
812 voRB24cCuTubeM->AddNode(voRB24cCuTube, 1, gGeoIdentity);
813
814 // Air outside tube with higher transport cuts
815 TGeoVolume* voRB24CuTubeA = new TGeoVolume("voRB24CuTubeA", new TGeoTube(80., 81., kRB24bCuTubeL / 2.), kMedAirHigh);
816 voRB24CuTubeA->SetVisibility(0);
817
818 // Simplified DN 100 Flange
819 TGeoVolume* voRB24CuTubeF =
820 new TGeoVolume("voRB24CuTubeF", new TGeoTube(kRB24CuTubeRo, kRB24CuTubeFRo, kRB24CuTubeFL / 2.), kMedSteelNF);
821
822 // Warm Module Type VMACA
823 // LHCVMACA_0002
824 //
825 // Pos 1 Warm Bellows DN100 LHCVBU__0012
826 // Pos 2 RF Contact D80 LHCVSR__0005
827 // Pos 3 Trans. Tube Flange LHCVSR__0065
828 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
829 // [Pos 5 Tension spring LHCVSR__0011]
830 //
831 //
832 //
833 // Pos1 Warm Bellows DN100
834 // Pos1.1 Bellows LHCVBU__0006
835 //
836 //
837 // Connection Tubes
838 // Connection tube inner r
839 const Float_t kRB24B1ConTubeRin = 10.0 / 2.;
840 // Connection tube outer r
841 const Float_t kRB24B1ConTubeRou = 10.3 / 2.;
842 // Connection tube length
843 const Float_t kRB24B1ConTubeL = 2.5;
844 //
845 const Float_t kRB24B1CompL = 16.375; // Length of the compensator
846 const Float_t kRB24B1BellowRi = 10.25 / 2.; // Bellow inner radius
847 const Float_t kRB24B1BellowRo = 11.40 / 2.; // Bellow outer radius
848 const Int_t kRB24B1NumberOfPlies = 27; // Number of plies
849 const Float_t kRB24B1BellowUndL = 11.00; // Length of undulated region
850 const Float_t kRB24B1PlieThickness = 0.015; // Plie thickness
851
852 const Float_t kRB24B1PlieRadius =
853 (kRB24B1BellowUndL + (2. * kRB24B1NumberOfPlies - 2.) * kRB24B1PlieThickness) / (4. * kRB24B1NumberOfPlies);
854
855 const Float_t kRB24B1ProtTubeThickness = 0.02; // Thickness of the protection tube
856 const Float_t kRB24B1ProtTubeLength = 4.2; // Length of the protection tube
857
858 const Float_t kRB24B1RFlangeL = 1.86; // Length of the flanges
859 const Float_t kRB24B1RFlangeLO = 0.26; // Flange overlap
860 const Float_t kRB24B1RFlangeRO = 11.18 / 2; // Inner radius at Flange overlap
861 const Float_t kRB24B1RFlangeRou = 15.20 / 2.; // Outer radius of flange
862 const Float_t kRB24B1RFlangeRecess = 0.98; // Flange recess
863 const Float_t kRB24B1L = kRB24B1CompL + 2. * (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
864
866 //
867 // Bellow Section
868 TGeoVolume* voRB24B1Bellow = MakeBellow("RB24B1", kRB24B1NumberOfPlies, kRB24B1BellowRi, kRB24B1BellowRo,
869 kRB24B1BellowUndL, kRB24B1PlieRadius, kRB24B1PlieThickness);
870 voRB24B1Bellow->SetVisibility(0);
871 Float_t newRB24B1BellowUndL = 2 * (static_cast<TGeoTube*>(voRB24B1Bellow->GetShape()))->GetDz();
872
873 //
874 // Bellow mother volume
875 TGeoPcon* shRB24B1BellowM = new TGeoPcon(0., 360., 12);
876 // Connection Tube and Flange
877 z = 0.;
878 shRB24B1BellowM->DefineSection(0, z, 0., kRB24B1RFlangeRou);
879 z += kRB24B1RFlangeLO;
880 shRB24B1BellowM->DefineSection(1, z, 0., kRB24B1RFlangeRou);
881 z = kRB24B1RFlangeL;
882 shRB24B1BellowM->DefineSection(2, z, 0., kRB24B1RFlangeRou);
883 shRB24B1BellowM->DefineSection(3, z, 0., kRB24B1ConTubeRou);
884 z = kRB24B1ConTubeL + kRB24B1RFlangeL - kRB24B1RFlangeRecess;
885 shRB24B1BellowM->DefineSection(4, z, 0., kRB24B1ConTubeRou);
886 // Plie
887 shRB24B1BellowM->DefineSection(5, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
888 z += newRB24B1BellowUndL;
889 shRB24B1BellowM->DefineSection(6, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness);
890 shRB24B1BellowM->DefineSection(7, z, 0., kRB24B1ConTubeRou);
891 // Connection Tube and Flange
892 z = kRB24B1L - shRB24B1BellowM->GetZ(3);
893 shRB24B1BellowM->DefineSection(8, z, 0., kRB24B1ConTubeRou);
894 shRB24B1BellowM->DefineSection(9, z, 0., kRB24B1RFlangeRou);
895 z = kRB24B1L - shRB24B1BellowM->GetZ(1);
896 shRB24B1BellowM->DefineSection(10, z, 0., kRB24B1RFlangeRou);
897 z = kRB24B1L - shRB24B1BellowM->GetZ(0);
898 shRB24B1BellowM->DefineSection(11, z, 0., kRB24B1RFlangeRou);
899
900 TGeoVolume* voRB24B1BellowM = new TGeoVolume("RB24B1BellowM", shRB24B1BellowM, kMedVacNF);
901 voRB24B1BellowM->SetVisibility(0);
902 //
903 // End Parts (connection tube)
904 TGeoVolume* voRB24B1CT =
905 new TGeoVolume("RB24B1CT", new TGeoTube(kRB24B1ConTubeRin, kRB24B1ConTubeRou, kRB24B1ConTubeL / 2.), kMedSteelNF);
906 //
907 // Protection Tube
908 TGeoVolume* voRB24B1PT = new TGeoVolume(
909 "RB24B1PT", new TGeoTube(kRB24B1BellowRo, kRB24B1BellowRo + kRB24B1ProtTubeThickness, kRB24B1ProtTubeLength / 2.),
910 kMedSteelNF);
911
912 z = kRB24B1ConTubeL / 2. + (kRB24B1RFlangeL - kRB24B1RFlangeRecess);
913
914 voRB24B1BellowM->AddNode(voRB24B1CT, 1, new TGeoTranslation(0., 0., z));
915 z += (kRB24B1ConTubeL / 2. + newRB24B1BellowUndL / 2.);
916 voRB24B1BellowM->AddNode(voRB24B1Bellow, 1, new TGeoTranslation(0., 0., z));
917 z += (newRB24B1BellowUndL / 2. + kRB24B1ConTubeL / 2);
918 voRB24B1BellowM->AddNode(voRB24B1CT, 2, new TGeoTranslation(0., 0., z));
919 z = kRB24B1ConTubeL + kRB24B1ProtTubeLength / 2. + 1. + kRB24B1RFlangeLO;
920 voRB24B1BellowM->AddNode(voRB24B1PT, 1, new TGeoTranslation(0., 0., z));
921 z += kRB24B1ProtTubeLength + 0.6;
922 voRB24B1BellowM->AddNode(voRB24B1PT, 2, new TGeoTranslation(0., 0., z));
923
924 // Pos 1/2 Rotatable Flange LHCVBU__0013
925 // Pos 1/3 Flange DN100/103 LHCVBU__0018
926 // The two flanges can be represented by the same volume
927 // Outer Radius (including the outer movable ring).
928 // The inner ring has a diameter of 12.04 cm
929
930 TGeoPcon* shRB24B1RFlange = new TGeoPcon(0., 360., 10);
931 z = 0.;
932 shRB24B1RFlange->DefineSection(0, z, 10.30 / 2., kRB24B1RFlangeRou);
933 z += 0.55; // 5.5 mm added for outer ring
934 z += 0.43;
935 shRB24B1RFlange->DefineSection(1, z, 10.30 / 2., kRB24B1RFlangeRou);
936 shRB24B1RFlange->DefineSection(2, z, 10.06 / 2., kRB24B1RFlangeRou);
937 z += 0.15;
938 shRB24B1RFlange->DefineSection(3, z, 10.06 / 2., kRB24B1RFlangeRou);
939 // In reality this part is rounded
940 shRB24B1RFlange->DefineSection(4, z, 10.91 / 2., kRB24B1RFlangeRou);
941 z += 0.15;
942 shRB24B1RFlange->DefineSection(5, z, 10.91 / 2., kRB24B1RFlangeRou);
943 shRB24B1RFlange->DefineSection(6, z, 10.06 / 2., kRB24B1RFlangeRou);
944 z += 0.32;
945 shRB24B1RFlange->DefineSection(7, z, 10.06 / 2., kRB24B1RFlangeRou);
946 shRB24B1RFlange->DefineSection(8, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
947 z += kRB24B1RFlangeLO;
948 shRB24B1RFlange->DefineSection(9, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou);
949
950 TGeoVolume* voRB24B1RFlange = new TGeoVolume("RB24B1RFlange", shRB24B1RFlange, kMedSteelNF);
951
952 z = kRB24B1L - kRB24B1RFlangeL;
953 voRB24B1BellowM->AddNode(voRB24B1RFlange, 1, new TGeoTranslation(0., 0., z));
954 z = kRB24B1RFlangeL;
955 voRB24B1BellowM->AddNode(voRB24B1RFlange, 2, new TGeoCombiTrans(0., 0., z, rot180));
956 //
957 // Pos 2 RF Contact D80 LHCVSR__0005
958 //
959 // Pos 2.1 RF Contact Flange LHCVSR__0003
960 //
961 TGeoPcon* shRB24B1RCTFlange = new TGeoPcon(0., 360., 6);
962 const Float_t kRB24B1RCTFlangeRin = 8.06 / 2. + 0.05; // Inner radius
963 const Float_t kRB24B1RCTFlangeL = 1.45; // Length
964
965 z = 0.;
966 shRB24B1RCTFlange->DefineSection(0, z, kRB24B1RCTFlangeRin, 8.20 / 2.);
967 z += 0.15;
968 shRB24B1RCTFlange->DefineSection(1, z, kRB24B1RCTFlangeRin, 8.20 / 2.);
969 shRB24B1RCTFlange->DefineSection(2, z, kRB24B1RCTFlangeRin, 8.60 / 2.);
970 z += 1.05;
971 shRB24B1RCTFlange->DefineSection(3, z, kRB24B1RCTFlangeRin, 8.60 / 2.);
972 shRB24B1RCTFlange->DefineSection(4, z, kRB24B1RCTFlangeRin, 11.16 / 2.);
973 z += 0.25;
974 shRB24B1RCTFlange->DefineSection(5, z, kRB24B1RCTFlangeRin, 11.16 / 2.);
975 TGeoVolume* voRB24B1RCTFlange = new TGeoVolume("RB24B1RCTFlange", shRB24B1RCTFlange, kMedCuNF);
976 z = kRB24B1L - kRB24B1RCTFlangeL;
977
978 voRB24B1BellowM->AddNode(voRB24B1RCTFlange, 1, new TGeoTranslation(0., 0., z));
979 //
980 // Pos 2.2 RF-Contact LHCVSR__0004
981 //
982 TGeoPcon* shRB24B1RCT = new TGeoPcon(0., 360., 3);
983 const Float_t kRB24B1RCTRin = 8.00 / 2.; // Inner radius
984 const Float_t kRB24B1RCTCRin = 8.99 / 2.; // Max. inner radius conical section
985 const Float_t kRB24B1RCTL = 11.78; // Length
986 const Float_t kRB24B1RCTSL = 10.48; // Length of straight section
987 const Float_t kRB24B1RCTd = 0.03; // Thickness
988
989 z = 0;
990 shRB24B1RCT->DefineSection(0, z, kRB24B1RCTCRin, kRB24B1RCTCRin + kRB24B1RCTd);
991 z = kRB24B1RCTL - kRB24B1RCTSL;
992 // In the (VSR0004) this section is straight in (LHCVC2U_0001) it is conical ????
993 shRB24B1RCT->DefineSection(1, z, kRB24B1RCTRin + 0.35, kRB24B1RCTRin + 0.35 + kRB24B1RCTd);
994 z = kRB24B1RCTL - 0.03;
995 shRB24B1RCT->DefineSection(2, z, kRB24B1RCTRin, kRB24B1RCTRin + kRB24B1RCTd);
996
997 TGeoVolume* voRB24B1RCT = new TGeoVolume("RB24B1RCT", shRB24B1RCT, kMedCuNF);
998 z = kRB24B1L - kRB24B1RCTL - 0.45;
999 voRB24B1BellowM->AddNode(voRB24B1RCT, 1, new TGeoTranslation(0., 0., z));
1000
1001 //
1002 // Pos 3 Trans. Tube Flange LHCVSR__0065
1003 //
1004 // Pos 3.1 Transition Tube D53 LHCVSR__0064
1005 // Pos 3.2 Transition Flange LHCVSR__0060
1006 // Pos 3.3 Transition Tube LHCVSR__0058
1007 TGeoPcon* shRB24B1TTF = new TGeoPcon(0., 360., 7);
1008 // Flange
1009 z = 0.;
1010 shRB24B1TTF->DefineSection(0, z, 6.30 / 2., 11.16 / 2.);
1011 z += 0.25;
1012 shRB24B1TTF->DefineSection(1, z, 6.30 / 2., 11.16 / 2.);
1013 shRB24B1TTF->DefineSection(2, z, 6.30 / 2., 9.3 / 2.);
1014 z += 0.55;
1015 shRB24B1TTF->DefineSection(3, z, 6.30 / 2., 9.3 / 2.);
1016 // Tube
1017 shRB24B1TTF->DefineSection(4, z, 6.30 / 2., 6.7 / 2.);
1018 z += 5.80;
1019 shRB24B1TTF->DefineSection(5, z, 6.30 / 2., 6.7 / 2.);
1020 // Transition Tube
1021 z += 3.75;
1022 shRB24B1TTF->DefineSection(6, z, 8.05 / 2., 8.45 / 2.);
1023 TGeoVolume* voRB24B1TTF = new TGeoVolume("RB24B1TTF", shRB24B1TTF, kMedSteelNF);
1024 z = 0.;
1025 voRB24B1BellowM->AddNode(voRB24B1TTF, 1, new TGeoTranslation(0., 0., z));
1026
1027 // Annular Ion Pump
1028 // LHCVC2U_0003
1029 //
1030 // Pos 1 Rotable Flange LHCVFX__0031
1031 // Pos 2 RF Screen Tube LHCVC2U_0005
1032 // Pos 3 Shell LHCVC2U_0007
1033 // Pos 4 Extruded Shell LHCVC2U_0006
1034 // Pos 5 Feedthrough Tube LHCVC2U_0004
1035 // Pos 6 Tubulated Flange STDVFUHV0021
1036 // Pos 7 Fixed Flange LHCVFX__0032
1037 // Pos 8 Pumping Elements
1038
1039 //
1040 // Pos 1 Rotable Flange LHCVFX__0031
1041 // pos 7 Fixed Flange LHCVFX__0032
1042 //
1043 // Mother volume
1044 const Float_t kRB24AIpML = 35.;
1045
1046 // TGeoVolume* voRB24AIpM = new TGeoVolume("voRB24AIpM", new TGeoTube(0., 10., kRB24AIpML/2.), kMedAir);
1047 TGeoVolume* voRB24AIpM = new TGeoVolumeAssembly("voRB24AIpM");
1048 voRB24AIpM->SetVisibility(0);
1049
1050 //
1051 // Length 35 cm
1052 // Flange 2 x 1.98 = 3.96
1053 // Tube = 32.84
1054 //==========================
1055 // 36.80
1056 // Overlap 2 * 0.90 = 1.80
1057
1058 const Float_t kRB24IpRFD1 = 0.68; // Length of section 1
1059 const Float_t kRB24IpRFD2 = 0.30; // Length of section 2
1060 const Float_t kRB24IpRFD3 = 0.10; // Length of section 3
1061 const Float_t kRB24IpRFD4 = 0.35; // Length of section 4
1062 const Float_t kRB24IpRFD5 = 0.55; // Length of section 5
1063
1064 const Float_t kRB24IpRFRo = 15.20 / 2.; // Flange outer radius
1065 const Float_t kRB24IpRFRi1 = 6.30 / 2.; // Flange inner radius section 1
1066 const Float_t kRB24IpRFRi2 = 6.00 / 2.; // Flange inner radius section 2
1067 const Float_t kRB24IpRFRi3 = 5.84 / 2.; // Flange inner radius section 3
1068 const Float_t kRB24IpRFRi4 = 6.00 / 2.; // Flange inner radius section 1
1069 const Float_t kRB24IpRFRi5 = 10.50 / 2.; // Flange inner radius section 2
1070
1071 TGeoPcon* shRB24IpRF = new TGeoPcon(0., 360., 9);
1072 z0 = 0.;
1073 shRB24IpRF->DefineSection(0, z0, kRB24IpRFRi1, kRB24IpRFRo);
1074 z0 += kRB24IpRFD1;
1075 shRB24IpRF->DefineSection(1, z0, kRB24IpRFRi2, kRB24IpRFRo);
1076 z0 += kRB24IpRFD2;
1077 shRB24IpRF->DefineSection(2, z0, kRB24IpRFRi2, kRB24IpRFRo);
1078 shRB24IpRF->DefineSection(3, z0, kRB24IpRFRi3, kRB24IpRFRo);
1079 z0 += kRB24IpRFD3;
1080 shRB24IpRF->DefineSection(4, z0, kRB24IpRFRi3, kRB24IpRFRo);
1081 shRB24IpRF->DefineSection(5, z0, kRB24IpRFRi4, kRB24IpRFRo);
1082 z0 += kRB24IpRFD4;
1083 shRB24IpRF->DefineSection(6, z0, kRB24IpRFRi4, kRB24IpRFRo);
1084 shRB24IpRF->DefineSection(7, z0, kRB24IpRFRi5, kRB24IpRFRo);
1085 z0 += kRB24IpRFD5;
1086 shRB24IpRF->DefineSection(8, z0, kRB24IpRFRi5, kRB24IpRFRo);
1087
1088 TGeoVolume* voRB24IpRF = new TGeoVolume("RB24IpRF", shRB24IpRF, kMedSteel);
1089
1090 //
1091 // Pos 2 RF Screen Tube LHCVC2U_0005
1092 //
1093
1094 //
1095 // Tube
1096 Float_t kRB24IpSTTL = 32.84; // Total length of the tube
1097 Float_t kRB24IpSTTRi = 5.80 / 2.; // Inner Radius
1098 Float_t kRB24IpSTTRo = 6.00 / 2.; // Outer Radius
1099 TGeoVolume* voRB24IpSTT =
1100 new TGeoVolume("RB24IpSTT", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTTL / 2.), kMedSteelNF);
1101 // Screen
1102 Float_t kRB24IpSTCL = 0.4; // Lenth of the crochet detail
1103 // Length of the screen
1104 Float_t kRB24IpSTSL = 9.00 - 2. * kRB24IpSTCL;
1105 // Rel. position of the screen
1106 Float_t kRB24IpSTSZ = 7.00 + kRB24IpSTCL;
1107 TGeoVolume* voRB24IpSTS =
1108 new TGeoVolume("RB24IpSTS", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTSL / 2.), kMedSteelNF);
1109 // Vacuum
1110 TGeoVolume* voRB24IpSTV = new TGeoVolume("RB24IpSTV", new TGeoTube(0., kRB24IpSTTRi, kRB24AIpML / 2.), kMedVacNF);
1111 //
1112 voRB24IpSTT->AddNode(voRB24IpSTS, 1, new TGeoTranslation(0., 0., kRB24IpSTSZ - kRB24IpSTTL / 2. + kRB24IpSTSL / 2.));
1113
1114 // Crochets
1115 // Inner radius
1116 Float_t kRB24IpSTCRi = kRB24IpSTTRo + 0.25;
1117 // Outer radius
1118 Float_t kRB24IpSTCRo = kRB24IpSTTRo + 0.35;
1119 // Length of 1stsection
1120 Float_t kRB24IpSTCL1 = 0.15;
1121 // Length of 2nd section
1122 Float_t kRB24IpSTCL2 = 0.15;
1123 // Length of 3rd section
1124 Float_t kRB24IpSTCL3 = 0.10;
1125 // Rel. position of 1st Crochet
1126
1127 TGeoPcon* shRB24IpSTC = new TGeoPcon(0., 360., 5);
1128 z0 = 0;
1129 shRB24IpSTC->DefineSection(0, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1130 z0 += kRB24IpSTCL1;
1131 shRB24IpSTC->DefineSection(1, z0, kRB24IpSTCRi, kRB24IpSTCRo);
1132 shRB24IpSTC->DefineSection(2, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1133 z0 += kRB24IpSTCL2;
1134 shRB24IpSTC->DefineSection(3, z0, kRB24IpSTTRo, kRB24IpSTCRo);
1135 z0 += kRB24IpSTCL3;
1136 shRB24IpSTC->DefineSection(4, z0, kRB24IpSTTRo, kRB24IpSTTRo + 0.001);
1137 TGeoVolume* voRB24IpSTC = new TGeoVolume("RB24IpSTC", shRB24IpSTC, kMedSteel);
1138
1139 // Pos 3 Shell LHCVC2U_0007
1140 // Pos 4 Extruded Shell LHCVC2U_0006
1141 Float_t kRB24IpShellL = 4.45; // Length of the Shell
1142 Float_t kRB24IpShellD = 0.10; // Wall thickness of the shell
1143 Float_t kRB24IpShellCTRi = 6.70 / 2.; // Inner radius of the connection tube
1144 Float_t kRB24IpShellCTL = 1.56; // Length of the connection tube
1145 Float_t kRB24IpShellCARi = 17.80 / 2.; // Inner radius of the cavity
1146 Float_t kRB24IpShellCCRo = 18.20 / 2.; // Inner radius at the centre
1147
1148 TGeoPcon* shRB24IpShell = new TGeoPcon(0., 360., 7);
1149 z0 = 0;
1150 shRB24IpShell->DefineSection(0, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1151 z0 += kRB24IpShellCTL;
1152 shRB24IpShell->DefineSection(1, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD);
1153 shRB24IpShell->DefineSection(2, z0, kRB24IpShellCTRi, kRB24IpShellCARi + kRB24IpShellD);
1154 z0 += kRB24IpShellD;
1155 shRB24IpShell->DefineSection(3, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1156 z0 = kRB24IpShellL - kRB24IpShellD;
1157 shRB24IpShell->DefineSection(4, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD);
1158 shRB24IpShell->DefineSection(5, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1159 z0 = kRB24IpShellL;
1160 shRB24IpShell->DefineSection(6, z0, kRB24IpShellCARi, kRB24IpShellCCRo);
1161 TGeoVolume* voRB24IpShell = new TGeoVolume("RB24IpShell", shRB24IpShell, kMedSteel);
1162
1163 TGeoPcon* shRB24IpShellM = MakeMotherFromTemplate(shRB24IpShell, 0, 6, kRB24IpShellCTRi, 13);
1164
1165 for (Int_t i = 0; i < 6; i++) {
1166 z = 2. * kRB24IpShellL - shRB24IpShellM->GetZ(5 - i);
1167 Float_t rmin = shRB24IpShellM->GetRmin(5 - i);
1168 Float_t rmax = shRB24IpShellM->GetRmax(5 - i);
1169 shRB24IpShellM->DefineSection(7 + i, z, rmin, rmax);
1170 }
1171
1172 TGeoVolume* voRB24IpShellM = new TGeoVolume("RB24IpShellM", shRB24IpShellM, kMedVac);
1173 voRB24IpShellM->SetVisibility(0);
1174 voRB24IpShellM->AddNode(voRB24IpShell, 1, gGeoIdentity);
1175 voRB24IpShellM->AddNode(voRB24IpShell, 2, new TGeoCombiTrans(0., 0., 2. * kRB24IpShellL, rot180));
1176 //
1177 // Pos 8 Pumping Elements
1178 //
1179 // Anode array
1180 TGeoVolume* voRB24IpPE = new TGeoVolume("voRB24IpPE", new TGeoTube(0.9, 1., 2.54 / 2.), kMedSteel);
1181 Float_t kRB24IpPEAR = 5.5;
1182
1183 for (Int_t i = 0; i < 15; i++) {
1184 Float_t phi = Float_t(i) * 24.;
1185 Float_t x = kRB24IpPEAR * TMath::Cos(kDegRad * phi);
1186 Float_t y = kRB24IpPEAR * TMath::Sin(kDegRad * phi);
1187 voRB24IpShellM->AddNode(voRB24IpPE, i + 1, new TGeoTranslation(x, y, kRB24IpShellL));
1188 }
1189
1190 //
1191 // Cathodes
1192 //
1193 // Here we could add some Ti strips
1194
1195 // Postioning of elements
1196 voRB24AIpM->AddNode(voRB24IpRF, 1, new TGeoTranslation(0., 0., -kRB24AIpML / 2.));
1197 voRB24AIpM->AddNode(voRB24IpRF, 2, new TGeoCombiTrans(0., 0., +kRB24AIpML / 2., rot180));
1198 voRB24AIpM->AddNode(voRB24IpSTT, 1, new TGeoTranslation(0., 0., 0.));
1199 voRB24AIpM->AddNode(voRB24IpSTV, 1, new TGeoTranslation(0., 0., 0.));
1200 voRB24AIpM->AddNode(voRB24IpShellM, 1, new TGeoTranslation(0., 0., -kRB24AIpML / 2. + 8.13));
1201 voRB24AIpM->AddNode(voRB24IpSTC, 1, new TGeoTranslation(0., 0., 8.13 - kRB24AIpML / 2.));
1202 voRB24AIpM->AddNode(voRB24IpSTC, 2, new TGeoCombiTrans(0., 0., 8.14 + 8.9 - kRB24AIpML / 2., rot180));
1203
1204 //
1205 // Valve
1206 // VAC Series 47 DN 63 with manual actuator
1207 //
1208 const Float_t kRB24ValveWz = 7.5;
1209 const Float_t kRB24ValveDN = 10.0 / 2.;
1210 //
1211 // Body containing the valve plate
1212 //
1213 const Float_t kRB24ValveBoWx = 15.6;
1214 const Float_t kRB24ValveBoWy = (21.5 + 23.1 - 5.);
1215 const Float_t kRB24ValveBoWz = 4.6;
1216 const Float_t kRB24ValveBoD = 0.5;
1217
1218 TGeoVolume* voRB24ValveBoM = new TGeoVolume(
1219 "RB24ValveBoM", new TGeoBBox(kRB24ValveBoWx / 2., kRB24ValveBoWy / 2., kRB24ValveBoWz / 2.), kMedAir);
1220 voRB24ValveBoM->SetVisibility(0);
1221 TGeoVolume* voRB24ValveBo = new TGeoVolume(
1222 "RB24ValveBo", new TGeoBBox(kRB24ValveBoWx / 2., kRB24ValveBoWy / 2., kRB24ValveBoWz / 2.), kMedSteel);
1223 voRB24ValveBoM->AddNode(voRB24ValveBo, 1, gGeoIdentity);
1224 //
1225 // Inner volume
1226 //
1227 TGeoVolume* voRB24ValveBoI = new TGeoVolume(
1228 "RB24ValveBoI", new TGeoBBox(kRB24ValveBoWx / 2. - kRB24ValveBoD, kRB24ValveBoWy / 2. - kRB24ValveBoD / 2., kRB24ValveBoWz / 2. - kRB24ValveBoD),
1229 kMedVac);
1230 voRB24ValveBo->AddNode(voRB24ValveBoI, 1, new TGeoTranslation(0., kRB24ValveBoD / 2., 0.));
1231 //
1232 // Opening and Flanges
1233 const Float_t kRB24ValveFlRo = 18. / 2.;
1234 const Float_t kRB24ValveFlD = 1.45;
1235 TGeoVolume* voRB24ValveBoA =
1236 new TGeoVolume("RB24ValveBoA", new TGeoTube(0., kRB24ValveDN / 2., kRB24ValveBoD / 2.), kMedVac);
1237 voRB24ValveBo->AddNode(
1238 voRB24ValveBoA, 1, new TGeoTranslation(0., -kRB24ValveBoWy / 2. + 21.5, -kRB24ValveBoWz / 2. + kRB24ValveBoD / 2.));
1239 voRB24ValveBo->AddNode(
1240 voRB24ValveBoA, 2, new TGeoTranslation(0., -kRB24ValveBoWy / 2. + 21.5, +kRB24ValveBoWz / 2. - kRB24ValveBoD / 2.));
1241
1242 TGeoVolume* voRB24ValveFl =
1243 new TGeoVolume("RB24ValveFl", new TGeoTube(kRB24ValveDN / 2., kRB24ValveFlRo, kRB24ValveFlD / 2.), kMedSteel);
1244 TGeoVolume* voRB24ValveFlI =
1245 new TGeoVolume("RB24ValveFlI", new TGeoTube(0., kRB24ValveFlRo, kRB24ValveFlD / 2.), kMedVac);
1246 voRB24ValveFlI->AddNode(voRB24ValveFl, 1, gGeoIdentity);
1247
1248 //
1249 // Actuator Flange
1250 const Float_t kRB24ValveAFlWx = 18.9;
1251 const Float_t kRB24ValveAFlWy = 5.0;
1252 const Float_t kRB24ValveAFlWz = 7.7;
1253 TGeoVolume* voRB24ValveAFl = new TGeoVolume(
1254 "RB24ValveAFl", new TGeoBBox(kRB24ValveAFlWx / 2., kRB24ValveAFlWy / 2., kRB24ValveAFlWz / 2.), kMedSteel);
1255 //
1256 // Actuator Tube
1257 const Float_t kRB24ValveATRo = 9.7 / 2.;
1258 const Float_t kRB24ValveATH = 16.6;
1259 TGeoVolume* voRB24ValveAT = new TGeoVolume(
1260 "RB24ValveAT", new TGeoTube(kRB24ValveATRo - 2. * kRB24ValveBoD, kRB24ValveATRo, kRB24ValveATH / 2.), kMedSteel);
1261 //
1262 // Manual Actuator (my best guess)
1263 TGeoVolume* voRB24ValveMA1 = new TGeoVolume("RB24ValveMA1", new TGeoCone(2.5 / 2., 0., 0.5, 4.5, 5.), kMedSteel);
1264 TGeoVolume* voRB24ValveMA2 = new TGeoVolume("RB24ValveMA2", new TGeoTorus(5., 0., 1.25), kMedSteel);
1265 TGeoVolume* voRB24ValveMA3 = new TGeoVolume("RB24ValveMA3", new TGeoTube(0., 1.25, 2.5), kMedSteel);
1266
1267 //
1268 // Position all volumes
1269 Float_t y0;
1270 TGeoVolumeAssembly* voRB24ValveMo = new TGeoVolumeAssembly("RB24ValveMo");
1271 voRB24ValveMo->AddNode(voRB24ValveFl, 1, new TGeoTranslation(0., 0., -7.5 / 2. + kRB24ValveFlD / 2.));
1272 voRB24ValveMo->AddNode(voRB24ValveFl, 2, new TGeoTranslation(0., 0., +7.5 / 2. - kRB24ValveFlD / 2.));
1273 y0 = -21.5;
1274 voRB24ValveMo->AddNode(voRB24ValveBoM, 1, new TGeoTranslation(0., y0 + kRB24ValveBoWy / 2., 0.));
1275 y0 += kRB24ValveBoWy;
1276 voRB24ValveMo->AddNode(voRB24ValveAFl, 1, new TGeoTranslation(0., y0 + kRB24ValveAFlWy / 2., 0.));
1277 y0 += kRB24ValveAFlWy;
1278 voRB24ValveMo->AddNode(voRB24ValveAT, 1, new TGeoCombiTrans(0., y0 + kRB24ValveATH / 2., 0., rotyz));
1279 y0 += kRB24ValveATH;
1280 voRB24ValveMo->AddNode(voRB24ValveMA1, 1, new TGeoCombiTrans(0., y0 + 2.5 / 2., 0., rotyz));
1281 y0 += 2.5;
1282 voRB24ValveMo->AddNode(voRB24ValveMA2, 1, new TGeoCombiTrans(0., y0 + 2.5 / 2., 0., rotyz));
1283 y0 += 2.5;
1284 voRB24ValveMo->AddNode(voRB24ValveMA3, 1,
1285 new TGeoCombiTrans(5. / TMath::Sqrt(2.), y0 + 5.0 / 2., 5. / TMath::Sqrt(2.), rotyz));
1286 //
1287 // Warm Module Type VMABC
1288 // LHCVMABC_0002
1289 //
1290 //
1291 //
1292 // Flange 1.00
1293 // Central Piece 11.50
1294 // Bellow 14.50
1295 // End Flange 1.00
1296 //===================================
1297 // Total 28.00
1298 //
1299 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1300 // Pos 2 Trans. Tube Flange LHCVSR__0062
1301 // Pos 3 RF Contact D63 LHCVSR__0057
1302 // [Pos 4 Hex. Countersunk Screw Bossard BN4719]
1303 // [Pos 5 Tension spring LHCVSR__00239]
1304 //
1305
1306 // Pos 1 Warm Bellows DN100 LHCVBU__0016
1307 // Pos 1.1 Right Body 2 Ports with Support LHCVBU__0014
1308 //
1309 // Tube 1
1310 const Float_t kRB24VMABCRBT1Ri = 10.0 / 2.;
1311 const Float_t kRB24VMABCRBT1Ro = 10.3 / 2.;
1312 const Float_t kRB24VMABCRBT1L = 11.5;
1313 const Float_t kRB24VMABCRBT1L2 = 8.;
1314 const Float_t kRB24VMABCL = 28.375;
1315
1316 TGeoTube* shRB24VMABCRBT1 = new TGeoTube(kRB24VMABCRBT1Ri, kRB24VMABCRBT1Ro, kRB24VMABCRBT1L / 2.);
1317 shRB24VMABCRBT1->SetName("RB24VMABCRBT1");
1318 TGeoTube* shRB24VMABCRBT1o = new TGeoTube(0., kRB24VMABCRBT1Ro, kRB24VMABCRBT1L / 2.);
1319 shRB24VMABCRBT1o->SetName("RB24VMABCRBT1o");
1320 TGeoTube* shRB24VMABCRBT1o2 = new TGeoTube(0., kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L / 2.);
1321 shRB24VMABCRBT1o2->SetName("RB24VMABCRBT1o2");
1322 // Lower inforcement
1323 TGeoVolume* voRB24VMABCRBT12 = new TGeoVolume(
1324 "RB24VMABCRBT12", new TGeoTubeSeg(kRB24VMABCRBT1Ro, kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L2 / 2., 220., 320.),
1325 kMedSteelNF);
1326 //
1327 // Tube 2
1328 const Float_t kRB24VMABCRBT2Ri = 6.0 / 2.;
1329 const Float_t kRB24VMABCRBT2Ro = 6.3 / 2.;
1330 const Float_t kRB24VMABCRBF2Ro = 11.4 / 2.;
1331 const Float_t kRB24VMABCRBT2L = 5.95 + 2.; // 2. cm added for welding
1332 const Float_t kRB24VMABCRBF2L = 1.75;
1333 TGeoTube* shRB24VMABCRBT2 = new TGeoTube(kRB24VMABCRBT2Ri, kRB24VMABCRBT2Ro, kRB24VMABCRBT2L / 2.);
1334 shRB24VMABCRBT2->SetName("RB24VMABCRBT2");
1335 TGeoTube* shRB24VMABCRBT2i = new TGeoTube(0., kRB24VMABCRBT2Ri, kRB24VMABCRBT2L / 2. + 2.);
1336 shRB24VMABCRBT2i->SetName("RB24VMABCRBT2i");
1337 TGeoCombiTrans* tRBT2 = new TGeoCombiTrans(-11.5 + kRB24VMABCRBT2L / 2., 0., 7.2 - kRB24VMABCRBT1L / 2., rotxz);
1338 tRBT2->SetName("tRBT2");
1339 tRBT2->RegisterYourself();
1340 TGeoCompositeShape* shRB24VMABCRBT2c =
1341 new TGeoCompositeShape("shRB24VMABCRBT2c", "RB24VMABCRBT2:tRBT2-RB24VMABCRBT1o");
1342 TGeoVolume* voRB24VMABCRBT2 = new TGeoVolume("shRB24VMABCRBT2", shRB24VMABCRBT2c, kMedSteelNF);
1343 // Flange
1344 // Pos 1.4 Flange DN63 LHCVBU__0008
1345 TGeoVolume* voRB24VMABCRBF2 =
1346 new TGeoVolume("RB24VMABCRBF2", new TGeoTube(kRB24VMABCRBT2Ro, kRB24VMABCRBF2Ro, kRB24VMABCRBF2L / 2.), kMedSteelNF);
1347 // DN63 Blank Flange (my best guess)
1348 TGeoVolume* voRB24VMABCRBF2B =
1349 new TGeoVolume("RB24VMABCRBF2B", new TGeoTube(0., kRB24VMABCRBF2Ro, kRB24VMABCRBF2L / 2.), kMedSteelNF);
1350 //
1351 // Tube 3
1352 const Float_t kRB24VMABCRBT3Ri = 3.5 / 2.;
1353 const Float_t kRB24VMABCRBT3Ro = 3.8 / 2.;
1354 const Float_t kRB24VMABCRBF3Ro = 7.0 / 2.;
1355 const Float_t kRB24VMABCRBT3L = 4.95 + 2.; // 2. cm added for welding
1356 const Float_t kRB24VMABCRBF3L = 1.27;
1357 TGeoTube* shRB24VMABCRBT3 = new TGeoTube(kRB24VMABCRBT3Ri, kRB24VMABCRBT3Ro, kRB24VMABCRBT3L / 2);
1358 shRB24VMABCRBT3->SetName("RB24VMABCRBT3");
1359 TGeoTube* shRB24VMABCRBT3i = new TGeoTube(0., kRB24VMABCRBT3Ri, kRB24VMABCRBT3L / 2. + 2.);
1360 shRB24VMABCRBT3i->SetName("RB24VMABCRBT3i");
1361 TGeoCombiTrans* tRBT3 = new TGeoCombiTrans(0., 10.5 - kRB24VMABCRBT3L / 2., 7.2 - kRB24VMABCRBT1L / 2., rotyz);
1362 tRBT3->SetName("tRBT3");
1363 tRBT3->RegisterYourself();
1364 TGeoCompositeShape* shRB24VMABCRBT3c =
1365 new TGeoCompositeShape("shRB24VMABCRBT3c", "RB24VMABCRBT3:tRBT3-RB24VMABCRBT1o");
1366 TGeoVolume* voRB24VMABCRBT3 = new TGeoVolume("shRB24VMABCRBT3", shRB24VMABCRBT3c, kMedSteel);
1367 // Flange
1368 // Pos 1.4 Flange DN35 LHCVBU__0007
1369 TGeoVolume* voRB24VMABCRBF3 =
1370 new TGeoVolume("RB24VMABCRBF3", new TGeoTube(kRB24VMABCRBT3Ro, kRB24VMABCRBF3Ro, kRB24VMABCRBF3L / 2.), kMedSteelNF);
1371 //
1372 // Tube 4
1373 const Float_t kRB24VMABCRBT4Ri = 6.0 / 2.;
1374 const Float_t kRB24VMABCRBT4Ro = 6.4 / 2.;
1375 const Float_t kRB24VMABCRBT4L = 6.6;
1376 TGeoTube* shRB24VMABCRBT4 = new TGeoTube(kRB24VMABCRBT4Ri, kRB24VMABCRBT4Ro, kRB24VMABCRBT4L / 2.);
1377 shRB24VMABCRBT4->SetName("RB24VMABCRBT4");
1378 TGeoCombiTrans* tRBT4 = new TGeoCombiTrans(0., -11. + kRB24VMABCRBT4L / 2., 7.2 - kRB24VMABCRBT1L / 2., rotyz);
1379 tRBT4->SetName("tRBT4");
1380 tRBT4->RegisterYourself();
1381 TGeoCompositeShape* shRB24VMABCRBT4c =
1382 new TGeoCompositeShape("shRB24VMABCRBT4c", "RB24VMABCRBT4:tRBT4-RB24VMABCRBT1o2");
1383 TGeoVolume* voRB24VMABCRBT4 = new TGeoVolume("shRB24VMABCRBT4", shRB24VMABCRBT4c, kMedSteelNF);
1384 TGeoCompositeShape* shRB24VMABCRB =
1385 new TGeoCompositeShape("shRB24VMABCRB", "RB24VMABCRBT1-(RB24VMABCRBT2i:tRBT2+RB24VMABCRBT3i:tRBT3)");
1386 TGeoVolume* voRB24VMABCRBI = new TGeoVolume("RB24VMABCRBI", shRB24VMABCRB, kMedSteelNF);
1387 //
1388 // Plate
1389 const Float_t kRB24VMABCRBBx = 16.0;
1390 const Float_t kRB24VMABCRBBy = 1.5;
1391 const Float_t kRB24VMABCRBBz = 15.0;
1392
1393 // Relative position of tubes
1394 const Float_t kRB24VMABCTz = 7.2;
1395 // Relative position of plate
1396 const Float_t kRB24VMABCPz = 3.6;
1397 const Float_t kRB24VMABCPy = -12.5;
1398
1399 TGeoVolume* voRB24VMABCRBP = new TGeoVolume(
1400 "RB24VMABCRBP", new TGeoBBox(kRB24VMABCRBBx / 2., kRB24VMABCRBBy / 2., kRB24VMABCRBBz / 2.), kMedSteelNF);
1401 //
1402 // Pirani Gauge (my best guess)
1403 //
1404 TGeoPcon* shRB24VMABCPirani = new TGeoPcon(0., 360., 15);
1405 // DN35/16 Coupling
1406 z = 0;
1407 shRB24VMABCPirani->DefineSection(0, z, 0.8, kRB24VMABCRBF3Ro);
1408 z += kRB24VMABCRBF3L; // 1.3
1409 shRB24VMABCPirani->DefineSection(1, z, 0.8, kRB24VMABCRBF3Ro);
1410 shRB24VMABCPirani->DefineSection(2, z, 0.8, 1.0);
1411 // Pipe
1412 z += 2.8;
1413 shRB24VMABCPirani->DefineSection(3, z, 0.8, 1.0);
1414 // Flange
1415 shRB24VMABCPirani->DefineSection(4, z, 0.8, 1.75);
1416 z += 1.6;
1417 shRB24VMABCPirani->DefineSection(5, z, 0.8, 1.75);
1418 shRB24VMABCPirani->DefineSection(6, z, 0.8, 1.0);
1419 z += 5.2;
1420 shRB24VMABCPirani->DefineSection(7, z, 0.8, 1.0);
1421 shRB24VMABCPirani->DefineSection(8, z, 0.8, 2.5);
1422 z += 2.0;
1423 shRB24VMABCPirani->DefineSection(9, z, 0.80, 2.50);
1424 shRB24VMABCPirani->DefineSection(10, z, 1.55, 1.75);
1425 z += 5.7;
1426 shRB24VMABCPirani->DefineSection(11, z, 1.55, 1.75);
1427 shRB24VMABCPirani->DefineSection(11, z, 0.00, 1.75);
1428 z += 0.2;
1429 shRB24VMABCPirani->DefineSection(12, z, 0.00, 1.75);
1430 shRB24VMABCPirani->DefineSection(13, z, 0.00, 0.75);
1431 z += 0.5;
1432 shRB24VMABCPirani->DefineSection(14, z, 0.00, 0.75);
1433 TGeoVolume* voRB24VMABCPirani = new TGeoVolume("RB24VMABCPirani", shRB24VMABCPirani, kMedSteelNF);
1434 //
1435 //
1436 //
1437
1438 //
1439 // Positioning of elements
1440 TGeoVolumeAssembly* voRB24VMABCRB = new TGeoVolumeAssembly("RB24VMABCRB");
1441 //
1442 voRB24VMABCRB->AddNode(voRB24VMABCRBI, 1, gGeoIdentity);
1443 // Plate
1444 voRB24VMABCRB->AddNode(voRB24VMABCRBP, 1,
1445 new TGeoTranslation(0., kRB24VMABCPy + kRB24VMABCRBBy / 2.,
1446 kRB24VMABCRBBz / 2. - kRB24VMABCRBT1L / 2. + kRB24VMABCPz));
1447 // Tube 2
1448 voRB24VMABCRB->AddNode(voRB24VMABCRBT2, 1, gGeoIdentity);
1449 // Flange Tube 2
1450 voRB24VMABCRB->AddNode(voRB24VMABCRBF2, 1, new TGeoCombiTrans(kRB24VMABCPy + kRB24VMABCRBF2L / 2., 0., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotxz));
1451 // Blank Flange Tube 2
1452 voRB24VMABCRB->AddNode(voRB24VMABCRBF2B, 1, new TGeoCombiTrans(kRB24VMABCPy - kRB24VMABCRBF2L / 2., 0., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotxz));
1453 // Tube 3
1454 voRB24VMABCRB->AddNode(voRB24VMABCRBT3, 1, gGeoIdentity);
1455 // Flange Tube 3
1456 voRB24VMABCRB->AddNode(voRB24VMABCRBF3, 1, new TGeoCombiTrans(0., 11.2 - kRB24VMABCRBF3L / 2., kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotyz));
1457 // Pirani Gauge
1458 voRB24VMABCRB->AddNode(voRB24VMABCPirani, 1,
1459 new TGeoCombiTrans(0., 11.2, kRB24VMABCTz - kRB24VMABCRBT1L / 2., rotyz));
1460 // Tube 4
1461 voRB24VMABCRB->AddNode(voRB24VMABCRBT4, 1, gGeoIdentity);
1462 // Inforcement
1463 voRB24VMABCRB->AddNode(voRB24VMABCRBT12, 1,
1464 new TGeoTranslation(0., 0., kRB24VMABCRBT1L2 / 2. - kRB24VMABCRBT1L / 2. + 2.8));
1465
1466 // Pos 1.3 Bellows with end part LHCVBU__0002
1467 //
1468 // Connection Tube
1469 // Connection tube inner r
1470 const Float_t kRB24VMABBEConTubeRin = 10.0 / 2.;
1471 // Connection tube outer r
1472 const Float_t kRB24VMABBEConTubeRou = 10.3 / 2.;
1473 // Connection tube length
1474 const Float_t kRB24VMABBEConTubeL1 = 0.9;
1475 const Float_t kRB24VMABBEConTubeL2 = 2.6;
1476 // const Float_t RB24VMABBEBellowL = kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 + kRB24B1BellowUndL;
1477
1478 // Mother volume
1479 TGeoPcon* shRB24VMABBEBellowM = new TGeoPcon(0., 360., 6);
1480 // Connection Tube and Flange
1481 z = 0.;
1482 shRB24VMABBEBellowM->DefineSection(0, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1483 z += kRB24VMABBEConTubeL1;
1484 shRB24VMABBEBellowM->DefineSection(1, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1485 shRB24VMABBEBellowM->DefineSection(2, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1486 z += newRB24B1BellowUndL;
1487 shRB24VMABBEBellowM->DefineSection(3, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness);
1488 shRB24VMABBEBellowM->DefineSection(4, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1489 z += kRB24VMABBEConTubeL2;
1490 shRB24VMABBEBellowM->DefineSection(5, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou);
1491 TGeoVolume* voRB24VMABBEBellowM = new TGeoVolume("RB24VMABBEBellowM", shRB24VMABBEBellowM, kMedVacNF);
1492 voRB24VMABBEBellowM->SetVisibility(0);
1493
1494 // Connection tube left
1495 TGeoVolume* voRB24VMABBECT1 = new TGeoVolume(
1496 "RB24VMABBECT1", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou, kRB24VMABBEConTubeL1 / 2.), kMedSteelNF);
1497 // Connection tube right
1498 TGeoVolume* voRB24VMABBECT2 = new TGeoVolume(
1499 "RB24VMABBECT2", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou, kRB24VMABBEConTubeL2 / 2.), kMedSteelNF);
1500 z = kRB24VMABBEConTubeL1 / 2.;
1501 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT1, 1, new TGeoTranslation(0., 0., z));
1502 z += kRB24VMABBEConTubeL1 / 2.;
1503 z += newRB24B1BellowUndL / 2.;
1504 voRB24VMABBEBellowM->AddNode(voRB24B1Bellow, 2, new TGeoTranslation(0., 0., z));
1505 z += newRB24B1BellowUndL / 2.;
1506 z += kRB24VMABBEConTubeL2 / 2.;
1507 voRB24VMABBEBellowM->AddNode(voRB24VMABBECT2, 1, new TGeoTranslation(0., 0., z));
1508 z += kRB24VMABBEConTubeL2 / 2.;
1509
1510 voRB24VMABCRB->AddNode(voRB24VMABBEBellowM, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L / 2.));
1511
1512 // Pos 1.2 Rotable flange LHCVBU__0013[*]
1513 // Front
1514 voRB24VMABCRB->AddNode(voRB24B1RFlange, 3, new TGeoCombiTrans(0., 0., -kRB24VMABCRBT1L / 2. + 0.86, rot180));
1515 // End
1516 z = kRB24VMABCRBT1L / 2. + newRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2;
1517 voRB24VMABCRB->AddNode(voRB24B1RFlange, 4, new TGeoTranslation(0., 0., z - 0.86));
1518
1519 // Pos 2 Trans. Tube Flange LHCVSR__0062
1520 // Pos 2.1 Transition Tube LHCVSR__0063
1521 // Pos 2.2 Transition Flange LHCVSR__0060
1522 //
1523 // Transition Tube with Flange
1524 TGeoPcon* shRB24VMABCTT = new TGeoPcon(0., 360., 7);
1525 z = 0.;
1526 shRB24VMABCTT->DefineSection(0, z, 6.3 / 2., 11.16 / 2.);
1527 z += 0.25;
1528 shRB24VMABCTT->DefineSection(1, z, 6.3 / 2., 11.16 / 2.);
1529 shRB24VMABCTT->DefineSection(2, z, 6.3 / 2., 9.30 / 2.);
1530 z += 0.25;
1531 shRB24VMABCTT->DefineSection(3, z, 6.3 / 2., 9.30 / 2.);
1532 shRB24VMABCTT->DefineSection(4, z, 6.3 / 2., 6.70 / 2.);
1533 z += (20.35 - 0.63);
1534 shRB24VMABCTT->DefineSection(5, z, 6.3 / 2., 6.7 / 2.);
1535 z += 0.63;
1536 shRB24VMABCTT->DefineSection(6, z, 6.3 / 2., 6.7 / 2.);
1537 TGeoVolume* voRB24VMABCTT = new TGeoVolume("RB24VMABCTT", shRB24VMABCTT, kMedSteelNF);
1538 voRB24VMABCRB->AddNode(voRB24VMABCTT, 1, new TGeoTranslation(0., 0., -kRB24VMABCRBT1L / 2. - 1.));
1539
1540 // Pos 3 RF Contact D63 LHCVSR__0057
1541 // Pos 3.1 RF Contact Flange LHCVSR__0017
1542 //
1543 TGeoPcon* shRB24VMABCCTFlange = new TGeoPcon(0., 360., 6);
1544 const Float_t kRB24VMABCCTFlangeRin = 6.36 / 2.; // Inner radius
1545 const Float_t kRB24VMABCCTFlangeL = 1.30; // Length
1546
1547 z = 0.;
1548 shRB24VMABCCTFlange->DefineSection(0, z, kRB24VMABCCTFlangeRin, 6.5 / 2.);
1549 z += 0.15;
1550 shRB24VMABCCTFlange->DefineSection(1, z, kRB24VMABCCTFlangeRin, 6.5 / 2.);
1551 shRB24VMABCCTFlange->DefineSection(2, z, kRB24VMABCCTFlangeRin, 6.9 / 2.);
1552 z += 0.9;
1553 shRB24VMABCCTFlange->DefineSection(3, z, kRB24VMABCCTFlangeRin, 6.9 / 2.);
1554 shRB24VMABCCTFlange->DefineSection(4, z, kRB24VMABCCTFlangeRin, 11.16 / 2.);
1555 z += 0.25;
1556 shRB24VMABCCTFlange->DefineSection(5, z, kRB24VMABCCTFlangeRin, 11.16 / 2.);
1557 TGeoVolume* voRB24VMABCCTFlange = new TGeoVolume("RB24VMABCCTFlange", shRB24VMABCCTFlange, kMedCuNF);
1558 //
1559 // Pos 3.2 RF-Contact LHCVSR__0056
1560 //
1561 TGeoPcon* shRB24VMABCCT = new TGeoPcon(0., 360., 4);
1562 const Float_t kRB24VMABCCTRin = 6.30 / 2.; // Inner radius
1563 const Float_t kRB24VMABCCTCRin = 7.29 / 2.; // Max. inner radius conical section
1564 const Float_t kRB24VMABCCTL = 11.88; // Length
1565 const Float_t kRB24VMABCCTSL = 10.48; // Length of straight section
1566 const Float_t kRB24VMABCCTd = 0.03; // Thickness
1567 z = 0;
1568 shRB24VMABCCT->DefineSection(0, z, kRB24VMABCCTCRin, kRB24VMABCCTCRin + kRB24VMABCCTd);
1569 z = kRB24VMABCCTL - kRB24VMABCCTSL;
1570 shRB24VMABCCT->DefineSection(1, z, kRB24VMABCCTRin + 0.35, kRB24VMABCCTRin + 0.35 + kRB24VMABCCTd);
1571 z = kRB24VMABCCTL - kRB24VMABCCTFlangeL;
1572 shRB24VMABCCT->DefineSection(2, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1573 z = kRB24VMABCCTL;
1574 shRB24VMABCCT->DefineSection(3, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd);
1575
1576 TGeoVolume* voRB24VMABCCT = new TGeoVolume("RB24VMABCCT", shRB24VMABCCT, kMedCuNF);
1577
1578 TGeoVolumeAssembly* voRB24VMABRFCT = new TGeoVolumeAssembly("RB24VMABRFCT");
1579 voRB24VMABRFCT->AddNode(voRB24VMABCCT, 1, gGeoIdentity);
1580 voRB24VMABRFCT->AddNode(voRB24VMABCCTFlange, 1, new TGeoTranslation(0., 0., kRB24VMABCCTL - kRB24VMABCCTFlangeL));
1581
1582 z = kRB24VMABCRBT1L / 2. + newRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 - kRB24VMABCCTL + 1.;
1583 voRB24VMABCRB->AddNode(voRB24VMABRFCT, 1, new TGeoTranslation(0., 0., z));
1584
1585 //
1586 // Assembling RB24/1
1587 //
1588 // part places in the barrel
1589 TGeoVolumeAssembly* voRB24 = new TGeoVolumeAssembly("RB24");
1590 // Cu Tube with two simplified flanges in central barrel
1591 voRB24->AddNode(voRB24CuTubeM, 1, gGeoIdentity);
1592 voRB24->AddNode(voRB24CuTubeA, 1, gGeoIdentity);
1593
1594 // part which is placed in the cave
1595 // ->
1596 TGeoVolumeAssembly* voRB24C = new TGeoVolumeAssembly("RB24C");
1597 voRB24C->AddNode(voRB24cCuTubeM, 1, gGeoIdentity);
1598 // voRB24C->AddNode(voRB24cCuTubeA, 1, new TGeoTranslation(0., 0., -(900.-kRB24cCuTubeL)/2.));
1599 z = -kRB24cCuTubeL / 2 + kRB24CuTubeFL / 2.;
1600 voRB24C->AddNode(voRB24CuTubeF, 1, new TGeoTranslation(0., 0., z));
1601 // z = +kRB24cCuTubeL / 2 - kRB24CuTubeFL / 2.;
1602 // voRB24C->AddNode(voRB24CuTubeF, 2, new TGeoTranslation(0., 0., z));
1603 // VMABC close to compensator magnet
1604 z = -kRB24cCuTubeL / 2. - (kRB24VMABCL - kRB24VMABCRBT1L / 2) + 1.;
1605 voRB24C->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z));
1606 // <-
1607
1608 // Bellow
1609 z = kRB24bCuTubeL / 2;
1610 voRB24->AddNode(voRB24B1BellowM, 1, new TGeoTranslation(0., 0., z));
1611 z += (kRB24B1L + kRB24AIpML / 2.);
1612 // Annular ion pump
1613 voRB24->AddNode(voRB24AIpM, 1, new TGeoTranslation(0., 0., z));
1614 z += (kRB24AIpML / 2. + kRB24ValveWz / 2.);
1615 // Valve
1616 voRB24->AddNode(voRB24ValveMo, 1, new TGeoTranslation(0., 0., z));
1617 z += (kRB24ValveWz / 2. + kRB24VMABCRBT1L / 2. + 1.);
1618 // VMABC close to forward detectors
1619 voRB24->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z));
1620 //
1621 // RB24/2
1622 //
1623 // Copper Tube RB24/2
1624 // mainly inside the compensator magnet
1625 const Float_t kRB242CuTubeL = 350.0;
1626 // 20 cm straight - 20 cm transition to final oval - 270 oval - 20 cm transition to final oval - 20 cm straight
1627 //
1628 // mother volume for transition region
1629 TGeoVolume* voRB242CuOvTransMo = new TGeoVolume("voRB24CuOvTransMo", new TGeoTube(0., 4.75, 10.), kMedAir);
1630 const Int_t nTrans = 10;
1631 TGeoVolume* voRB242CuOvTransV[nTrans];
1632 TGeoVolume* voRB242CuOvTransI[nTrans];
1633 Float_t dovX = 4.;
1634 Float_t dovY = 4.;
1635 Float_t dovZ = -9.0;
1636 for (Int_t i = 0; i < nTrans; i++) {
1637 dovX -= 0.0625;
1638 dovY += 0.075;
1639 char vname[20];
1640 snprintf(vname, 20, "voRB242CuOvTransV%d", i);
1641 voRB242CuOvTransV[i] = new TGeoVolume(vname, new TGeoEltu(dovX, dovY, 1.0), kMedCuHC);
1642 snprintf(vname, 20, "voRB242CuOvTransI%d", i);
1643 voRB242CuOvTransI[i] = new TGeoVolume(vname, new TGeoEltu(dovX - 0.2, dovY - 0.2, 1.0), kMedVacHC);
1644 voRB242CuOvTransV[i]->AddNode(voRB242CuOvTransI[i], 1, gGeoIdentity);
1645 voRB242CuOvTransMo->AddNode(voRB242CuOvTransV[i], 1, new TGeoTranslation(0., 0., dovZ));
1646 dovZ += 2.;
1647 }
1648 //
1649 TGeoVolume* voRB242CuTubeM =
1650 new TGeoVolume("voRB242CuTubeM", new TGeoTube(0., kRB24CuTubeRo, 10.), kMedVacHC);
1651 TGeoVolume* voRB242CuTube =
1652 new TGeoVolume("voRB242CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, 10.), kMedCuHC);
1653 voRB242CuTubeM->AddNode(voRB242CuTube, 1, gGeoIdentity);
1654 TGeoVolume* voRB242CuOvalM =
1655 new TGeoVolume("voRB242CuOvalM", new TGeoEltu(3.375, 4.75, 135.), kMedCuHC);
1656 TGeoVolume* voRB242CuOval =
1657 new TGeoVolume("voRB242CuOval", new TGeoEltu(3.175, 4.55, 135.), kMedVacHC);
1658 voRB242CuOvalM->AddNode(voRB242CuOval, 1, gGeoIdentity);
1659 //
1660 TGeoVolumeAssembly* voRB242 = new TGeoVolumeAssembly("RB242");
1661 voRB242->AddNode(voRB242CuOvalM, 1, gGeoIdentity);
1662 z = -kRB242CuTubeL / 2 + kRB24CuTubeFL / 2.;
1663 voRB242->AddNode(voRB24CuTubeF, 3, new TGeoTranslation(0., 0., z));
1664 z = +kRB242CuTubeL / 2 - kRB24CuTubeFL / 2.;
1665 voRB242->AddNode(voRB24CuTubeF, 4, new TGeoTranslation(0., 0., z));
1666 z = 135. + 10.;
1667 voRB242->AddNode(voRB242CuOvTransMo, 1, new TGeoCombiTrans(0., 0., z, rot180));
1668 z = -135. - 10.;
1669 voRB242->AddNode(voRB242CuOvTransMo, 2, new TGeoTranslation(0., 0., z));
1670 z = -135. - 30.;
1671 voRB242->AddNode(voRB242CuTubeM, 1, new TGeoTranslation(0., 0., z));
1672 z = 135. + 30.;
1673 voRB242->AddNode(voRB242CuTubeM, 2, new TGeoTranslation(0., 0., z));
1674 z = -kRB24cCuTubeL / 2 - kRB24VMABCL - kRB242CuTubeL / 2. - 1.2;
1675 voRB24C->AddNode(voRB242, 1, new TGeoTranslation(0., 0., z));
1676 //
1677 // RB24/3
1678 //
1679 // Copper Tube RB24/3
1680 // the lenth of the tube is 296.85 on the drawing but this is inconsistent with the total length tube + bellow
1681 const Float_t kRB243CuTubeL = 297.85;
1682
1683 TGeoVolume* voRB243CuTubeM =
1684 new TGeoVolume("voRB243CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB243CuTubeL / 2.), kMedVacNF);
1685 voRB24CuTubeM->SetVisibility(0);
1686 TGeoVolume* voRB243CuTube =
1687 new TGeoVolume("voRB243CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB243CuTubeL / 2.), kMedCuNF);
1688 voRB243CuTubeM->AddNode(voRB243CuTube, 1, gGeoIdentity);
1689
1690 TGeoVolumeAssembly* voRB243 = new TGeoVolumeAssembly("RB243");
1691 TGeoVolumeAssembly* voRB243A = new TGeoVolumeAssembly("RB243A");
1692
1693 voRB243A->AddNode(voRB243CuTube, 1, gGeoIdentity);
1694 z = -kRB243CuTubeL / 2 + kRB24CuTubeFL / 2.;
1695 voRB243A->AddNode(voRB24CuTubeF, 5, new TGeoTranslation(0., 0., z));
1696 z = +kRB243CuTubeL / 2 - kRB24CuTubeFL / 2.;
1697 voRB243A->AddNode(voRB24CuTubeF, 6, new TGeoTranslation(0., 0., z));
1698 z = +kRB243CuTubeL / 2;
1699 voRB243A->AddNode(voRB24B1BellowM, 2, new TGeoTranslation(0., 0., z));
1700
1701 z = -kRB243CuTubeL / 2. - kRB24B1L;
1702 voRB243->AddNode(voRB243A, 1, new TGeoTranslation(0., 0., z));
1703 z = -(1.5 * kRB243CuTubeL + 2. * kRB24B1L);
1704 voRB243->AddNode(voRB243A, 2, new TGeoTranslation(0., 0., z));
1705
1706 z = -2. * (kRB243CuTubeL + kRB24B1L) - (kRB24VMABCL - kRB24VMABCRBT1L / 2) + 1.;
1707 voRB243->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z));
1708
1709 z = -kRB24cCuTubeL / 2 - kRB24VMABCL - kRB242CuTubeL - 1.2;
1710 voRB24C->AddNode(voRB243, 1, new TGeoTranslation(0., 0., z));
1711
1712 //
1713 //
1714 caveRB24->AddNode(voRB24C, 1, new TGeoCombiTrans(0., 0., -kRB24CL / 2 + kRB24cCuTubeL / 2, rot180));
1715 barrel->AddNode(voRB24, 1, new TGeoCombiTrans(0., 30., kRB24bCuTubeL / 2 + 88.5 + 400. + 0.375, rot180));
1716 //
1718 // //
1719 // The Absorber Vacuum system //
1720 // //
1722 //
1723 // Rotable Flange starts at: 82.00 cm from IP
1724 // Length of rotable flange section: 10.68 cm
1725 // Weld 0.08 cm
1726 // Length of straight section 207.21 cm
1727 // =======================================================================
1728 // 299.97 cm [0.03 cm missing ?]
1729 // Length of opening cone 252.09 cm
1730 // Weld 0.15 cm
1731 // Length of compensator 30.54 cm
1732 // Weld 0.15 cm
1733 // Length of fixed flange 2.13 - 0.97 1.16 cm
1734 // =======================================================================
1735 // 584.06 cm [584.80 installed] [0.74 cm missing]
1736 // RB26/3
1737 // Length of split flange 2.13 - 1.2 0.93 cm
1738 // Weld 0.15 cm
1739 // Length of fixed point section 16.07 cm
1740 // Weld 0.15 cm
1741 // Length of opening cone 629.20 cm
1742 // Weld 0.30 cm
1743 // Kength of the compensator 41.70 cm
1744 // Weld 0.30 cm
1745 // Length of fixed flange 2.99 - 1.72 1.27 cm
1746 // =================================================
1747 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1748 //
1749 // RB26/4-5
1750 // Length of split flange 2.13 - 1.2 0.93 cm
1751 // Weld 0.15 cm
1752 // Length of fixed point section 16.07 cm
1753 // Weld 0.15 cm
1754 // Length of opening cone 629.20 cm
1755 // Weld 0.30 cm
1756 // Length of closing cone
1757 // Weld
1758 // Lenth of straight section
1759 // Kength of the compensator 41.70 cm
1760 // Weld 0.30 cm
1761 // Length of fixed flange 2.99 - 1.72 1.27 cm
1762 // =================================================
1763 // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much]
1764
1766 // //
1767 // RB26/1-2 //
1768 // Drawing LHCV2a_0050 [as installed] //
1769 // Drawing LHCV2a_0008 //
1770 // Drawing LHCV2a_0001 //
1772 // Pos1 Vacuum Tubes LHCVC2A__0010
1773 // Pos2 Compensator LHCVC2A__0064
1774 // Pos3 Rotable Flange LHCVFX___0016
1775 // Pos4 Fixed Flange LHCVFX___0006
1776 // Pos5 Bellow Tooling LHCVFX___0003
1777 //
1778 //
1779 //
1781 // RB26/1-2 Vacuum Tubes //
1782 // Drawing LHCVC2a_0010 //
1784 const Float_t kRB26s12TubeL0 = 459.45; // 0.15 cm added for welding
1785 const Float_t kRB26s12TubeL2 = 47.21; // part of this tube outside barrel region
1786 const Float_t kRB26s12TubeL = kRB26s12TubeL0 - kRB26s12TubeL2; // 392.115
1787 //
1788 // 184.905
1789 // 0.877
1790 // Add 1 cm on outer diameter for insulation
1791 //
1792 //
1793 // the section which is placed into the central barrel (ending at z = -505)
1794 TGeoPcon* shRB26s12Tube = new TGeoPcon(0., 360., 4);
1795 // Section 1: straight section
1796 shRB26s12Tube->DefineSection(0, 0.00, 5.84 / 2., 6.00 / 2.);
1797 shRB26s12Tube->DefineSection(1, 207.21, 5.84 / 2., 6.00 / 2.);
1798 // Section 2: 0.72 deg opening cone
1799 shRB26s12Tube->DefineSection(2, 207.21, 5.84 / 2., 6.14 / 2.);
1800 shRB26s12Tube->DefineSection(3, kRB26s12TubeL, 5.84 / 2 + 2.576, 6.14 / 2. + 2.576);
1801
1802 // the section which is placed into the muon spectrometer (starting at z = -505)
1803 TGeoPcon* shRB26s12msTube = new TGeoPcon(0., 360., 3);
1804 // conical part
1805 shRB26s12msTube->DefineSection(0, 0.00, shRB26s12Tube->GetRmin(3), shRB26s12Tube->GetRmax(3));
1806 shRB26s12msTube->DefineSection(1, 452.30 - kRB26s12TubeL, 12.0 / 2., 12.3 / 2.);
1807 // straight part until compensator
1808 shRB26s12msTube->DefineSection(2, kRB26s12TubeL2, 12.0 / 2., 12.3 / 2.);
1809
1810 TGeoVolume* voRB26s12Tube = new TGeoVolume("RB26s12Tube", shRB26s12Tube, kMedSteelHC);
1811 TGeoVolume* voRB26s12msTube = new TGeoVolume("RB26s12msTube", shRB26s12msTube, kMedSteelHC);
1812 // Add the insulation layer
1813 TGeoVolume* voRB26s12TubeIns = new TGeoVolume("RB26s12TubeIns", MakeInsulationFromTemplate(shRB26s12Tube), kMedInsu);
1814 TGeoVolume* voRB26s12msTubeIns = new TGeoVolume("RB26s12msTubeIns", MakeInsulationFromTemplate(shRB26s12msTube), kMedInsu);
1815 voRB26s12Tube->AddNode(voRB26s12TubeIns, 1, gGeoIdentity);
1816 voRB26s12msTube->AddNode(voRB26s12msTubeIns, 1, gGeoIdentity);
1817
1818 TGeoVolume* voRB26s12TubeM = new TGeoVolume("RB26s12TubeM", MakeMotherFromTemplate(shRB26s12Tube), kMedVacHC);
1819 voRB26s12TubeM->AddNode(voRB26s12Tube, 1, gGeoIdentity);
1820 TGeoVolume* voRB26s12msTubeM = new TGeoVolume("RB26s12msTubeM", MakeMotherFromTemplate(shRB26s12msTube), kMedVacHC);
1821 voRB26s12msTubeM->AddNode(voRB26s12msTube, 1, gGeoIdentity);
1822
1824 // RB26/2 Axial Compensator //
1825 // Drawing LHCVC2a_0064 //
1827 const Float_t kRB26s2CompL = 30.65; // Length of the compensator
1828 const Float_t kRB26s2BellowRo = 14.38 / 2.; // Bellow outer radius [Pos 1]
1829 const Float_t kRB26s2BellowRi = 12.12 / 2.; // Bellow inner radius [Pos 1]
1830 const Int_t kRB26s2NumberOfPlies = 14; // Number of plies [Pos 1]
1831 const Float_t kRB26s2BellowUndL =
1832 10.00; // Length of undulated region [Pos 1] [+10 mm installed including pretension ?]
1833 const Float_t kRB26s2PlieThickness = 0.025; // Plie thickness [Pos 1]
1834 const Float_t kRB26s2ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
1835 // Plie radius
1836 const Float_t kRB26s2PlieR = (kRB26s2BellowUndL - 4. * kRB26s2ConnectionPlieR + 2. * kRB26s2PlieThickness +
1837 (2. * kRB26s2NumberOfPlies - 2.) * kRB26s2PlieThickness) /
1838 (4. * kRB26s2NumberOfPlies - 2.);
1839 const Float_t kRB26s2CompTubeInnerR = 12.00 / 2.; // Connection tubes inner radius [Pos 2 + 3]
1840 const Float_t kRB26s2CompTubeOuterR = 12.30 / 2.; // Connection tubes outer radius [Pos 2 + 3]
1841 const Float_t kRB26s2WeldingTubeLeftL = 9.00 / 2.; // Left connection tube half length [Pos 2]
1842 const Float_t kRB26s2WeldingTubeRightL =
1843 11.65 / 2.; // Right connection tube half length [Pos 3] [+ 0.15 cm for welding]
1844 const Float_t kRB26s2RingOuterR = 18.10 / 2.; // Ring inner radius [Pos 4]
1845 const Float_t kRB26s2RingL = 0.40 / 2.; // Ring half length [Pos 4]
1846 const Float_t kRB26s2RingZ = 6.50; // Ring z-position [Pos 4]
1847 const Float_t kRB26s2ProtOuterR = 18.20 / 2.; // Protection tube outer radius [Pos 5]
1848 const Float_t kRB26s2ProtL = 15.00 / 2.; // Protection tube half length [Pos 5]
1849 const Float_t kRB26s2ProtZ = 6.70; // Protection tube z-position [Pos 5]
1850
1851 // Mother volume
1852 //
1853 TGeoPcon* shRB26s2Compensator = new TGeoPcon(0., 360., 6);
1854 shRB26s2Compensator->DefineSection(0, 0.0, 0., kRB26s2CompTubeOuterR);
1855 shRB26s2Compensator->DefineSection(1, kRB26s2RingZ, 0., kRB26s2CompTubeOuterR);
1856 shRB26s2Compensator->DefineSection(2, kRB26s2RingZ, 0., kRB26s2ProtOuterR);
1857 shRB26s2Compensator->DefineSection(3, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2ProtOuterR);
1858 shRB26s2Compensator->DefineSection(4, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2CompTubeOuterR);
1859 shRB26s2Compensator->DefineSection(5, kRB26s2CompL, 0., kRB26s2CompTubeOuterR);
1860 TGeoVolume* voRB26s2Compensator = new TGeoVolume("RB26s2Compensator", shRB26s2Compensator, kMedVacHC);
1861
1862 //
1863 // [Pos 1] Bellow
1864 //
1865 //
1866 TGeoVolume* voRB26s2Bellow =
1867 new TGeoVolume("RB26s2Bellow", new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRo, kRB26s2BellowUndL / 2.), kMedVacHC);
1868 //
1869 // Upper part of the undulation
1870 //
1871 TGeoTorus* shRB26s2PlieTorusU =
1872 new TGeoTorus(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1873 shRB26s2PlieTorusU->SetName("RB26s2TorusU");
1874 TGeoTube* shRB26s2PlieTubeU = new TGeoTube(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2BellowRo, kRB26s2PlieR);
1875 shRB26s2PlieTubeU->SetName("RB26s2TubeU");
1876 TGeoCompositeShape* shRB26s2UpperPlie = new TGeoCompositeShape("RB26s2UpperPlie", "RB26s2TorusU*RB26s2TubeU");
1877
1878 TGeoVolume* voRB26s2WiggleU = new TGeoVolume("RB26s2UpperPlie", shRB26s2UpperPlie, kMedSteelHC);
1879 //
1880 // Lower part of the undulation
1881 TGeoTorus* shRB26s2PlieTorusL =
1882 new TGeoTorus(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR);
1883 shRB26s2PlieTorusL->SetName("RB26s2TorusL");
1884 TGeoTube* shRB26s2PlieTubeL = new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR);
1885 shRB26s2PlieTubeL->SetName("RB26s2TubeL");
1886 TGeoCompositeShape* shRB26s2LowerPlie = new TGeoCompositeShape("RB26s2LowerPlie", "RB26s2TorusL*RB26s2TubeL");
1887
1888 TGeoVolume* voRB26s2WiggleL = new TGeoVolume("RB26s2LowerPlie", shRB26s2LowerPlie, kMedSteelHC);
1889
1890 //
1891 // Connection between upper and lower part of undulation
1892 TGeoVolume* voRB26s2WiggleC1 = new TGeoVolume(
1893 "RB26s2PlieConn1",
1894 new TGeoTube(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieThickness / 2.), kMedSteelHC);
1895 //
1896 // One wiggle
1897 TGeoVolumeAssembly* voRB26s2Wiggle = new TGeoVolumeAssembly("RB26s2Wiggle");
1898 z0 = -kRB26s2PlieThickness / 2.;
1899 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 1, new TGeoTranslation(0., 0., z0));
1900 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1901 voRB26s2Wiggle->AddNode(voRB26s2WiggleU, 1, new TGeoTranslation(0., 0., z0));
1902 z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.;
1903 voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 2, new TGeoTranslation(0., 0., z0));
1904 z0 += kRB26s2PlieR - kRB26s2PlieThickness;
1905 voRB26s2Wiggle->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
1906 // Positioning of the volumes
1907 z0 = -kRB26s2BellowUndL / 2. + kRB26s2ConnectionPlieR;
1908 voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
1909 z0 += kRB26s2ConnectionPlieR;
1910 zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness;
1911 for (Int_t iw = 0; iw < kRB26s2NumberOfPlies; iw++) {
1912 Float_t zpos = z0 + iw * zsh;
1913 voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness));
1914 }
1915
1916 voRB26s2Compensator->AddNode(voRB26s2Bellow, 1,
1917 new TGeoTranslation(0., 0., 2. * kRB26s2WeldingTubeLeftL + kRB26s2BellowUndL / 2.));
1918
1919 //
1920 // [Pos 2] Left Welding Tube
1921 //
1922 TGeoTube* shRB26s2CompLeftTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeLeftL);
1923 TGeoVolume* voRB26s2CompLeftTube = new TGeoVolume("RB26s2CompLeftTube", shRB26s2CompLeftTube, kMedSteelHC);
1924 voRB26s2Compensator->AddNode(voRB26s2CompLeftTube, 1, new TGeoTranslation(0., 0., kRB26s2WeldingTubeLeftL));
1925 //
1926 // [Pos 3] Right Welding Tube
1927 //
1928 TGeoTube* shRB26s2CompRightTube =
1929 new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeRightL);
1930 TGeoVolume* voRB26s2CompRightTube = new TGeoVolume("RB26s2CompRightTube", shRB26s2CompRightTube, kMedSteelHC);
1931 voRB26s2Compensator->AddNode(voRB26s2CompRightTube, 1,
1932 new TGeoTranslation(0., 0., kRB26s2CompL - kRB26s2WeldingTubeRightL));
1933 //
1934 // [Pos 4] Ring
1935 //
1936 TGeoTube* shRB26s2CompRing = new TGeoTube(kRB26s2CompTubeOuterR, kRB26s2RingOuterR, kRB26s2RingL);
1937 TGeoVolume* voRB26s2CompRing = new TGeoVolume("RB26s2CompRing", shRB26s2CompRing, kMedSteelHC);
1938 voRB26s2Compensator->AddNode(voRB26s2CompRing, 1, new TGeoTranslation(0., 0., kRB26s2RingZ + kRB26s2RingL));
1939
1940 //
1941 // [Pos 5] Outer Protecting Tube
1942 //
1943 TGeoTube* shRB26s2CompProtTube = new TGeoTube(kRB26s2RingOuterR, kRB26s2ProtOuterR, kRB26s2ProtL);
1944 TGeoVolume* voRB26s2CompProtTube = new TGeoVolume("RB26s2CompProtTube", shRB26s2CompProtTube, kMedSteelHC);
1945 voRB26s2Compensator->AddNode(voRB26s2CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s2ProtZ + kRB26s2ProtL));
1946
1948 // Rotable Flange //
1949 // Drawing LHCVFX_0016 //
1951 const Float_t kRB26s1RFlangeTubeRi = 5.84 / 2.; // Tube inner radius
1952 const Float_t kRB26s1RFlangeTubeRo = 6.00 / 2.; // Tube outer radius
1953
1954 // Pos 1 Clamp Ring LHCVFX__0015
1955 const Float_t kRB26s1RFlangeCrL = 1.40; // Lenth of the clamp ring
1956 const Float_t kRB26s1RFlangeCrRi1 = 6.72 / 2.; // Ring inner radius section 1
1957 const Float_t kRB26s1RFlangeCrRi2 = 6.06 / 2.; // Ring inner radius section 2
1958 const Float_t kRB26s1RFlangeCrRo = 8.60 / 2.; // Ring outer radius
1959 const Float_t kRB26s1RFlangeCrD = 0.800; // Width section 1
1960
1961 TGeoPcon* shRB26s1RFlangeCr = new TGeoPcon(0., 360., 4);
1962 z0 = 0.;
1963 shRB26s1RFlangeCr->DefineSection(0, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1964 z0 += kRB26s1RFlangeCrD;
1965 shRB26s1RFlangeCr->DefineSection(1, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo);
1966 shRB26s1RFlangeCr->DefineSection(2, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1967 z0 = kRB26s1RFlangeCrL;
1968 shRB26s1RFlangeCr->DefineSection(3, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo);
1969 TGeoVolume* voRB26s1RFlangeCr = new TGeoVolume("RB26s1RFlangeCr", shRB26s1RFlangeCr, kMedSteelHC);
1970
1971 // Pos 2 Insert LHCVFX__0015
1972 const Float_t kRB26s1RFlangeIsL = 4.88; // Lenth of the insert
1973 const Float_t kRB26s1RFlangeIsR = 6.70 / 2.; // Ring radius
1974 const Float_t kRB26s1RFlangeIsD = 0.80; // Ring Width
1975
1976 TGeoPcon* shRB26s1RFlangeIs = new TGeoPcon(0., 360., 4);
1977 z0 = 0.;
1978 shRB26s1RFlangeIs->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1979 z0 += kRB26s1RFlangeIsD;
1980 shRB26s1RFlangeIs->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR);
1981 shRB26s1RFlangeIs->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1982 z0 = kRB26s1RFlangeIsL;
1983 shRB26s1RFlangeIs->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1984 TGeoVolume* voRB26s1RFlangeIs = new TGeoVolume("RB26s1RFlangeIs", shRB26s1RFlangeIs, kMedSteelHC);
1985 // 4.88 + 3.7 = 8.58 (8.7 to avoid overlap)
1986 // Pos 3 Fixed Point Section LHCVC2A_0021
1987 const Float_t kRB26s1RFlangeFpL = 5.88; // Length of the fixed point section (0.08 cm added for welding)
1988 const Float_t kRB26s1RFlangeFpZ = 3.82; // Position of the ring
1989 const Float_t kRB26s1RFlangeFpD = 0.59; // Width of the ring
1990 const Float_t kRB26s1RFlangeFpR = 7.00 / 2.; // Radius of the ring
1991
1992 TGeoPcon* shRB26s1RFlangeFp = new TGeoPcon(0., 360., 6);
1993 z0 = 0.;
1994 shRB26s1RFlangeFp->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1995 z0 += kRB26s1RFlangeFpZ;
1996 shRB26s1RFlangeFp->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
1997 shRB26s1RFlangeFp->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
1998 z0 += kRB26s1RFlangeFpD;
1999 shRB26s1RFlangeFp->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR);
2000 shRB26s1RFlangeFp->DefineSection(4, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
2001 z0 = kRB26s1RFlangeFpL;
2002 shRB26s1RFlangeFp->DefineSection(5, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo);
2003 TGeoVolume* voRB26s1RFlangeFp = new TGeoVolume("RB26s1RFlangeFp", shRB26s1RFlangeFp, kMedSteelHC);
2004
2005 // Put everything in a mother volume
2006 TGeoPcon* shRB26s1RFlange = new TGeoPcon(0., 360., 8);
2007 z0 = 0.;
2008 shRB26s1RFlange->DefineSection(0, z0, 0., kRB26s1RFlangeCrRo);
2009 z0 += kRB26s1RFlangeCrL;
2010 shRB26s1RFlange->DefineSection(1, z0, 0., kRB26s1RFlangeCrRo);
2011 shRB26s1RFlange->DefineSection(2, z0, 0., kRB26s1RFlangeTubeRo);
2012 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpZ;
2013 shRB26s1RFlange->DefineSection(3, z0, 0., kRB26s1RFlangeTubeRo);
2014 shRB26s1RFlange->DefineSection(4, z0, 0., kRB26s1RFlangeFpR);
2015 z0 += kRB26s1RFlangeFpD;
2016 shRB26s1RFlange->DefineSection(5, z0, 0., kRB26s1RFlangeFpR);
2017 shRB26s1RFlange->DefineSection(6, z0, 0., kRB26s1RFlangeTubeRo);
2018 z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
2019 shRB26s1RFlange->DefineSection(7, z0, 0., kRB26s1RFlangeTubeRo);
2020 TGeoVolume* voRB26s1RFlange = new TGeoVolume("RB26s1RFlange", shRB26s1RFlange, kMedVacHC);
2021
2022 voRB26s1RFlange->AddNode(voRB26s1RFlangeIs, 1, gGeoIdentity);
2023 voRB26s1RFlange->AddNode(voRB26s1RFlangeCr, 1, gGeoIdentity);
2024 voRB26s1RFlange->AddNode(voRB26s1RFlangeFp, 1, new TGeoTranslation(0., 0., kRB26s1RFlangeIsL));
2025
2027 // Fixed Flange //
2028 // Drawing LHCVFX_0006 //
2030 const Float_t kRB26s2FFlangeL = 2.13; // Length of the flange
2031 const Float_t kRB26s2FFlangeD1 = 0.97; // Length of section 1
2032 const Float_t kRB26s2FFlangeD2 = 0.29; // Length of section 2
2033 const Float_t kRB26s2FFlangeD3 = 0.87; // Length of section 3
2034 const Float_t kRB26s2FFlangeRo = 17.15 / 2.; // Flange outer radius
2035 const Float_t kRB26s2FFlangeRi1 = 12.30 / 2.; // Flange inner radius section 1
2036 const Float_t kRB26s2FFlangeRi2 = 12.00 / 2.; // Flange inner radius section 2
2037 const Float_t kRB26s2FFlangeRi3 = 12.30 / 2.; // Flange inner radius section 3
2038 z0 = 0;
2039 TGeoPcon* shRB26s2FFlange = new TGeoPcon(0., 360., 6);
2040 z0 = 0.;
2041 shRB26s2FFlange->DefineSection(0, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
2042 z0 += kRB26s2FFlangeD1;
2043 shRB26s2FFlange->DefineSection(1, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo);
2044 shRB26s2FFlange->DefineSection(2, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
2045 z0 += kRB26s2FFlangeD2;
2046 shRB26s2FFlange->DefineSection(3, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo);
2047 shRB26s2FFlange->DefineSection(4, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
2048 z0 += kRB26s2FFlangeD3;
2049 shRB26s2FFlange->DefineSection(5, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo);
2050 TGeoVolume* voRB26s2FFlange = new TGeoVolume("RB26s2FFlange", shRB26s2FFlange, kMedSteelHC);
2051
2052 TGeoVolume* voRB26s2FFlangeM =
2053 new TGeoVolume("RB26s2FFlangeM", MakeMotherFromTemplate(shRB26s2FFlange, 2, 5), kMedVacHC);
2054 voRB26s2FFlangeM->AddNode(voRB26s2FFlange, 1, gGeoIdentity);
2055
2057 // //
2058 // RB26/3 //
2059 // Drawing LHCV2a_0048 //
2060 // Drawing LHCV2a_0002 //
2062 //
2063 // Pos 1 Vacuum Tubes LHCVC2A__0003
2064 // Pos 2 Fixed Point LHCVFX___0005
2065 // Pos 3 Split Flange LHCVFX___0007
2066 // Pos 4 Fixed Flange LHCVFX___0004
2067 // Pos 5 Axial Compensator LHCVC2A__0065
2068 //
2069 //
2070 //
2071 //
2073 // Vacuum Tube //
2074 // Drawing LHCVC2A_0003 //
2076 const Float_t kRB26s3TubeL = 629.35 + 0.3; // 0.3 cm added for welding
2077 const Float_t kRB26s3TubeR1 = 12. / 2.;
2078 const Float_t kRB26s3TubeR2 = kRB26s3TubeR1 + 215.8 * TMath::Tan(0.829 / 180. * TMath::Pi());
2079
2080 TGeoPcon* shRB26s3Tube = new TGeoPcon(0., 360., 7);
2081 // Section 1: straight section
2082 shRB26s3Tube->DefineSection(0, 0.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
2083 shRB26s3Tube->DefineSection(1, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15);
2084 // Section 2: 0.829 deg opening cone
2085 shRB26s3Tube->DefineSection(2, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.20);
2086
2087 shRB26s3Tube->DefineSection(3, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.20);
2088 shRB26s3Tube->DefineSection(4, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.30);
2089
2090 shRB26s3Tube->DefineSection(5, 622.20, 30.00 / 2., 30.60 / 2.);
2091 shRB26s3Tube->DefineSection(6, kRB26s3TubeL, 30.00 / 2., 30.60 / 2.);
2092
2093 TGeoVolume* voRB26s3Tube = new TGeoVolume("RB26s3Tube", shRB26s3Tube, kMedSteelHC);
2094 // Add the insulation layer
2095 TGeoVolume* voRB26s3TubeIns = new TGeoVolume("RB26s3TubeIns", MakeInsulationFromTemplate(shRB26s3Tube), kMedInsu);
2096 voRB26s3Tube->AddNode(voRB26s3TubeIns, 1, gGeoIdentity);
2097
2098 TGeoVolume* voRB26s3TubeM = new TGeoVolume("RB26s3TubeM", MakeMotherFromTemplate(shRB26s3Tube), kMedVacHC);
2099 voRB26s3TubeM->AddNode(voRB26s3Tube, 1, gGeoIdentity);
2100
2102 // Fixed Point //
2103 // Drawing LHCVFX_0005 //
2105 const Float_t kRB26s3FixedPointL = 16.37; // Length of the fixed point section (0.3 cm added for welding)
2106 const Float_t kRB26s3FixedPointZ = 9.72; // Position of the ring (0.15 cm added for welding)
2107 const Float_t kRB26s3FixedPointD = 0.595; // Width of the ring
2108 const Float_t kRB26s3FixedPointR = 13.30 / 2.; // Radius of the ring
2109 const Float_t kRB26s3FixedPointRi = 12.00 / 2.; // Inner radius of the tube
2110 const Float_t kRB26s3FixedPointRo1 = 12.30 / 2.; // Outer radius of the tube (in)
2111 const Float_t kRB26s3FixedPointRo2 = 12.40 / 2.; // Outer radius of the tube (out)
2112 const Float_t kRB26s3FixedPointDs = 1.5; // Width of straight section behind ring
2113 const Float_t kRB26s3FixedPointDc = 3.15; // Width of conical section behind ring (0.15 cm added for welding)
2114
2115 TGeoPcon* shRB26s3FixedPoint = new TGeoPcon(0., 360., 8);
2116 z0 = 0.;
2117 shRB26s3FixedPoint->DefineSection(0, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2118 z0 += kRB26s3FixedPointZ;
2119 shRB26s3FixedPoint->DefineSection(1, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2120 shRB26s3FixedPoint->DefineSection(2, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
2121 z0 += kRB26s3FixedPointD;
2122 shRB26s3FixedPoint->DefineSection(3, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR);
2123 shRB26s3FixedPoint->DefineSection(4, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2124 z0 += kRB26s3FixedPointDs;
2125 shRB26s3FixedPoint->DefineSection(5, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1);
2126 z0 += kRB26s3FixedPointDc;
2127 shRB26s3FixedPoint->DefineSection(6, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2128 z0 = kRB26s3FixedPointL;
2129 shRB26s3FixedPoint->DefineSection(7, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2);
2130 TGeoVolume* voRB26s3FixedPoint = new TGeoVolume("RB26s3FixedPoint", shRB26s3FixedPoint, kMedSteelHC);
2131
2132 TGeoVolume* voRB26s3FixedPointM =
2133 new TGeoVolume("RB26s3FixedPointM", MakeMotherFromTemplate(shRB26s3FixedPoint), kMedVacHC);
2134 voRB26s3FixedPointM->AddNode(voRB26s3FixedPoint, 1, gGeoIdentity);
2135
2137 // Split Flange //
2138 // Drawing LHCVFX_0005 //
2140 const Float_t kRB26s3SFlangeL = 2.13; // Length of the flange
2141 const Float_t kRB26s3SFlangeD1 = 0.57; // Length of section 1
2142 const Float_t kRB26s3SFlangeD2 = 0.36; // Length of section 2
2143 const Float_t kRB26s3SFlangeD3 = 0.50 + 0.70; // Length of section 3
2144 const Float_t kRB26s3SFlangeRo = 17.15 / 2.; // Flange outer radius
2145 const Float_t kRB26s3SFlangeRi1 = 12.30 / 2.; // Flange inner radius section 1
2146 const Float_t kRB26s3SFlangeRi2 = 12.00 / 2.; // Flange inner radius section 2
2147 const Float_t kRB26s3SFlangeRi3 = 12.30 / 2.; // Flange inner radius section 3
2148 z0 = 0;
2149 TGeoPcon* shRB26s3SFlange = new TGeoPcon(0., 360., 6);
2150 z0 = 0.;
2151 shRB26s3SFlange->DefineSection(0, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2152 z0 += kRB26s3SFlangeD1;
2153 shRB26s3SFlange->DefineSection(1, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo);
2154 shRB26s3SFlange->DefineSection(2, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2155 z0 += kRB26s3SFlangeD2;
2156 shRB26s3SFlange->DefineSection(3, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo);
2157 shRB26s3SFlange->DefineSection(4, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2158 z0 += kRB26s3SFlangeD3;
2159 shRB26s3SFlange->DefineSection(5, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo);
2160 TGeoVolume* voRB26s3SFlange = new TGeoVolume("RB26s3SFlange", shRB26s3SFlange, kMedSteelHC);
2161
2162 TGeoVolume* voRB26s3SFlangeM =
2163 new TGeoVolume("RB26s3SFlangeM", MakeMotherFromTemplate(shRB26s3SFlange, 0, 3), kMedVacHC);
2164 voRB26s3SFlangeM->AddNode(voRB26s3SFlange, 1, gGeoIdentity);
2165
2167 // RB26/3 Fixed Flange //
2168 // Drawing LHCVFX___0004 //
2170 const Float_t kRB26s3FFlangeL = 2.99; // Length of the flange
2171 const Float_t kRB26s3FFlangeD1 = 1.72; // Length of section 1
2172 const Float_t kRB26s3FFlangeD2 = 0.30; // Length of section 2
2173 const Float_t kRB26s3FFlangeD3 = 0.97; // Length of section 3
2174 const Float_t kRB26s3FFlangeRo = 36.20 / 2.; // Flange outer radius
2175 const Float_t kRB26s3FFlangeRi1 = 30.60 / 2.; // Flange inner radius section 1
2176 const Float_t kRB26s3FFlangeRi2 = 30.00 / 2.; // Flange inner radius section 2
2177 const Float_t kRB26s3FFlangeRi3 = 30.60 / 2.; // Flange inner radius section 3
2178 z0 = 0;
2179 TGeoPcon* shRB26s3FFlange = new TGeoPcon(0., 360., 6);
2180 z0 = 0.;
2181 shRB26s3FFlange->DefineSection(0, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2182 z0 += kRB26s3FFlangeD1;
2183 shRB26s3FFlange->DefineSection(1, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo);
2184 shRB26s3FFlange->DefineSection(2, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2185 z0 += kRB26s3FFlangeD2;
2186 shRB26s3FFlange->DefineSection(3, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo);
2187 shRB26s3FFlange->DefineSection(4, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2188 z0 += kRB26s3FFlangeD3;
2189 shRB26s3FFlange->DefineSection(5, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo);
2190 TGeoVolume* voRB26s3FFlange = new TGeoVolume("RB26s3FFlange", shRB26s3FFlange, kMedSteelHC);
2191
2192 TGeoVolume* voRB26s3FFlangeM =
2193 new TGeoVolume("RB26s3FFlangeM", MakeMotherFromTemplate(shRB26s3FFlange, 2, 5), kMedVacHC);
2194 voRB26s3FFlangeM->AddNode(voRB26s3FFlange, 1, gGeoIdentity);
2195
2197 // RB26/3 Axial Compensator //
2198 // Drawing LHCVC2a_0065 //
2200 const Float_t kRB26s3CompL = 42.3; // Length of the compensator (0.3 cm added for welding)
2201 const Float_t kRB26s3BellowRo = 34.00 / 2.; // Bellow outer radius [Pos 1]
2202 const Float_t kRB26s3BellowRi = 30.10 / 2.; // Bellow inner radius [Pos 1]
2203 const Int_t kRB26s3NumberOfPlies = 13; // Number of plies [Pos 1]
2204 const Float_t kRB26s3BellowUndL = 17.70; // Length of undulated region [Pos 1]
2205 const Float_t kRB26s3PlieThickness = 0.06; // Plie thickness [Pos 1]
2206 const Float_t kRB26s3ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2207 // Plie radius
2208 const Float_t kRB26s3PlieR = (kRB26s3BellowUndL - 4. * kRB26s3ConnectionPlieR + 2. * kRB26s3PlieThickness +
2209 (2. * kRB26s3NumberOfPlies - 2.) * kRB26s3PlieThickness) /
2210 (4. * kRB26s3NumberOfPlies - 2.);
2211
2212 //
2213 // The welding tubes have 3 sections with different radii and 2 transition regions.
2214 // Section 1: connection to the outside
2215 // Section 2: commection to the bellow
2216 // Section 3: between 1 and 2
2217 const Float_t kRB26s3CompTubeInnerR1 = 30.0 / 2.; // Outer Connection tubes inner radius [Pos 4 + 3]
2218 const Float_t kRB26s3CompTubeOuterR1 = 30.6 / 2.; // Outer Connection tubes outer radius [Pos 4 + 3]
2219 const Float_t kRB26s3CompTubeInnerR2 = 29.4 / 2.; // Connection tubes inner radius [Pos 4 + 3]
2220 const Float_t kRB26s3CompTubeOuterR2 = 30.0 / 2.; // Connection tubes outer radius [Pos 4 + 3]
2221 const Float_t kRB26s3CompTubeInnerR3 = 30.6 / 2.; // Connection tubes inner radius at bellow [Pos 4 + 3]
2222 const Float_t kRB26s3CompTubeOuterR3 = 32.2 / 2.; // Connection tubes outer radius at bellow [Pos 4 + 3]
2223
2224 const Float_t kRB26s3WeldingTubeLeftL1 = 2.0; // Left connection tube length [Pos 4]
2225 const Float_t kRB26s3WeldingTubeLeftL2 = 3.4; // Left connection tube length [Pos 4]
2226 const Float_t kRB26s3WeldingTubeLeftL = 7.0; // Left connection tube total length [Pos 4]
2227 const Float_t kRB26s3WeldingTubeRightL1 =
2228 2.3; // Right connection tube length [Pos 3] (0.3 cm added for welding)
2229 const Float_t kRB26s3WeldingTubeRightL2 = 13.4; // Right connection tube length [Pos 3]
2230
2231 const Float_t kRB26s3WeldingTubeT1 = 0.6; // Length of first r-transition [Pos 4 + 3]
2232 const Float_t kRB26s3WeldingTubeT2 = 1.0; // Length of 2nd r-transition [Pos 4 + 3]
2233
2234 const Float_t kRB26s3RingOuterR = 36.1 / 2.; // Ring inner radius [Pos 4]
2235 const Float_t kRB26s3RingL = 0.8 / 2.; // Ring half length [Pos 4]
2236 const Float_t kRB26s3RingZ = 3.7; // Ring z-position [Pos 4]
2237 const Float_t kRB26s3ProtOuterR = 36.2 / 2.; // Protection tube outer radius [Pos 2]
2238 const Float_t kRB26s3ProtL = 27.0 / 2.; // Protection tube half length [Pos 2]
2239 const Float_t kRB26s3ProtZ = 4.0; // Protection tube z-position [Pos 2]
2240
2241 // Mother volume
2242 //
2243 TGeoPcon* shRB26s3Compensator = new TGeoPcon(0., 360., 6);
2244 shRB26s3Compensator->DefineSection(0, 0.0, 0., kRB26s3CompTubeOuterR1);
2245 shRB26s3Compensator->DefineSection(1, kRB26s3RingZ, 0., kRB26s3CompTubeOuterR1);
2246 shRB26s3Compensator->DefineSection(2, kRB26s3RingZ, 0., kRB26s3ProtOuterR);
2247 shRB26s3Compensator->DefineSection(3, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3ProtOuterR);
2248 shRB26s3Compensator->DefineSection(4, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3CompTubeOuterR1);
2249 shRB26s3Compensator->DefineSection(5, kRB26s3CompL, 0., kRB26s3CompTubeOuterR1);
2250 TGeoVolume* voRB26s3Compensator = new TGeoVolume("RB26s3Compensator", shRB26s3Compensator, kMedVacHC);
2251
2252 //
2253 // [Pos 1] Bellow
2254 //
2255 //
2256
2257 //
2258 // Upper part of the undulation
2259 //
2260 TGeoTorus* shRB26s3PlieTorusU =
2261 new TGeoTorus(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2262 shRB26s3PlieTorusU->SetName("RB26s3TorusU");
2263 TGeoTube* shRB26s3PlieTubeU = new TGeoTube(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3BellowRo, kRB26s3PlieR);
2264 shRB26s3PlieTubeU->SetName("RB26s3TubeU");
2265 TGeoCompositeShape* shRB26s3UpperPlie = new TGeoCompositeShape("RB26s3UpperPlie", "RB26s3TorusU*RB26s3TubeU");
2266
2267 TGeoVolume* voRB26s3WiggleU = new TGeoVolume("RB26s3UpperPlie", shRB26s3UpperPlie, kMedSteelHC);
2268 //
2269 // Lower part of the undulation
2270 TGeoTorus* shRB26s3PlieTorusL =
2271 new TGeoTorus(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR);
2272 shRB26s3PlieTorusL->SetName("RB26s3TorusL");
2273 TGeoTube* shRB26s3PlieTubeL = new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR);
2274 shRB26s3PlieTubeL->SetName("RB26s3TubeL");
2275 TGeoCompositeShape* shRB26s3LowerPlie = new TGeoCompositeShape("RB26s3LowerPlie", "RB26s3TorusL*RB26s3TubeL");
2276
2277 TGeoVolume* voRB26s3WiggleL = new TGeoVolume("RB26s3LowerPlie", shRB26s3LowerPlie, kMedSteelHC);
2278
2279 //
2280 // Connection between upper and lower part of undulation
2281 TGeoVolume* voRB26s3WiggleC1 = new TGeoVolume(
2282 "RB26s3PlieConn1",
2283 new TGeoTube(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieThickness / 2.), kMedSteelHC);
2284 //
2285 // One wiggle
2286 TGeoVolumeAssembly* voRB26s3Wiggle = new TGeoVolumeAssembly("RB26s3Wiggle");
2287 z0 = -kRB26s3PlieThickness / 2.;
2288 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 1, new TGeoTranslation(0., 0., z0));
2289 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2290 voRB26s3Wiggle->AddNode(voRB26s3WiggleU, 1, new TGeoTranslation(0., 0., z0));
2291 z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.;
2292 voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 2, new TGeoTranslation(0., 0., z0));
2293 z0 += kRB26s3PlieR - kRB26s3PlieThickness;
2294 voRB26s3Wiggle->AddNode(voRB26s3WiggleL, 1, new TGeoTranslation(0., 0., z0));
2295 voRB26s3Wiggle->GetShape()->ComputeBBox(); // enforce recomputing of BBox
2296
2297 //
2298 // The bellow itself
2299 Float_t zBellowTot = kRB26s3NumberOfPlies * (static_cast<TGeoBBox*>(voRB26s3Wiggle->GetShape()))->GetDZ();
2300 TGeoVolume* voRB26s3Bellow =
2301 new TGeoVolume("RB26s3Bellow", new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRo, zBellowTot), kMedVacHC);
2302
2303 // Positioning of the volumes
2304 z0 = -kRB26s2BellowUndL / 2. + kRB26s2ConnectionPlieR;
2305 voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0));
2306 z0 += kRB26s2ConnectionPlieR;
2307 zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness;
2308 for (Int_t iw = 0; iw < kRB26s2NumberOfPlies; iw++) {
2309 Float_t zpos = z0 + iw * zsh;
2310 voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness));
2311 }
2312
2313 voRB26s3Compensator->AddNode(voRB26s3Bellow, 1,
2314 new TGeoTranslation(0., 0., kRB26s3WeldingTubeLeftL + zBellowTot));
2315
2316 //
2317 // [Pos 2] Outer Protecting Tube
2318 //
2319 TGeoTube* shRB26s3CompProtTube = new TGeoTube(kRB26s3RingOuterR, kRB26s3ProtOuterR, kRB26s3ProtL);
2320 TGeoVolume* voRB26s3CompProtTube = new TGeoVolume("RB26s3CompProtTube", shRB26s3CompProtTube, kMedSteelHC);
2321 voRB26s3Compensator->AddNode(voRB26s3CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s3ProtZ + kRB26s3ProtL));
2322
2323 //
2324 // [Pos 3] Right Welding Tube
2325 //
2326 TGeoPcon* shRB26s3CompRightTube = new TGeoPcon(0., 360., 5);
2327 z0 = 0.;
2328 shRB26s3CompRightTube->DefineSection(0, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2329 z0 += kRB26s3WeldingTubeT2;
2330 shRB26s3CompRightTube->DefineSection(1, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2331 z0 += kRB26s3WeldingTubeRightL2;
2332 shRB26s3CompRightTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2333 z0 += kRB26s3WeldingTubeT1;
2334 shRB26s3CompRightTube->DefineSection(3, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2335 z0 += kRB26s3WeldingTubeRightL1;
2336 shRB26s3CompRightTube->DefineSection(4, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2337
2338 TGeoVolume* voRB26s3CompRightTube = new TGeoVolume("RB26s3CompRightTube", shRB26s3CompRightTube, kMedSteelHC);
2339 voRB26s3Compensator->AddNode(voRB26s3CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s3CompL - z0));
2340
2341 //
2342 // [Pos 4] Left Welding Tube
2343 //
2344 TGeoPcon* shRB26s3CompLeftTube = new TGeoPcon(0., 360., 5);
2345 z0 = 0.;
2346 shRB26s3CompLeftTube->DefineSection(0, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2347 z0 += kRB26s3WeldingTubeLeftL1;
2348 shRB26s3CompLeftTube->DefineSection(1, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1);
2349 z0 += kRB26s3WeldingTubeT1;
2350 shRB26s3CompLeftTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2351 z0 += kRB26s3WeldingTubeLeftL2;
2352 shRB26s3CompLeftTube->DefineSection(3, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2);
2353 z0 += kRB26s3WeldingTubeT2;
2354 shRB26s3CompLeftTube->DefineSection(4, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3);
2355
2356 TGeoVolume* voRB26s3CompLeftTube = new TGeoVolume("RB26s3CompLeftTube", shRB26s3CompLeftTube, kMedSteelHC);
2357 voRB26s3Compensator->AddNode(voRB26s3CompLeftTube, 1, gGeoIdentity);
2358 //
2359 // [Pos 5] Ring
2360 //
2361 TGeoTube* shRB26s3CompRing = new TGeoTube(kRB26s3CompTubeOuterR2, kRB26s3RingOuterR, kRB26s3RingL);
2362 TGeoVolume* voRB26s3CompRing = new TGeoVolume("RB26s3CompRing", shRB26s3CompRing, kMedSteelHC);
2363 voRB26s3Compensator->AddNode(voRB26s3CompRing, 1, new TGeoTranslation(0., 0., kRB26s3RingZ + kRB26s3RingL));
2364
2366 // //
2367 // RB26/4-5 //
2368 // Drawing LHCV2a_0012 [as installed] //
2370 // Pos1 Vacuum Tubes LHCVC2A__0014
2371 // Pos2 Compensator LHCVC2A__0066
2372 // Pos3 Fixed Point Section LHCVC2A__0016
2373 // Pos4 Split Flange LHCVFX___0005
2374 // Pos5 RotableFlange LHCVFX___0009
2376
2378 // RB26/4-5 Vacuum Tubes //
2379 // Drawing LHCVC2a_0014 //
2381 const Float_t kRB26s45TubeL = 593.12 + 0.3; // 0.3 cm added for welding
2382
2383 TGeoPcon* shRB26s45Tube = new TGeoPcon(0., 360., 11);
2384 // Section 1: straight section
2385 shRB26s45Tube->DefineSection(0, 0.00, 30.00 / 2., 30.60 / 2.);
2386 shRB26s45Tube->DefineSection(1, 1.20, 30.00 / 2., 30.60 / 2.);
2387 shRB26s45Tube->DefineSection(2, 1.20, 30.00 / 2., 30.80 / 2.);
2388 shRB26s45Tube->DefineSection(3, 25.10, 30.00 / 2., 30.80 / 2.);
2389 // Section 2: 0.932 deg opening cone
2390 shRB26s45Tube->DefineSection(4, 486.10, 45.00 / 2., 45.80 / 2.);
2391 // Section 3: straight section 4 mm
2392 shRB26s45Tube->DefineSection(5, 512.10, 45.00 / 2., 45.80 / 2.);
2393 // Section 4: straight section 3 mm
2394 shRB26s45Tube->DefineSection(6, 512.10, 45.00 / 2., 45.60 / 2.);
2395 shRB26s45Tube->DefineSection(7, 527.70, 45.00 / 2., 45.60 / 2.);
2396 // Section 4: closing cone
2397 shRB26s45Tube->DefineSection(8, 591.30, 10.00 / 2., 10.60 / 2.);
2398 shRB26s45Tube->DefineSection(9, 591.89, 10.00 / 2., 10.30 / 2.);
2399
2400 shRB26s45Tube->DefineSection(10, kRB26s45TubeL, 10.00 / 2., 10.30 / 2.);
2401 TGeoVolume* voRB26s45Tube = new TGeoVolume("RB26s45Tube", shRB26s45Tube, kMedSteelHC);
2402
2403 TGeoVolume* voRB26s45TubeM = new TGeoVolume("RB26s45TubeM", MakeMotherFromTemplate(shRB26s45Tube), kMedVacHC);
2404 voRB26s45TubeM->AddNode(voRB26s45Tube, 1, gGeoIdentity);
2405
2407 // RB26/5 Axial Compensator //
2408 // Drawing LHCVC2a_0066 //
2410 const Float_t kRB26s5CompL = 27.60; // Length of the compensator (0.30 cm added for welding)
2411 const Float_t kRB26s5BellowRo = 12.48 / 2.; // Bellow outer radius [Pos 1]
2412 const Float_t kRB26s5BellowRi = 10.32 / 2.; // Bellow inner radius [Pos 1]
2413 const Int_t kRB26s5NumberOfPlies = 15; // Number of plies [Pos 1]
2414 const Float_t kRB26s5BellowUndL = 10.50; // Length of undulated region [Pos 1]
2415 const Float_t kRB26s5PlieThickness = 0.025; // Plie thickness [Pos 1]
2416 const Float_t kRB26s5ConnectionPlieR = 0.21; // Connection plie radius [Pos 1]
2417 const Float_t kRB26s5ConnectionR = 11.2 / 2.; // Bellow connection radius [Pos 1]
2418 // Plie radius
2419 const Float_t kRB26s5PlieR = (kRB26s5BellowUndL - 4. * kRB26s5ConnectionPlieR + 2. * kRB26s5PlieThickness +
2420 (2. * kRB26s5NumberOfPlies - 2.) * kRB26s5PlieThickness) /
2421 (4. * kRB26s5NumberOfPlies - 2.);
2422 const Float_t kRB26s5CompTubeInnerR = 10.00 / 2.; // Connection tubes inner radius [Pos 2 + 3]
2423 const Float_t kRB26s5CompTubeOuterR = 10.30 / 2.; // Connection tubes outer radius [Pos 2 + 3]
2424 const Float_t kRB26s5WeldingTubeLeftL = 3.70 / 2.; // Left connection tube half length [Pos 2]
2425 const Float_t kRB26s5WeldingTubeRightL =
2426 13.40 / 2.; // Right connection tube half length [Pos 3] (0.3 cm added for welding)
2427 const Float_t kRB26s5RingInnerR = 11.2 / 2.; // Ring inner radius [Pos 4]
2428 const Float_t kRB26s5RingOuterR = 16.0 / 2.; // Ring inner radius [Pos 4]
2429 const Float_t kRB26s5RingL = 0.4 / 2.; // Ring half length [Pos 4]
2430 const Float_t kRB26s5RingZ = 14.97; // Ring z-position [Pos 4]
2431 const Float_t kRB26s5ProtOuterR = 16.2 / 2.; // Protection tube outer radius [Pos 5]
2432 const Float_t kRB26s5ProtL = 13.0 / 2.; // Protection tube half length [Pos 5]
2433 const Float_t kRB26s5ProtZ = 2.17; // Protection tube z-position [Pos 5]
2434 const Float_t kRB26s5DetailZR = 11.3 / 2.; // Detail Z max radius
2435
2436 // Mother volume
2437 //
2438 TGeoPcon* shRB26s5Compensator = new TGeoPcon(0., 360., 8);
2439 shRB26s5Compensator->DefineSection(0, 0.0, 0., kRB26s5CompTubeOuterR);
2440 shRB26s5Compensator->DefineSection(1, kRB26s5ProtZ, 0., kRB26s5CompTubeOuterR);
2441 shRB26s5Compensator->DefineSection(2, kRB26s5ProtZ, 0., kRB26s5ProtOuterR);
2442 shRB26s5Compensator->DefineSection(3, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5ProtOuterR);
2443 shRB26s5Compensator->DefineSection(4, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5DetailZR);
2444 shRB26s5Compensator->DefineSection(5, kRB26s5CompL - 8., 0., kRB26s5DetailZR);
2445 shRB26s5Compensator->DefineSection(6, kRB26s5CompL - 8., 0., kRB26s5CompTubeOuterR);
2446 shRB26s5Compensator->DefineSection(7, kRB26s5CompL, 0., kRB26s5CompTubeOuterR);
2447 TGeoVolume* voRB26s5Compensator = new TGeoVolume("RB26s5Compensator", shRB26s5Compensator, kMedVacHC);
2448
2449 //
2450 // [Pos 1] Bellow
2451 //
2452 //
2453 TGeoVolume* voRB26s5Bellow =
2454 new TGeoVolume("RB26s5Bellow", new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRo, kRB26s5BellowUndL / 2.), kMedVacHC);
2455 //
2456 // Upper part of the undulation
2457 //
2458 TGeoTorus* shRB26s5PlieTorusU =
2459 new TGeoTorus(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2460 shRB26s5PlieTorusU->SetName("RB26s5TorusU");
2461 TGeoTube* shRB26s5PlieTubeU = new TGeoTube(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5BellowRo, kRB26s5PlieR);
2462 shRB26s5PlieTubeU->SetName("RB26s5TubeU");
2463 TGeoCompositeShape* shRB26s5UpperPlie = new TGeoCompositeShape("RB26s5UpperPlie", "RB26s5TorusU*RB26s5TubeU");
2464
2465 TGeoVolume* voRB26s5WiggleU = new TGeoVolume("RB26s5UpperPlie", shRB26s5UpperPlie, kMedSteelHC);
2466 //
2467 // Lower part of the undulation
2468 TGeoTorus* shRB26s5PlieTorusL =
2469 new TGeoTorus(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR);
2470 shRB26s5PlieTorusL->SetName("RB26s5TorusL");
2471 TGeoTube* shRB26s5PlieTubeL = new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR);
2472 shRB26s5PlieTubeL->SetName("RB26s5TubeL");
2473 TGeoCompositeShape* shRB26s5LowerPlie = new TGeoCompositeShape("RB26s5LowerPlie", "RB26s5TorusL*RB26s5TubeL");
2474
2475 TGeoVolume* voRB26s5WiggleL = new TGeoVolume("RB26s5LowerPlie", shRB26s5LowerPlie, kMedSteelHC);
2476
2477 //
2478 // Connection between upper and lower part of undulation
2479 TGeoVolume* voRB26s5WiggleC1 = new TGeoVolume(
2480 "RB26s5PlieConn1",
2481 new TGeoTube(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieThickness / 2.), kMedSteelHC);
2482 //
2483 // One wiggle
2484 TGeoVolumeAssembly* voRB26s5Wiggle = new TGeoVolumeAssembly("RB26s5Wiggle");
2485 z0 = -kRB26s5PlieThickness / 2.;
2486 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 1, new TGeoTranslation(0., 0., z0));
2487 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2488 voRB26s5Wiggle->AddNode(voRB26s5WiggleU, 1, new TGeoTranslation(0., 0., z0));
2489 z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.;
2490 voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 2, new TGeoTranslation(0., 0., z0));
2491 z0 += kRB26s5PlieR - kRB26s5PlieThickness;
2492 voRB26s5Wiggle->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0));
2493 // Positioning of the volumes
2494 z0 = -kRB26s5BellowUndL / 2. + kRB26s5ConnectionPlieR;
2495 voRB26s5Bellow->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0));
2496 z0 += kRB26s5ConnectionPlieR;
2497 zsh = 4. * kRB26s5PlieR - 2. * kRB26s5PlieThickness;
2498 for (Int_t iw = 0; iw < kRB26s5NumberOfPlies; iw++) {
2499 Float_t zpos = z0 + iw * zsh;
2500 voRB26s5Bellow->AddNode(voRB26s5Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s5PlieThickness));
2501 }
2502
2503 voRB26s5Compensator->AddNode(voRB26s5Bellow, 1,
2504 new TGeoTranslation(0., 0., 2. * kRB26s5WeldingTubeLeftL + kRB26s5BellowUndL / 2.));
2505
2506 //
2507 // [Pos 2] Left Welding Tube
2508 //
2509 TGeoPcon* shRB26s5CompLeftTube = new TGeoPcon(0., 360., 3);
2510 z0 = 0;
2511 shRB26s5CompLeftTube->DefineSection(0, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2512 z0 += 2 * kRB26s5WeldingTubeLeftL - (kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2513 shRB26s5CompLeftTube->DefineSection(1, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2514 z0 += (kRB26s5ConnectionR - kRB26s5CompTubeOuterR);
2515 shRB26s5CompLeftTube->DefineSection(2, z0, kRB26s5ConnectionR - 0.15, kRB26s5ConnectionR);
2516 TGeoVolume* voRB26s5CompLeftTube = new TGeoVolume("RB26s5CompLeftTube", shRB26s5CompLeftTube, kMedSteelHC);
2517 voRB26s5Compensator->AddNode(voRB26s5CompLeftTube, 1, gGeoIdentity);
2518 //
2519 // [Pos 3] Right Welding Tube
2520 //
2521 TGeoPcon* shRB26s5CompRightTube = new TGeoPcon(0., 360., 11);
2522 // Detail Z
2523 shRB26s5CompRightTube->DefineSection(0, 0., kRB26s5CompTubeInnerR + 0.22, 11.2 / 2.);
2524 shRB26s5CompRightTube->DefineSection(1, 0.05, kRB26s5CompTubeInnerR + 0.18, 11.2 / 2.);
2525 shRB26s5CompRightTube->DefineSection(2, 0.22, kRB26s5CompTubeInnerR, 11.2 / 2. - 0.22);
2526 shRB26s5CompRightTube->DefineSection(3, 0.44, kRB26s5CompTubeInnerR, 11.2 / 2.);
2527 shRB26s5CompRightTube->DefineSection(4, 1.70, kRB26s5CompTubeInnerR, 11.2 / 2.);
2528 shRB26s5CompRightTube->DefineSection(5, 2.10, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2529 shRB26s5CompRightTube->DefineSection(6, 2.80, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2530 shRB26s5CompRightTube->DefineSection(7, 2.80, kRB26s5CompTubeInnerR, 11.3 / 2.);
2531 shRB26s5CompRightTube->DefineSection(8, 3.40, kRB26s5CompTubeInnerR, 11.3 / 2.);
2532 // Normal pipe
2533 shRB26s5CompRightTube->DefineSection(9, 3.50, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2534 shRB26s5CompRightTube->DefineSection(10, 2. * kRB26s5WeldingTubeRightL, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR);
2535
2536 TGeoVolume* voRB26s5CompRightTube = new TGeoVolume("RB26s5CompRightTube", shRB26s5CompRightTube, kMedSteelHC);
2537 voRB26s5Compensator->AddNode(voRB26s5CompRightTube, 1,
2538 new TGeoTranslation(0., 0., kRB26s5CompL - 2. * kRB26s5WeldingTubeRightL));
2539 //
2540 // [Pos 4] Ring
2541 //
2542 TGeoTube* shRB26s5CompRing = new TGeoTube(kRB26s5RingInnerR, kRB26s5RingOuterR, kRB26s5RingL);
2543 TGeoVolume* voRB26s5CompRing = new TGeoVolume("RB26s5CompRing", shRB26s5CompRing, kMedSteelHC);
2544 voRB26s5Compensator->AddNode(voRB26s5CompRing, 1, new TGeoTranslation(0., 0., kRB26s5RingZ + kRB26s5RingL));
2545
2546 //
2547 // [Pos 5] Outer Protecting Tube
2548 //
2549 TGeoTube* shRB26s5CompProtTube = new TGeoTube(kRB26s5RingOuterR, kRB26s5ProtOuterR, kRB26s5ProtL);
2550 TGeoVolume* voRB26s5CompProtTube = new TGeoVolume("RB26s5CompProtTube", shRB26s5CompProtTube, kMedSteelHC);
2551 voRB26s5Compensator->AddNode(voRB26s5CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s5ProtZ + kRB26s5ProtL));
2552
2554 // RB26/4 Fixed Point Section //
2555 // Drawing LHCVC2a_0016 //
2557 const Float_t kRB26s4TubeRi = 30.30 / 2.; // Tube inner radius (0.3 cm added for welding)
2558 const Float_t kRB26s4TubeRo = 30.60 / 2.; // Tube outer radius
2559 const Float_t kRB26s4FixedPointL = 12.63; // Length of the fixed point section
2560 const Float_t kRB26s4FixedPointZ = 10.53; // Position of the ring (0.15 added for welding)
2561 const Float_t kRB26s4FixedPointD = 0.595; // Width of the ring
2562 const Float_t kRB26s4FixedPointR = 31.60 / 2.; // Radius of the ring
2563
2564 TGeoPcon* shRB26s4FixedPoint = new TGeoPcon(0., 360., 6);
2565 z0 = 0.;
2566 shRB26s4FixedPoint->DefineSection(0, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2567 z0 += kRB26s4FixedPointZ;
2568 shRB26s4FixedPoint->DefineSection(1, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2569 shRB26s4FixedPoint->DefineSection(2, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2570 z0 += kRB26s4FixedPointD;
2571 shRB26s4FixedPoint->DefineSection(3, z0, kRB26s4TubeRi, kRB26s4FixedPointR);
2572 shRB26s4FixedPoint->DefineSection(4, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2573 z0 = kRB26s4FixedPointL;
2574 shRB26s4FixedPoint->DefineSection(5, z0, kRB26s4TubeRi, kRB26s4TubeRo);
2575 TGeoVolume* voRB26s4FixedPoint = new TGeoVolume("RB26s4FixedPoint", shRB26s4FixedPoint, kMedSteelHC);
2576
2577 TGeoVolume* voRB26s4FixedPointM =
2578 new TGeoVolume("RB26s4FixedPointM", MakeMotherFromTemplate(shRB26s4FixedPoint), kMedVacHC);
2579 voRB26s4FixedPointM->AddNode(voRB26s4FixedPoint, 1, gGeoIdentity);
2580
2582 // RB26/4 Split Flange //
2583 // Drawing LHCVFX__0005 //
2585 const Float_t kRB26s4SFlangeL = 2.99; // Length of the flange
2586 const Float_t kRB26s4SFlangeD1 = 0.85; // Length of section 1
2587 const Float_t kRB26s4SFlangeD2 = 0.36; // Length of section 2
2588 const Float_t kRB26s4SFlangeD3 = 0.73 + 1.05; // Length of section 3
2589 const Float_t kRB26s4SFlangeRo = 36.20 / 2.; // Flange outer radius
2590 const Float_t kRB26s4SFlangeRi1 = 30.60 / 2.; // Flange inner radius section 1
2591 const Float_t kRB26s4SFlangeRi2 = 30.00 / 2.; // Flange inner radius section 2
2592 const Float_t kRB26s4SFlangeRi3 = 30.60 / 2.; // Flange inner radius section 3
2593 z0 = 0;
2594 TGeoPcon* shRB26s4SFlange = new TGeoPcon(0., 360., 6);
2595 z0 = 0.;
2596 shRB26s4SFlange->DefineSection(0, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2597 z0 += kRB26s4SFlangeD1;
2598 shRB26s4SFlange->DefineSection(1, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo);
2599 shRB26s4SFlange->DefineSection(2, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2600 z0 += kRB26s4SFlangeD2;
2601 shRB26s4SFlange->DefineSection(3, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo);
2602 shRB26s4SFlange->DefineSection(4, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2603 z0 += kRB26s4SFlangeD3;
2604 shRB26s4SFlange->DefineSection(5, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo);
2605 TGeoVolume* voRB26s4SFlange = new TGeoVolume("RB26s4SFlange", shRB26s4SFlange, kMedSteelHC);
2606
2607 TGeoVolume* voRB26s4SFlangeM =
2608 new TGeoVolume("RB26s4SFlangeM", MakeMotherFromTemplate(shRB26s4SFlange, 0, 3), kMedVacHC);
2609 voRB26s4SFlangeM->AddNode(voRB26s4SFlange, 1, gGeoIdentity);
2610
2612 // RB26/5 Rotable Flange //
2613 // Drawing LHCVFX__0009 //
2615 const Float_t kRB26s5RFlangeL = 1.86; // Length of the flange
2616 const Float_t kRB26s5RFlangeD1 = 0.61; // Length of section 1
2617 const Float_t kRB26s5RFlangeD2 = 0.15; // Length of section 2
2618 const Float_t kRB26s5RFlangeD3 = 0.60; // Length of section 3
2619 const Float_t kRB26s5RFlangeD4 = 0.50; // Length of section 4
2620 const Float_t kRB26s5RFlangeRo = 15.20 / 2.; // Flange outer radius
2621 const Float_t kRB26s5RFlangeRi1 = 10.30 / 2.; // Flange inner radius section 1
2622 const Float_t kRB26s5RFlangeRi2 = 10.00 / 2.; // Flange inner radius section 2
2623 const Float_t kRB26s5RFlangeRi3 = 10.30 / 2.; // Flange inner radius section 3
2624 const Float_t kRB26s5RFlangeRi4 = 10.50 / 2.; // Flange inner radius section 4
2625
2626 z0 = 0;
2627 TGeoPcon* shRB26s5RFlange = new TGeoPcon(0., 360., 8);
2628 z0 = 0.;
2629 shRB26s5RFlange->DefineSection(0, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2630 z0 += kRB26s5RFlangeD4;
2631 shRB26s5RFlange->DefineSection(1, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo);
2632 shRB26s5RFlange->DefineSection(2, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2633 z0 += kRB26s5RFlangeD3;
2634 shRB26s5RFlange->DefineSection(3, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo);
2635 shRB26s5RFlange->DefineSection(4, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2636 z0 += kRB26s5RFlangeD2;
2637 shRB26s5RFlange->DefineSection(5, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo);
2638 shRB26s5RFlange->DefineSection(6, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2639 z0 += kRB26s5RFlangeD1;
2640 shRB26s5RFlange->DefineSection(7, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo);
2641 TGeoVolume* voRB26s5RFlange = new TGeoVolume("RB26s5RFlange", shRB26s5RFlange, kMedSteelHC);
2642
2643 TGeoVolume* voRB26s5RFlangeM =
2644 new TGeoVolume("RB26s5RFlangeM", MakeMotherFromTemplate(shRB26s5RFlange, 4, 7), kMedVacHC);
2645 voRB26s5RFlangeM->AddNode(voRB26s5RFlange, 1, gGeoIdentity);
2646
2647 //
2648 // Assemble RB26/1-2
2649 //
2650 TGeoVolumeAssembly* asRB26s12 = new TGeoVolumeAssembly("RB26s12");
2651 z0 = 0.;
2652 // asRB26s12->AddNode(voRB26s1RFlange, 1, gGeoIdentity);
2653 barrel->AddNode(voRB26s1RFlange, 1, new TGeoCombiTrans(0., 30., -82, rot180));
2654 z0 += kRB26s1RFlangeIsL + kRB26s1RFlangeFpL;
2655 barrel->AddNode(voRB26s12TubeM, 1, new TGeoCombiTrans(0., 30., -82. - z0, rot180));
2656 z0 += kRB26s12TubeL;
2657 asRB26s12->AddNode(voRB26s12msTubeM, 1, new TGeoTranslation(0., 0., z0));
2658 z0 += kRB26s12TubeL2;
2659 asRB26s12->AddNode(voRB26s2Compensator, 1, new TGeoTranslation(0., 0., z0));
2660 z0 += kRB26s2CompL;
2661 z0 -= kRB26s2FFlangeD1;
2662 asRB26s12->AddNode(voRB26s2FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2663 z0 += kRB26s2FFlangeL;
2664 const Float_t kRB26s12L = z0;
2665
2666 //
2667 // Assemble RB26/3
2668 //
2669 TGeoVolumeAssembly* asRB26s3 = new TGeoVolumeAssembly("RB26s3");
2670 z0 = 0.;
2671 asRB26s3->AddNode(voRB26s3SFlangeM, 1, gGeoIdentity);
2672 z0 += kRB26s3SFlangeL;
2673 z0 -= kRB26s3SFlangeD3;
2674 asRB26s3->AddNode(voRB26s3FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2675 z0 += kRB26s3FixedPointL;
2676 asRB26s3->AddNode(voRB26s3TubeM, 1, new TGeoTranslation(0., 0., z0));
2677 z0 += kRB26s3TubeL;
2678 asRB26s3->AddNode(voRB26s3Compensator, 1, new TGeoTranslation(0., 0., z0));
2679 z0 += kRB26s3CompL;
2680 z0 -= kRB26s3FFlangeD1;
2681 asRB26s3->AddNode(voRB26s3FFlangeM, 1, new TGeoTranslation(0., 0., z0));
2682 z0 += kRB26s3FFlangeL;
2683 const Float_t kRB26s3L = z0;
2684
2685 //
2686 // Assemble RB26/4-5
2687 //
2688 TGeoVolumeAssembly* asRB26s45 = new TGeoVolumeAssembly("RB26s45");
2689 z0 = 0.;
2690 asRB26s45->AddNode(voRB26s4SFlangeM, 1, gGeoIdentity);
2691 z0 += kRB26s4SFlangeL;
2692 z0 -= kRB26s4SFlangeD3;
2693 asRB26s45->AddNode(voRB26s4FixedPointM, 1, new TGeoTranslation(0., 0., z0));
2694 z0 += kRB26s4FixedPointL;
2695 asRB26s45->AddNode(voRB26s45TubeM, 1, new TGeoTranslation(0., 0., z0));
2696 z0 += kRB26s45TubeL;
2697 asRB26s45->AddNode(voRB26s5Compensator, 1, new TGeoTranslation(0., 0., z0));
2698 z0 += kRB26s5CompL;
2699 z0 -= kRB26s5RFlangeD3;
2700 z0 -= kRB26s5RFlangeD4;
2701 asRB26s45->AddNode(voRB26s5RFlangeM, 1, new TGeoTranslation(0., 0., z0));
2702 z0 += kRB26s5RFlangeL;
2703 const Float_t kRB26s45L = z0;
2704
2705 //
2706 // Assemble RB26
2707 //
2708 TGeoVolumeAssembly* asRB26Pipe = new TGeoVolumeAssembly("RB26Pipe");
2709 z0 = 0.;
2710 asRB26Pipe->AddNode(asRB26s12, 1, new TGeoTranslation(0., 0., z0));
2711 z0 += kRB26s12L;
2712 asRB26Pipe->AddNode(asRB26s3, 1, new TGeoTranslation(0., 0., z0));
2713 z0 += kRB26s3L;
2714 asRB26Pipe->AddNode(asRB26s45, 1, new TGeoTranslation(0., 0., z0));
2715 z0 += kRB26s45L;
2716 top->AddNode(asRB26Pipe, 1, new TGeoCombiTrans(0., 0., -82., rot180));
2717}
2718
2719void Pipe::createMaterials()
2720{
2721 //
2722 // Define materials for beam pipe
2723 //
2724 Int_t isxfld = 2.;
2725 Float_t sxmgmx = 10.;
2727
2728 // Steel (Inox)
2729 Float_t asteel[4] = {55.847, 51.9961, 58.6934, 28.0855};
2730 Float_t zsteel[4] = {26., 24., 28., 14.};
2731 Float_t wsteel[4] = {.715, .18, .1, .005};
2732 // AlBe - alloy
2733 Float_t aAlBe[2] = {26.98, 9.01}; // al=2.702 be=1.8477
2734 Float_t zAlBe[2] = {13.00, 4.00};
2735 Float_t wAlBe[2] = {0.4, 0.6};
2736 // Polyamid
2737 Float_t aPA[4] = {16., 14., 12., 1.};
2738 Float_t zPA[4] = {8., 7., 6., 1.};
2739 Float_t wPA[4] = {1., 1., 6., 11.};
2740 // Polyimide film
2741 Float_t aPI[4] = {16., 14., 12., 1.};
2742 Float_t zPI[4] = {8., 7., 6., 1.};
2743 Float_t wPI[4] = {5., 2., 22., 10.};
2744 // Rohacell
2745 Float_t aRohacell[4] = {16., 14., 12., 1.};
2746 Float_t zRohacell[4] = {8., 7., 6., 1.};
2747 Float_t wRohacell[4] = {2., 1., 9., 13.};
2748 // Air
2749 Float_t aAir[4] = {12.0107, 14.0067, 15.9994, 39.948};
2750 Float_t zAir[4] = {6., 7., 8., 18.};
2751 Float_t wAir[4] = {0.000124, 0.755267, 0.231781, 0.012827};
2752 Float_t dAir = 1.20479E-3;
2753 Float_t dAir1 = 1.20479E-11;
2754 // Insulation powder
2755 // Si O Ti Al
2756 Float_t ains[4] = {28.0855, 15.9994, 47.867, 26.982};
2757 Float_t zins[4] = {14., 8., 22., 13.};
2758 Float_t wins[4] = {0.3019, 0.4887, 0.1914, 0.018};
2759 //
2760 //
2761 // Anticorodal
2762 //
2763 // Al Si7 Mg 0.6
2764 //
2765 Float_t aaco[3] = {26.982, 28.0855, 24.035};
2766 Float_t zaco[3] = {13., 14., 12.};
2767 Float_t waco[3] = {0.924, 0.07, 0.006};
2768 // Kapton
2769 //
2770 Float_t aKapton[4] = {1.00794, 12.0107, 14.010, 15.9994};
2771 Float_t zKapton[4] = {1., 6., 7., 8.};
2772 Float_t wKapton[4] = {0.026362, 0.69113, 0.07327, 0.209235};
2773 Float_t dKapton = 1.42;
2774 // NEG coating
2775 // Ti V Zr
2776 Float_t aNEG[4] = {47.87, 50.94, 91.24};
2777 Float_t zNEG[4] = {22.00, 23.00, 40.00};
2778 Float_t wNEG[4] = {1. / 3., 1. / 3., 1. / 3.};
2779 Float_t dNEG = 5.6; // ?
2780
2781 //---------------------------------
2782 // Aluminium AA 5083 for MFT: Al Manganese(Mn) Magnesium(Mg) Chrome(Cr)
2783 Float_t aALU5083[4] = {26.982, 54.938, 24.305, 51.996}; // Mg pas meme a que la ligne Anticorodal!
2784 Float_t zALU5083[4] = {13., 25., 12., 24.};
2785 Float_t wALU5083[4] = {0.947, 0.007, 0.044, 0.0015};
2786 // Aluminium AA 2219 for MFT: Al Cu Mn Ti V Zr
2787 Float_t aALU2219[6] = {26.982, 63.546, 54.938, 47.867, 50.941, 91.224};
2788 Float_t zALU2219[6] = {13., 29., 25., 22., 23., 40.};
2789 Float_t wALU2219[6] = {0.93, 0.063, 0.003, 0.0006, 0.001, 0.0018};
2790 // Aluminium AA 7075 for beam pipe support (wings): Al Zn Mg Cu
2791 Float_t aALU7075[4] = {26.982, 65.38, 24.305, 63.546};
2792 Float_t zALU7075[4] = {13., 30., 12., 29.};
2793 Float_t wALU7075[4] = {0.902, 0.06, 0.024, 0.014};
2794 //---------------------------------
2795
2796 // ****************
2797 // Defines tracking media parameters.
2798 //
2799 Float_t epsil = .1; // Tracking precision,
2800 Float_t stemax = -0.01; // Maximum displacement for multiple scat
2801 Float_t tmaxfd = -20.; // Maximum angle due to field deflection
2802 Float_t deemax = -.3; // Maximum fractional energy loss, DLS
2803 Float_t stmin = -.8;
2804 // ***************
2805 //
2806
2807 auto& matmgr = o2::base::MaterialManager::Instance();
2808
2809 // Beryllium
2810 matmgr.Material("PIPE", 5, "BERILLIUM$", 9.01, 4., 1.848, 35.3, 36.7);
2811 matmgr.Medium("PIPE", 5, "BE", 5, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2812
2813 // Copper
2814 matmgr.Material("PIPE", 10, "COPPER", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2815 matmgr.Material("PIPE", 30, "COPPER_NF", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2816 matmgr.Material("PIPE", 50, "COPPER_HC", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2817 matmgr.Material("PIPE", 70, "COPPER_NFHC", 63.55, 29, 8.96, 1.43, 85.6 / 8.96);
2818
2819 matmgr.Medium("PIPE", 10, "CU", 10, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2820 matmgr.Medium("PIPE", 30, "CU_NF", 30, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2821 matmgr.Medium("PIPE", 50, "CU_HC", 50, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2822 matmgr.Medium("PIPE", 70, "CU_NFHC", 70, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2823
2824 // Air
2825 matmgr.Mixture("PIPE", 15, "AIR$ ", aAir, zAir, dAir, 4, wAir);
2826 matmgr.Mixture("PIPE", 35, "AIR_HIGH$ ", aAir, zAir, dAir, 4, wAir);
2827 matmgr.Mixture("PIPE", 55, "AIR_NF ", aAir, zAir, dAir, 4, wAir);
2828 matmgr.Medium("PIPE", 15, "AIR", 15, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2829 matmgr.Medium("PIPE", 35, "AIR_HIGH", 35, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2830 matmgr.Medium("PIPE", 55, "AIR_NF", 55, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2831
2832 // Insulation
2833 matmgr.Mixture("PIPE", 14, "INSULATION0$", ains, zins, 0.41, 4, wins);
2834 matmgr.Medium("PIPE", 14, "INS_C0", 14, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2835
2836 //
2837 // Vacuum
2838 matmgr.Mixture("PIPE", 16, "VACUUM$ ", aAir, zAir, dAir1, 4, wAir);
2839 matmgr.Mixture("PIPE", 36, "VACUUM$_NF", aAir, zAir, dAir1, 4, wAir);
2840 matmgr.Mixture("PIPE", 56, "VACUUM$_HC ", aAir, zAir, dAir1, 4, wAir);
2841 matmgr.Mixture("PIPE", 76, "VACUUM$_NFHC", aAir, zAir, dAir1, 4, wAir);
2842
2843 matmgr.Medium("PIPE", 16, "VACUUM", 16, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2844 matmgr.Medium("PIPE", 36, "VACUUM_NF", 36, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2845 matmgr.Medium("PIPE", 56, "VACUUM_HC", 56, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2846 matmgr.Medium("PIPE", 76, "VACUUM_NFHC", 76, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2847
2848 //
2849 // Steel
2850 matmgr.Mixture("PIPE", 19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel);
2851 matmgr.Mixture("PIPE", 39, "STAINLESS STEEL$_NF", asteel, zsteel, 7.88, 4, wsteel);
2852 matmgr.Mixture("PIPE", 59, "STAINLESS STEEL$_HC", asteel, zsteel, 7.88, 4, wsteel);
2853 matmgr.Mixture("PIPE", 79, "STAINLESS STEEL$_NFHC", asteel, zsteel, 7.88, 4, wsteel);
2854
2855 matmgr.Medium("PIPE", 19, "INOX", 19, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2856 matmgr.Medium("PIPE", 39, "INOX_NF", 39, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2857 matmgr.Medium("PIPE", 59, "INOX_HC", 59, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2858 matmgr.Medium("PIPE", 79, "INOX_NFHC", 79, 0, 0, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2859
2860 //----------------- for the MFT ----------------------
2861 matmgr.Mixture("PIPE", 63, "ALUMINIUM5083$", aALU5083, zALU5083, 2.66, 4, wALU5083); // from aubertduval.fr
2862 matmgr.Mixture("PIPE", 64, "ALUMINIUM2219$", aALU2219, zALU2219, 2.84, 6, wALU2219); // from aubertduval.fr
2863 matmgr.Medium("PIPE", 63, "AA5083", 63, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2864 matmgr.Medium("PIPE", 64, "AA2219", 64, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2865
2866 //----------------------------------------------------
2867 matmgr.Mixture("PIPE", 65, "PI$", aPI, zPI, 1.42, -4, wPI);
2868 matmgr.Medium("PIPE", 65, "POLYIMIDE", 65, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2869
2870 //---------------------------------
2871 // Carbon Fiber M55J
2872 matmgr.Material("PIPE", 66, "M55J6K$", 12.0107, 6, 1.92, 999, 999);
2873 matmgr.Medium("PIPE", 66, "M55J6K", 66, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2874
2875 // Rohacell
2876 matmgr.Mixture("PIPE", 67, "Rohacell$", aRohacell, zRohacell, 0.03, -4, wRohacell);
2877 matmgr.Medium("PIPE", 67, "ROHACELL", 67, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2878
2879 // Titanium
2880 matmgr.Material("PIPE", 22, "Titanium$", 47.867, 22, 4.54, 3.560, 27.80);
2881 matmgr.Medium("PIPE", 22, "TITANIUM", 22, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2882
2883 // Alu 7075 (ZICRAL)
2884 matmgr.Mixture("PIPE", 68, "ALUMINIUM7075$", aALU7075, zALU7075, 2.810, -4, wALU7075);
2885 matmgr.Medium("PIPE", 68, "AA7075", 68, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
2886}
2887
2888TGeoPcon* Pipe::MakeMotherFromTemplate(const TGeoPcon* shape, Int_t imin, Int_t imax, Float_t r0, Int_t nz)
2889{
2890 //
2891 // Create a mother shape from a template setting some min radii to 0
2892 //
2893 Int_t nz0 = shape->GetNz();
2894 // if nz > -1 the number of planes is given by nz
2895 if (nz != -1) {
2896 nz0 = nz;
2897 }
2898 TGeoPcon* mother = new TGeoPcon(0., 360., nz0);
2899
2900 if (imin == -1 || imax == -1) {
2901 imin = 0;
2902 imax = shape->GetNz();
2903 } else if (imax >= nz0) {
2904 imax = nz0 - 1;
2905 printf("Warning: imax reset to nz-1 %5d %5d %5d %5d\n", imin, imax, nz, nz0);
2906 }
2907
2908 // construct the sections dynamically since duplications have to be avoided
2909 std::vector<double> pconparams;
2910 pconparams.reserve(nz0);
2911 pconparams.push_back(0.);
2912 pconparams.push_back(360);
2913 pconparams.push_back(nz0);
2914 int zplanecounter = 0;
2915
2916 auto addSection = [&pconparams, &zplanecounter](double z, double rmin, double rmax) {
2917 pconparams.push_back(z);
2918 pconparams.push_back(rmin);
2919 pconparams.push_back(rmax);
2920 zplanecounter++;
2921 };
2922
2923 double zlast, rminlast, rmaxlast;
2924 for (Int_t i = 0; i < shape->GetNz(); i++) {
2925 Double_t rmin = shape->GetRmin(i);
2926 if ((i >= imin) && (i <= imax)) {
2927 rmin = r0;
2928 }
2929 Double_t rmax = shape->GetRmax(i);
2930 Double_t z = shape->GetZ(i);
2931 if (i == 0 || (z != zlast || rmin != rminlast || rmax != rmaxlast)) {
2932 addSection(z, rmin, rmax);
2933 }
2934 zlast = z;
2935 rminlast = rmin;
2936 rmaxlast = rmax;
2937 }
2938 // correct dimension (unless the user chose the number of sections)
2939 if (nz == -1) {
2940 pconparams[2] = zplanecounter;
2941 // reinit polycon from parameters
2942 mother->SetDimensions(pconparams.data());
2943 } else {
2944 for (Int_t i = 0; i < zplanecounter; i++) {
2945 mother->DefineSection(i, pconparams[3 + 3 * i], pconparams[4 + 3 * i], pconparams[5 + 3 * i]);
2946 }
2947 }
2948
2949 return mother;
2950}
2951
2952TGeoPcon* Pipe::MakeInsulationFromTemplate(TGeoPcon* shape)
2953{
2954 //
2955 // Create an beam pipe insulation layer shape from a template
2956 //
2957 Int_t nz = shape->GetNz();
2958 TGeoPcon* insu = new TGeoPcon(0., 360., nz);
2959
2960 for (Int_t i = 0; i < nz; i++) {
2961 Double_t z = shape->GetZ(i);
2962 Double_t rmin = shape->GetRmin(i);
2963 Double_t rmax = shape->GetRmax(i);
2964 rmax += 0.5;
2965 shape->DefineSection(i, z, rmin, rmax);
2966 rmin = rmax - 0.5;
2967 insu->DefineSection(i, z, rmin, rmax);
2968 }
2969 return insu;
2970}
2971
2972TGeoVolume* Pipe::MakeBellow(const char* ext, Int_t nc, Float_t rMin, Float_t rMax, Float_t dU, Float_t rPlie,
2973 Float_t dPlie)
2974{
2975 // nc Number of convolution
2976 // rMin Inner radius of the bellow
2977 // rMax Outer radius of the bellow
2978 // dU Undulation length
2979 // rPlie Plie radius
2980 // dPlie Plie thickness
2981 auto& matmgr = o2::base::MaterialManager::Instance();
2982 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
2983 const TGeoMedium* kMedSteel = matmgr.getTGeoMedium("PIPE_INOX");
2984 //
2985 // Upper part of the undulation
2986 //
2987 std::string name, nameA, nameB;
2988 TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie);
2989 nameA = fmt::format("{:s}TorusU", ext);
2990 shPlieTorusU->SetName(nameA.c_str());
2991 TGeoTube* shPlieTubeU = new TGeoTube(rMax - rPlie, rMax, rPlie);
2992 nameB = fmt::format("{:s}TubeU", ext);
2993 shPlieTubeU->SetName(nameB.c_str());
2994 name = fmt::format("{:s}UpperPlie", ext);
2995 TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
2996
2997 TGeoVolume* voWiggleU = new TGeoVolume(name.c_str(), shUpperPlie, kMedSteel);
2998 //
2999 // Lower part of the undulation
3000 TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie);
3001 nameA = fmt::format("{:s}TorusL", ext);
3002 shPlieTorusL->SetName(nameA.c_str());
3003 TGeoTube* shPlieTubeL = new TGeoTube(rMin, rMin + rPlie, rPlie);
3004 nameB = fmt::format("{:s}TubeL", ext);
3005 shPlieTubeL->SetName(nameB.c_str());
3006 name = fmt::format("{:s}LowerPlie", ext);
3007 TGeoCompositeShape* shLowerPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
3008
3009 TGeoVolume* voWiggleL = new TGeoVolume(name.c_str(), shLowerPlie, kMedSteel);
3010
3011 //
3012 // Connection between upper and lower part of undulation
3013 TGeoVolume* voWiggleC1 = new TGeoVolume(fmt::format("{:s}PlieConn1", ext).c_str(), new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie / 2.), kMedSteel);
3014 //
3015 // One wiggle
3016 Float_t dz = rPlie - dPlie / 2.;
3017 Float_t z0 = -dPlie / 2.;
3018 TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(fmt::format("{:s}Wiggle", ext).c_str());
3019 asWiggle->AddNode(voWiggleC1, 1, new TGeoTranslation(0., 0., z0));
3020 z0 += dz;
3021 asWiggle->AddNode(voWiggleU, 1, new TGeoTranslation(0., 0., z0));
3022 z0 += dz;
3023 asWiggle->AddNode(voWiggleC1, 2, new TGeoTranslation(0., 0., z0));
3024 z0 += dz;
3025 asWiggle->AddNode(voWiggleL, 1, new TGeoTranslation(0., 0., z0));
3026 asWiggle->GetShape()->ComputeBBox(); // enforce recomputing of BBox
3027 //
3028 Float_t zBellowTot = nc * (static_cast<TGeoBBox*>(asWiggle->GetShape()))->GetDZ();
3029 TGeoVolume* voBellow = new TGeoVolume(fmt::format("{:s}BellowUS", ext).c_str(), new TGeoTube(rMin, rMax, zBellowTot), kMedVac);
3030 // Positioning of the volumes
3031 z0 = -dU / 2. + rPlie;
3032 voBellow->AddNode(voWiggleL, 2, new TGeoTranslation(0., 0., z0));
3033 z0 += rPlie;
3034 Float_t zsh = 4. * rPlie - 2. * dPlie;
3035 for (Int_t iw = 0; iw < nc; iw++) {
3036 Float_t zpos = z0 + iw * zsh;
3037 voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos - dPlie));
3038 }
3039 return voBellow;
3040}
3041
3042TGeoVolume* Pipe::MakeBellowCside(const char* ext, Int_t nc, Float_t rMin, Float_t rMax, Float_t rPlie, Float_t dPlie)
3043{
3044 // nc Number of convolution
3045 // rMin Inner radius of the bellow
3046 // rMax Outer radius of the bellow
3047 // dU Undulation length
3048 // rPlie Plie radius
3049 // dPlie Plie thickness
3050 auto& matmgr = o2::base::MaterialManager::Instance();
3051 const TGeoMedium* kMedVac = matmgr.getTGeoMedium("PIPE_VACUUM");
3052 const TGeoMedium* kMedAlu5083 = matmgr.getTGeoMedium("PIPE_AA5083"); // fm
3053
3054 Float_t dU = nc * (4. * rPlie - 2. * dPlie);
3055
3056 std::string name, nameA, nameB;
3057 name = fmt::format("{:s}BellowUS", ext);
3058 // TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac);
3059 TGeoVolumeAssembly* voBellow = new TGeoVolumeAssembly(name.c_str());
3060 //
3061 // Upper part of the undulation
3062 //
3063
3064 TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie);
3065 nameA = fmt::format("{:s}TorusU", ext);
3066 shPlieTorusU->SetName(nameA.c_str());
3067 TGeoTube* shPlieTubeU = new TGeoTube(rMax - rPlie, rMax, rPlie);
3068 nameB = fmt::format("{:s}TubeU", ext);
3069 shPlieTubeU->SetName(nameB.c_str());
3070 name = fmt::format("{:s}UpperPlie", ext);
3071 TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}", nameA, nameB).c_str());
3072
3073 TGeoVolume* voWiggleU = new TGeoVolume(name.c_str(), shUpperPlie, kMedAlu5083);
3074 voWiggleU->SetLineColor(kOrange); // fm
3075
3076 // First Lower part of the ondulation
3077 TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie);
3078 nameA = fmt::format("{:s}TorusL", ext);
3079 shPlieTorusL->SetName(nameA.c_str());
3080 TGeoTranslation* t1 = new TGeoTranslation("t1", 0, 0, -rPlie / 2.);
3081 t1->RegisterYourself();
3082
3083 TGeoTube* shPlieTubeL = new TGeoTube(rMin, rMin + rPlie, rPlie / 2.);
3084 nameB = fmt::format("{:s}TubeL", ext);
3085 shPlieTubeL->SetName(nameB.c_str());
3086 name = fmt::format("{:s}LowerPlie", ext);
3087 TGeoCompositeShape* shLowerPlie1 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}:t1", nameA, nameB).c_str());
3088
3089 TGeoVolume* voWiggleL1 = new TGeoVolume(name.c_str(), shLowerPlie1, kMedAlu5083);
3090 voWiggleL1->SetLineColor(kOrange); // fm
3091
3092 // Second Lower part of the undulation
3093 TGeoTranslation* t2 = new TGeoTranslation("t2", 0, 0, rPlie / 2.);
3094 t2->RegisterYourself();
3095
3096 TGeoCompositeShape* shLowerPlie2 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}*{:s}:t2", nameA, nameB).c_str());
3097
3098 TGeoVolume* voWiggleL2 = new TGeoVolume(name.c_str(), shLowerPlie2, kMedAlu5083);
3099 voWiggleL2->SetLineColor(kOrange); // fm
3100
3101 // Connection between upper and lower part of undulation
3102 name = fmt::format("{:s}PlieConn1", ext);
3103 TGeoVolume* voWiggleC1 = new TGeoVolume(name.c_str(), new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie / 2.), kMedAlu5083);
3104 voWiggleC1->SetLineColor(kOrange); // fm
3105
3106 //
3107 // Vacuum Part
3108 //
3109
3110 //--Upper part of the ondulation
3111
3112 TGeoTorus* vacPlieTorusU = new TGeoTorus(rMax - rPlie, 0., rPlie - dPlie);
3113 nameA = fmt::format("{:s}vacTorusU", ext);
3114 vacPlieTorusU->SetName(nameA.c_str());
3115 TGeoTube* vacPlieTubeU = new TGeoTube(0., rMax - rPlie, rPlie - dPlie);
3116 nameB = fmt::format("{:s}vacTubeU", ext);
3117 vacPlieTubeU->SetName(nameB.c_str());
3118 name = fmt::format("{:s}vacUpperPlie", ext);
3119 TGeoCompositeShape* vacUpperPlie = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}+{:s}", nameA, nameB).c_str());
3120
3121 TGeoVolume* voVacWiggleU = new TGeoVolume(name.c_str(), vacUpperPlie, kMedVac);
3122 voVacWiggleU->SetVisibility(0);
3123
3124 // First Lower part of the undulation
3125 TGeoTorus* vacPlieTorusL = new TGeoTorus(rMin + rPlie, 0., rPlie);
3126 nameA = fmt::format("{:s}vacTorusL", ext);
3127 vacPlieTorusL->SetName(nameA.c_str());
3128
3129 TGeoTube* vacPlieTubeL = new TGeoTube(0., rMin + rPlie, rPlie / 2.);
3130 nameB = fmt::format("{:s}vacTubeL", ext);
3131 vacPlieTubeL->SetName(nameB.c_str());
3132 name = fmt::format("{:s}vacLowerPlie", ext);
3133 TGeoCompositeShape* vacLowerPlie1 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}:t1-{:s}", nameB, nameA).c_str());
3134
3135 TGeoVolume* voVacWiggleL1 = new TGeoVolume(name.c_str(), vacLowerPlie1, kMedVac);
3136 voVacWiggleL1->SetVisibility(0);
3137
3138 // Second Lower part of the undulation
3139 TGeoCompositeShape* vacLowerPlie2 = new TGeoCompositeShape(name.c_str(), fmt::format("{:s}:t2-{:s}", nameB, nameA).c_str());
3140
3141 TGeoVolume* voVacWiggleL2 = new TGeoVolume(name.c_str(), vacLowerPlie2, kMedVac);
3142 voVacWiggleL2->SetVisibility(0);
3143
3144 // One wiggle
3145 Float_t dz = rPlie - dPlie / 2.;
3146 Float_t z0 = 2. * rPlie;
3147 name = fmt::format("{:s}Wiggle", ext);
3148 TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name.c_str());
3149
3150 asWiggle->AddNode(voWiggleL1, 1, new TGeoTranslation(0., 0., z0));
3151 asWiggle->AddNode(voVacWiggleL1, 1, new TGeoTranslation(0., 0., z0));
3152 z0 -= dz;
3153 asWiggle->AddNode(voWiggleC1, 1, new TGeoTranslation(0., 0., z0));
3154 z0 -= dz;
3155 asWiggle->AddNode(voWiggleU, 1, new TGeoTranslation(0., 0., z0));
3156 asWiggle->AddNode(voVacWiggleU, 1, new TGeoTranslation(0., 0., z0));
3157 z0 -= dz;
3158 asWiggle->AddNode(voWiggleC1, 2, new TGeoTranslation(0., 0., z0));
3159 z0 -= dz;
3160 asWiggle->AddNode(voWiggleL2, 1, new TGeoTranslation(0., 0., z0));
3161 asWiggle->AddNode(voVacWiggleL2, 1, new TGeoTranslation(0., 0., z0));
3162
3163 // Positioning of the volumes
3164 z0 = +dU / 2.;
3165 Float_t zsh = 4. * dz;
3166 // for (Int_t iw = 0; iw < 1; iw++) {
3167 for (Int_t iw = 0; iw < nc; iw++) {
3168 Float_t zpos = z0 - iw * zsh;
3169 voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos));
3170 }
3171 return voBellow;
3172}
3173
3174// ----------------------------------------------------------------------------
3175FairModule* Pipe::CloneModule() const { return new Pipe(*this); }
Definition of the Detector class.
int32_t i
ClassImp(IdPath)
static void initFieldTrackingParams(int &mode, float &maxfield)
Definition Detector.cxx:143
static MaterialManager & Instance()
a common base class for passive modules - implementing generic functions
Definition PassiveBase.h:24
void ConstructGeometry() override
Definition Pipe.cxx:67
~Pipe() override
FairModule * CloneModule() const override
Clone this object (used in MT mode only)
Definition Pipe.cxx:3175
GLint GLenum GLint x
Definition glcorearb.h:403
GLdouble GLdouble GLdouble GLdouble top
Definition glcorearb.h:4077
GLuint const GLchar * name
Definition glcorearb.h:781
GLuint GLfloat GLfloat y0
Definition glcorearb.h:5034
GLdouble GLdouble GLdouble z
Definition glcorearb.h:843
GLuint GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat t1
Definition glcorearb.h:5034