Project
Loading...
Searching...
No Matches
GPUQA.cxx
Go to the documentation of this file.
1// Copyright 2019-2020 CERN and copyright holders of ALICE O2.
2// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders.
3// All rights not expressly granted are reserved.
4//
5// This software is distributed under the terms of the GNU General Public
6// License v3 (GPL Version 3), copied verbatim in the file "COPYING".
7//
8// In applying this license CERN does not waive the privileges and immunities
9// granted to it by virtue of its status as an Intergovernmental Organization
10// or submit itself to any jurisdiction.
11
14
15#define QA_DEBUG 0
16#define QA_TIMING 0
17
18#include "Rtypes.h" // Include ROOT header first, to use ROOT and disable replacements
19
20#include "TH1F.h"
21#include "TH2F.h"
22#include "TH1D.h"
23#include "TGraphAsymmErrors.h"
24#include "TCanvas.h"
25#include "TPad.h"
26#include "TLegend.h"
27#include "TColor.h"
28#include "TPaveText.h"
29#include "TF1.h"
30#include "TFile.h"
31#include "TTree.h"
32#include "TStyle.h"
33#include "TLatex.h"
34#include "TObjArray.h"
35#include <sys/stat.h>
36
37#include "GPUQA.h"
38#include "GPUTPCDef.h"
39#include "GPUTPCTrackingData.h"
40#include "GPUChainTracking.h"
41#include "GPUTPCTrack.h"
42#include "GPUTPCTracker.h"
43#include "GPUTPCGMMergedTrack.h"
44#include "GPUTPCGMPropagator.h"
46#include "GPUTPCMCInfo.h"
47#include "GPUTPCClusterData.h"
48#include "GPUO2DataTypes.h"
49#include "GPUParam.inc"
51#include "GPUTPCConvertImpl.h"
52#include "TPCFastTransform.h"
54#include "GPUROOTDump.h"
57#ifdef GPUCA_O2_LIB
67#include "TPDGCode.h"
68#include "TParticlePDG.h"
69#include "TDatabasePDG.h"
70#endif
71#include "GPUQAHelper.h"
72#include <algorithm>
73#include <cstdio>
74#include <cinttypes>
75
76#include "utils/qconfig.h"
77#include "utils/timer.h"
78
79#include <oneapi/tbb.h>
80
81using namespace o2::gpu;
82
83#ifdef GPUCA_MERGER_BY_MC_LABEL
84#define CHECK_CLUSTER_STATE_INIT_LEG_BY_MC() \
85 if (!unattached && mTrackMCLabels[id].isValid()) { \
86 int32_t mcLabel = mTrackMCLabels[id].getTrackID(); \
87 int32_t mcEvent = mTrackMCLabels[id].getEventID(); \
88 int32_t mcSource = mTrackMCLabels[id].getSourceID(); \
89 if (mTrackMCLabelsReverse[mMCEventOffset[mcSource] + mcEvent][mcLabel] != id) { \
90 attach &= (~gputpcgmmergertypes::attachGoodLeg); \
91 } \
92 }
93#else
94#define CHECK_CLUSTER_STATE_INIT_LEG_BY_MC()
95#endif
96
97#define CHECK_CLUSTER_STATE_INIT() \
98 bool unattached = attach == 0; \
99 float qpt = 0; \
100 bool lowPt = false; \
101 bool mev200 = false; \
102 bool mergedLooper = false; \
103 int32_t id = attach & gputpcgmmergertypes::attachTrackMask; \
104 if (!unattached) { \
105 qpt = fabsf(mTracking->mIOPtrs.mergedTracks[id].GetParam().GetQPt()); \
106 lowPt = qpt * mTracking->GetParam().qptB5Scaler > mTracking->GetParam().rec.tpc.rejectQPtB5; \
107 mev200 = qpt > 5; \
108 mergedLooper = mTracking->mIOPtrs.mergedTracks[id].MergedLooper(); \
109 } \
110 bool physics = false, protect = false; \
111 CHECK_CLUSTER_STATE_INIT_LEG_BY_MC();
112
113#define CHECK_CLUSTER_STATE() \
114 CHECK_CLUSTER_STATE_INIT() \
115 if (mev200) { \
116 mClusterCounts.n200MeV++; \
117 } \
118 if (lowPt) { \
119 mClusterCounts.nLowPt++; \
120 } else if (mergedLooper) { \
121 mClusterCounts.nMergedLooper++; \
122 } else { \
123 GPUTPCClusterRejection::GetProtectionStatus<true>(attach, physics, protect, &mClusterCounts, &mev200); \
124 }
125
126#define CHECK_CLUSTER_STATE_NOCOUNT() \
127 CHECK_CLUSTER_STATE_INIT() \
128 (void)mev200; /* silence unused variable warning*/ \
129 if (!lowPt && !mergedLooper) { \
130 GPUTPCClusterRejection::GetProtectionStatus<false>(attach, physics, protect); \
131 }
132
133static const GPUSettingsQA& GPUQA_GetConfig(GPUChainTracking* chain)
134{
135 static GPUSettingsQA defaultConfig;
136 if (chain && chain->mConfigQA) {
137 return *chain->mConfigQA;
138 } else {
139 return defaultConfig;
140 }
141}
142
143// static const constexpr bool PLOT_ROOT = 0;
144// static const constexpr bool FIX_SCALES = 0;
145static const constexpr bool PERF_FIGURE = 0;
146// static const constexpr float FIXED_SCALES_MIN[5] = {-0.05, -0.05, -0.2, -0.2, -0.5};
147// static const constexpr float FIXED_SCALES_MAX[5] = {0.4, 0.7, 5, 3, 6.5};
148static const constexpr float LOG_PT_MIN = -1.;
149
150static constexpr float Y_MAX = 40;
151static constexpr float Z_MAX = 100;
152static constexpr float PT_MIN = GPUCA_MIN_TRACK_PTB5_DEFAULT;
153// static constexpr float PT_MIN2 = 0.1;
154static constexpr float PT_MIN_PRIM = 0.1;
155static constexpr float PT_MIN_CLUST = GPUCA_MIN_TRACK_PTB5_DEFAULT;
156static constexpr float PT_MAX = 20;
157static constexpr float ETA_MAX = 1.5;
158static constexpr float ETA_MAX2 = 0.9;
159
160static constexpr float MIN_WEIGHT_CLS = 40;
161static constexpr float FINDABLE_WEIGHT_CLS = 70;
162
163static constexpr bool CLUST_HIST_INT_SUM = false;
164
165static constexpr const int32_t COLORCOUNT = 12;
166
167static const constexpr char* EFF_TYPES[4] = {"Rec", "Clone", "Fake", "All"};
168static const constexpr char* FINDABLE_NAMES[2] = {"", "Findable"};
169static const constexpr char* PRIM_NAMES[2] = {"Prim", "Sec"};
170static const constexpr char* PARAMETER_NAMES[5] = {"Y", "Z", "#Phi", "#lambda", "Relative #it{p}_{T}"};
171static const constexpr char* PARAMETER_NAMES_NATIVE[5] = {"Y", "Z", "sin(#Phi)", "tan(#lambda)", "q/#it{p}_{T} (curvature)"};
172static const constexpr char* VSPARAMETER_NAMES[6] = {"Y", "Z", "Phi", "Eta", "Pt", "Pt_log"};
173static const constexpr char* EFF_NAMES[3] = {"Efficiency", "Clone Rate", "Fake Rate"};
174static const constexpr char* EFFICIENCY_TITLES[4] = {"Efficiency (Primary Tracks, Findable)", "Efficiency (Secondary Tracks, Findable)", "Efficiency (Primary Tracks)", "Efficiency (Secondary Tracks)"};
175static const constexpr double SCALE[5] = {10., 10., 1000., 1000., 100.};
176static const constexpr double SCALE_NATIVE[5] = {10., 10., 1000., 1000., 1.};
177static const constexpr char* XAXIS_TITLES[5] = {"#it{y}_{mc} (cm)", "#it{z}_{mc} (cm)", "#Phi_{mc} (rad)", "#eta_{mc}", "#it{p}_{Tmc} (GeV/#it{c})"};
178static const constexpr char* AXIS_TITLES[5] = {"#it{y}-#it{y}_{mc} (mm) (Resolution)", "#it{z}-#it{z}_{mc} (mm) (Resolution)", "#phi-#phi_{mc} (mrad) (Resolution)", "#lambda-#lambda_{mc} (mrad) (Resolution)", "(#it{p}_{T} - #it{p}_{Tmc}) / #it{p}_{Tmc} (%) (Resolution)"};
179static const constexpr char* AXIS_TITLES_NATIVE[5] = {"#it{y}-#it{y}_{mc} (mm) (Resolution)", "#it{z}-#it{z}_{mc} (mm) (Resolution)", "sin(#phi)-sin(#phi_{mc}) (Resolution)", "tan(#lambda)-tan(#lambda_{mc}) (Resolution)", "q*(q/#it{p}_{T} - q/#it{p}_{Tmc}) (Resolution)"};
180static const constexpr char* AXIS_TITLES_PULL[5] = {"#it{y}-#it{y}_{mc}/#sigma_{y} (Pull)", "#it{z}-#it{z}_{mc}/#sigma_{z} (Pull)", "sin(#phi)-sin(#phi_{mc})/#sigma_{sin(#phi)} (Pull)", "tan(#lambda)-tan(#lambda_{mc})/#sigma_{tan(#lambda)} (Pull)",
181 "q*(q/#it{p}_{T} - q/#it{p}_{Tmc})/#sigma_{q/#it{p}_{T}} (Pull)"};
182static const constexpr char* CLUSTER_NAMES[GPUQA::N_CLS_HIST] = {"Correctly attached clusters", "Fake attached clusters", "Attached + adjacent clusters", "Fake adjacent clusters", "Clusters of reconstructed tracks", "Used in Physics", "Protected", "All clusters"};
183static const constexpr char* CLUSTER_TITLES[GPUQA::N_CLS_TYPE] = {"Clusters Pt Distribution / Attachment", "Clusters Pt Distribution / Attachment (relative to all clusters)", "Clusters Pt Distribution / Attachment (integrated)"};
184static const constexpr char* CLUSTER_NAMES_SHORT[GPUQA::N_CLS_HIST] = {"Attached", "Fake", "AttachAdjacent", "FakeAdjacent", "FoundTracks", "Physics", "Protected", "All"};
185static const constexpr char* CLUSTER_TYPES[GPUQA::N_CLS_TYPE] = {"", "Ratio", "Integral"};
186static const constexpr int32_t COLORS_HEX[COLORCOUNT] = {0xB03030, 0x00A000, 0x0000C0, 0x9400D3, 0x19BBBF, 0xF25900, 0x7F7F7F, 0xFFD700, 0x07F707, 0x07F7F7, 0xF08080, 0x000000};
187
188static const constexpr int32_t CONFIG_DASHED_MARKERS = 0;
189
190static const constexpr float AXES_MIN[5] = {-Y_MAX, -Z_MAX, 0.f, -ETA_MAX, PT_MIN};
191static const constexpr float AXES_MAX[5] = {Y_MAX, Z_MAX, 2.f * M_PI, ETA_MAX, PT_MAX};
192static const constexpr int32_t AXIS_BINS[5] = {51, 51, 144, 31, 50};
193static const constexpr int32_t RES_AXIS_BINS[] = {1017, 113}; // Consecutive bin sizes, histograms are binned down until the maximum entry is 50, each bin size should evenly divide its predecessor.
194static const constexpr float RES_AXES[5] = {1., 1., 0.03, 0.03, 1.0};
195static const constexpr float RES_AXES_NATIVE[5] = {1., 1., 0.1, 0.1, 5.0};
196static const constexpr float PULL_AXIS = 10.f;
197
198std::vector<TColor*> GPUQA::mColors;
199int32_t GPUQA::initColors()
200{
201 mColors.reserve(COLORCOUNT);
202 for (int32_t i = 0; i < COLORCOUNT; i++) {
203 float f1 = (float)((COLORS_HEX[i] >> 16) & 0xFF) / (float)0xFF;
204 float f2 = (float)((COLORS_HEX[i] >> 8) & 0xFF) / (float)0xFF;
205 float f3 = (float)((COLORS_HEX[i] >> 0) & 0xFF) / (float)0xFF;
206 mColors.emplace_back(new TColor(10000 + i, f1, f2, f3));
207 }
208 return 0;
209}
210static constexpr Color_t defaultColorNums[COLORCOUNT] = {kRed, kBlue, kGreen, kMagenta, kOrange, kAzure, kBlack, kYellow, kGray, kTeal, kSpring, kPink};
211
212#define TRACK_EXPECTED_REFERENCE_X_DEFAULT 81
213#ifdef GPUCA_TPC_GEOMETRY_O2
214static inline int32_t GPUQA_O2_ConvertFakeLabel(int32_t label) { return label >= 0x7FFFFFFE ? -1 : label; }
215inline uint32_t GPUQA::GetNMCCollissions() const { return mMCInfosCol.size(); }
216inline uint32_t GPUQA::GetNMCTracks(int32_t iCol) const { return mMCInfosCol[iCol].num; }
217inline uint32_t GPUQA::GetNMCTracks(const mcLabelI_t& label) const { return mMCInfosCol[mMCEventOffset[label.getSourceID()] + label.getEventID()].num; }
218inline uint32_t GPUQA::GetNMCLabels() const { return mClNative->clustersMCTruth ? mClNative->clustersMCTruth->getIndexedSize() : 0; }
219inline const GPUQA::mcInfo_t& GPUQA::GetMCTrack(uint32_t iTrk, uint32_t iCol) { return mMCInfos[mMCInfosCol[iCol].first + iTrk]; }
220inline const GPUQA::mcInfo_t& GPUQA::GetMCTrack(const mcLabel_t& label) { return mMCInfos[mMCInfosCol[mMCEventOffset[label.getSourceID()] + label.getEventID()].first + label.getTrackID()]; }
221inline GPUQA::mcLabels_t GPUQA::GetMCLabel(uint32_t i) { return mClNative->clustersMCTruth->getLabels(i); }
222inline int32_t GPUQA::GetMCLabelNID(const mcLabels_t& label) { return label.size(); }
223inline int32_t GPUQA::GetMCLabelNID(uint32_t i) { return mClNative->clustersMCTruth->getLabels(i).size(); }
224inline GPUQA::mcLabel_t GPUQA::GetMCLabel(uint32_t i, uint32_t j) { return mClNative->clustersMCTruth->getLabels(i)[j]; }
225inline int32_t GPUQA::GetMCLabelID(uint32_t i, uint32_t j) { return GPUQA_O2_ConvertFakeLabel(mClNative->clustersMCTruth->getLabels(i)[j].getTrackID()); }
226inline int32_t GPUQA::GetMCLabelID(const mcLabels_t& label, uint32_t j) { return GPUQA_O2_ConvertFakeLabel(label[j].getTrackID()); }
227inline int32_t GPUQA::GetMCLabelID(const mcLabel_t& label) { return GPUQA_O2_ConvertFakeLabel(label.getTrackID()); }
228inline uint32_t GPUQA::GetMCLabelCol(uint32_t i, uint32_t j) { return mMCEventOffset[mClNative->clustersMCTruth->getLabels(i)[j].getSourceID()] + mClNative->clustersMCTruth->getLabels(i)[j].getEventID(); }
229inline const auto& GPUQA::GetClusterLabels() { return mClNative->clustersMCTruth; }
230inline float GPUQA::GetMCLabelWeight(uint32_t i, uint32_t j) { return 1; }
231inline float GPUQA::GetMCLabelWeight(const mcLabels_t& label, uint32_t j) { return 1; }
232inline float GPUQA::GetMCLabelWeight(const mcLabel_t& label) { return 1; }
233inline bool GPUQA::mcPresent() { return !mConfig.noMC && mTracking && mClNative && mClNative->clustersMCTruth && mMCInfos.size(); }
234uint32_t GPUQA::GetMCLabelCol(const mcLabel_t& label) const { return !label.isValid() ? 0 : (mMCEventOffset[label.getSourceID()] + label.getEventID()); }
235GPUQA::mcLabelI_t GPUQA::GetMCTrackLabel(uint32_t trackId) const { return trackId >= mTrackMCLabels.size() ? MCCompLabel() : mTrackMCLabels[trackId]; }
236#define TRACK_EXPECTED_REFERENCE_X 78
237#else
238inline GPUQA::mcLabelI_t::mcLabelI_t(const GPUQA::mcLabel_t& l) : track(l.fMCID) {}
239inline bool GPUQA::mcLabelI_t::operator==(const GPUQA::mcLabel_t& l) { return AbsLabelID(track) == l.fMCID; }
240inline uint32_t GPUQA::GetNMCCollissions() const { return 1; }
241inline uint32_t GPUQA::GetNMCTracks(int32_t iCol) const { return mTracking->mIOPtrs.nMCInfosTPC; }
242inline uint32_t GPUQA::GetNMCTracks(const mcLabelI_t& label) const { return mTracking->mIOPtrs.nMCInfosTPC; }
243inline uint32_t GPUQA::GetNMCLabels() const { return mTracking->mIOPtrs.nMCLabelsTPC; }
244inline const GPUQA::mcInfo_t& GPUQA::GetMCTrack(uint32_t iTrk, uint32_t iCol) { return mTracking->mIOPtrs.mcInfosTPC[AbsLabelID(iTrk)]; }
245inline const GPUQA::mcInfo_t& GPUQA::GetMCTrack(const mcLabel_t& label) { return GetMCTrack(label.fMCID, 0); }
246inline const GPUQA::mcInfo_t& GPUQA::GetMCTrack(const mcLabelI_t& label) { return GetMCTrack(label.track, 0); }
247inline const GPUQA::mcLabels_t& GPUQA::GetMCLabel(uint32_t i) { return mTracking->mIOPtrs.mcLabelsTPC[i]; }
248inline const GPUQA::mcLabel_t& GPUQA::GetMCLabel(uint32_t i, uint32_t j) { return mTracking->mIOPtrs.mcLabelsTPC[i].fClusterID[j]; }
249inline int32_t GPUQA::GetMCLabelNID(const mcLabels_t& label) { return 3; }
250inline int32_t GPUQA::GetMCLabelNID(uint32_t i) { return 3; }
251inline int32_t GPUQA::GetMCLabelID(uint32_t i, uint32_t j) { return mTracking->mIOPtrs.mcLabelsTPC[i].fClusterID[j].fMCID; }
252inline int32_t GPUQA::GetMCLabelID(const mcLabels_t& label, uint32_t j) { return label.fClusterID[j].fMCID; }
253inline int32_t GPUQA::GetMCLabelID(const mcLabel_t& label) { return label.fMCID; }
254inline uint32_t GPUQA::GetMCLabelCol(uint32_t i, uint32_t j) { return 0; }
255
256inline const auto& GPUQA::GetClusterLabels() { return mTracking->mIOPtrs.mcLabelsTPC; }
257inline float GPUQA::GetMCLabelWeight(uint32_t i, uint32_t j) { return mTracking->mIOPtrs.mcLabelsTPC[i].fClusterID[j].fWeight; }
258inline float GPUQA::GetMCLabelWeight(const mcLabels_t& label, uint32_t j) { return label.fClusterID[j].fWeight; }
259inline float GPUQA::GetMCLabelWeight(const mcLabel_t& label) { return label.fWeight; }
260inline int32_t GPUQA::FakeLabelID(int32_t id) { return id < 0 ? id : (-2 - id); }
261inline int32_t GPUQA::AbsLabelID(int32_t id) { return id >= 0 ? id : (-id - 2); }
262inline bool GPUQA::mcPresent() { return !mConfig.noMC && mTracking && GetNMCLabels() && GetNMCTracks(0); }
263uint32_t GPUQA::GetMCLabelCol(const mcLabel_t& label) const { return 0; }
264GPUQA::mcLabelI_t GPUQA::GetMCTrackLabel(uint32_t trackId) const { return trackId >= mTrackMCLabels.size() ? mcLabelI_t() : mTrackMCLabels[trackId]; }
265#define TRACK_EXPECTED_REFERENCE_X TRACK_EXPECTED_REFERENCE_X_DEFAULT
266#endif
267template <class T>
268inline auto& GPUQA::GetMCTrackObj(T& obj, const GPUQA::mcLabelI_t& l)
269{
270 return obj[mMCEventOffset[l.getSourceID()] + l.getEventID()][l.getTrackID()];
271}
272
273template <>
274auto GPUQA::getHistArray<TH1F>()
275{
276 return std::make_pair(mHist1D, &mHist1D_pos);
277}
278template <>
279auto GPUQA::getHistArray<TH2F>()
280{
281 return std::make_pair(mHist2D, &mHist2D_pos);
282}
283template <>
284auto GPUQA::getHistArray<TH1D>()
285{
286 return std::make_pair(mHist1Dd, &mHist1Dd_pos);
287}
288template <>
289auto GPUQA::getHistArray<TGraphAsymmErrors>()
290{
291 return std::make_pair(mHistGraph, &mHistGraph_pos);
292}
293template <class T, typename... Args>
294void GPUQA::createHist(T*& h, const char* name, Args... args)
295{
296 const auto& p = getHistArray<T>();
297 if (mHaveExternalHists) {
298 if (p.first->size() <= p.second->size()) {
299 GPUError("Array sizes mismatch: Histograms %lu <= Positions %lu", p.first->size(), p.second->size());
300 throw std::runtime_error("Incoming histogram array incomplete");
301 }
302 if (strcmp((*p.first)[p.second->size()].GetName(), name)) {
303 GPUError("Histogram name mismatch: in array %s, trying to create %s", (*p.first)[p.second->size()].GetName(), name);
304 throw std::runtime_error("Incoming histogram has incorrect name");
305 }
306 } else {
307 if constexpr (std::is_same_v<T, TGraphAsymmErrors>) {
308 p.first->emplace_back();
309 p.first->back().SetName(name);
310 } else {
311 p.first->emplace_back(name, args...);
312 }
313 }
314 h = &((*p.first)[p.second->size()]);
315 p.second->emplace_back(&h);
316}
317
318namespace o2::gpu::internal
319{
321 std::tuple<std::vector<std::unique_ptr<TCanvas>>, std::vector<std::unique_ptr<TLegend>>, std::vector<std::unique_ptr<TPad>>, std::vector<std::unique_ptr<TLatex>>, std::vector<std::unique_ptr<TH1D>>> v;
322};
323} // namespace o2::gpu::internal
324
325template <class T, typename... Args>
326T* GPUQA::createGarbageCollected(Args... args)
327{
328 auto& v = std::get<std::vector<std::unique_ptr<T>>>(mGarbageCollector->v);
329 v.emplace_back(std::make_unique<T>(args...));
330 return v.back().get();
331}
332void GPUQA::clearGarbagageCollector()
333{
334 std::get<std::vector<std::unique_ptr<TPad>>>(mGarbageCollector->v).clear(); // Make sure to delete TPad first due to ROOT ownership (std::tuple has no defined order in its destructor)
335 std::apply([](auto&&... args) { ((args.clear()), ...); }, mGarbageCollector->v);
336}
337
338GPUQA::GPUQA(GPUChainTracking* chain, const GPUSettingsQA* config, const GPUParam* param) : mTracking(chain), mConfig(config ? *config : GPUQA_GetConfig(chain)), mParam(param ? param : &chain->GetParam()), mGarbageCollector(std::make_unique<internal::GPUQAGarbageCollection>())
339{
340 mMCEventOffset.resize(1, 0);
341}
342
344{
345 if (mQAInitialized && !mHaveExternalHists) {
346 delete mHist1D;
347 delete mHist2D;
348 delete mHist1Dd;
349 delete mHistGraph;
350 }
351 clearGarbagageCollector(); // Needed to guarantee correct order for ROOT ownership
352}
353
354bool GPUQA::clusterRemovable(int32_t attach, bool prot) const
355{
357 if (prot) {
358 return protect || physics;
359 }
360 return (!unattached && !physics && !protect);
361}
362
363template <class T>
364void GPUQA::SetAxisSize(T* e)
365{
366 e->GetYaxis()->SetTitleOffset(1.0);
367 e->GetYaxis()->SetTitleSize(0.045);
368 e->GetYaxis()->SetLabelSize(0.045);
369 e->GetXaxis()->SetTitleOffset(1.03);
370 e->GetXaxis()->SetTitleSize(0.045);
371 e->GetXaxis()->SetLabelOffset(-0.005);
372 e->GetXaxis()->SetLabelSize(0.045);
373}
374
375void GPUQA::SetLegend(TLegend* l)
376{
377 l->SetTextFont(72);
378 l->SetTextSize(0.016);
379 l->SetFillColor(0);
380}
381
382double* GPUQA::CreateLogAxis(int32_t nbins, float xmin, float xmax)
383{
384 float logxmin = std::log10(xmin);
385 float logxmax = std::log10(xmax);
386 float binwidth = (logxmax - logxmin) / nbins;
387
388 double* xbins = new double[nbins + 1];
389
390 xbins[0] = xmin;
391 for (int32_t i = 1; i <= nbins; i++) {
392 xbins[i] = std::pow(10, logxmin + i * binwidth);
393 }
394 return xbins;
395}
396
397void GPUQA::ChangePadTitleSize(TPad* p, float size)
398{
399 p->Update();
400 TPaveText* pt = (TPaveText*)(p->GetPrimitive("title"));
401 if (pt == nullptr) {
402 GPUError("Error changing title");
403 } else {
404 pt->SetTextSize(size);
405 p->Modified();
406 }
407}
408
409void GPUQA::DrawHisto(TH1* histo, char* filename, char* options)
410{
411 TCanvas tmp;
412 tmp.cd();
413 histo->Draw(options);
414 tmp.Print(filename);
415}
416
417void GPUQA::doPerfFigure(float x, float y, float size)
418{
419 if (!PERF_FIGURE) {
420 return;
421 }
422 TLatex* t = createGarbageCollected<TLatex>();
423 t->SetNDC(kTRUE);
424 t->SetTextColor(1);
425 t->SetTextSize(size);
426 t->DrawLatex(x, y, str_perf_figure_1);
427 t->DrawLatex(x, y - 0.01 - size, str_perf_figure_2);
428}
429
430void GPUQA::SetMCTrackRange(int32_t min, int32_t max)
431{
432 mMCTrackMin = min;
433 mMCTrackMax = max;
434}
435
436int32_t GPUQA::InitQACreateHistograms()
437{
438 char name[2048], fname[1024];
439 if (mQATasks & taskTrackingEff) {
440 // Create Efficiency Histograms
441 for (int32_t i = 0; i < 4; i++) {
442 for (int32_t j = 0; j < 2; j++) {
443 for (int32_t k = 0; k < 2; k++) {
444 for (int32_t l = 0; l < 5; l++) {
445 snprintf(name, 2048, "%s%s%s%sVs%s", "tracks", EFF_TYPES[i], FINDABLE_NAMES[j], PRIM_NAMES[k], VSPARAMETER_NAMES[l]);
446 if (l == 4) {
447 std::unique_ptr<double[]> binsPt{CreateLogAxis(AXIS_BINS[4], k == 0 ? PT_MIN_PRIM : AXES_MIN[4], AXES_MAX[4])};
448 createHist(mEff[i][j][k][l], name, name, AXIS_BINS[l], binsPt.get());
449 } else {
450 createHist(mEff[i][j][k][l], name, name, AXIS_BINS[l], AXES_MIN[l], AXES_MAX[l]);
451 }
452 if (!mHaveExternalHists) {
453 mEff[i][j][k][l]->Sumw2();
454 }
455 strcat(name, "_eff");
456 createHist(mEffResult[i][j][k][l], name);
457 }
458 }
459 }
460 }
461 }
462
463 // Create Resolution Histograms
464 if (mQATasks & taskTrackingRes) {
465 for (int32_t i = 0; i < 5; i++) {
466 for (int32_t j = 0; j < 5; j++) {
467 snprintf(name, 2048, "rms_%s_vs_%s", VSPARAMETER_NAMES[i], VSPARAMETER_NAMES[j]);
468 snprintf(fname, 1024, "mean_%s_vs_%s", VSPARAMETER_NAMES[i], VSPARAMETER_NAMES[j]);
469 if (j == 4) {
470 std::unique_ptr<double[]> binsPt{CreateLogAxis(AXIS_BINS[4], mConfig.resPrimaries == 1 ? PT_MIN_PRIM : AXES_MIN[4], AXES_MAX[4])};
471 createHist(mRes[i][j][0], name, name, AXIS_BINS[j], binsPt.get());
472 createHist(mRes[i][j][1], fname, fname, AXIS_BINS[j], binsPt.get());
473 } else {
474 createHist(mRes[i][j][0], name, name, AXIS_BINS[j], AXES_MIN[j], AXES_MAX[j]);
475 createHist(mRes[i][j][1], fname, fname, AXIS_BINS[j], AXES_MIN[j], AXES_MAX[j]);
476 }
477 snprintf(name, 2048, "res_%s_vs_%s", VSPARAMETER_NAMES[i], VSPARAMETER_NAMES[j]);
478 const float* axis = mConfig.nativeFitResolutions ? RES_AXES_NATIVE : RES_AXES;
479 const int32_t nbins = i == 4 && mConfig.nativeFitResolutions ? (10 * RES_AXIS_BINS[0]) : RES_AXIS_BINS[0];
480 if (j == 4) {
481 std::unique_ptr<double[]> binsPt{CreateLogAxis(AXIS_BINS[4], mConfig.resPrimaries == 1 ? PT_MIN_PRIM : AXES_MIN[4], AXES_MAX[4])};
482 createHist(mRes2[i][j], name, name, nbins, -axis[i], axis[i], AXIS_BINS[j], binsPt.get());
483 } else {
484 createHist(mRes2[i][j], name, name, nbins, -axis[i], axis[i], AXIS_BINS[j], AXES_MIN[j], AXES_MAX[j]);
485 }
486 }
487 }
488 }
489
490 // Create Pull Histograms
491 if (mQATasks & taskTrackingResPull) {
492 for (int32_t i = 0; i < 5; i++) {
493 for (int32_t j = 0; j < 5; j++) {
494 snprintf(name, 2048, "pull_rms_%s_vs_%s", VSPARAMETER_NAMES[i], VSPARAMETER_NAMES[j]);
495 snprintf(fname, 1024, "pull_mean_%s_vs_%s", VSPARAMETER_NAMES[i], VSPARAMETER_NAMES[j]);
496 if (j == 4) {
497 std::unique_ptr<double[]> binsPt{CreateLogAxis(AXIS_BINS[4], AXES_MIN[4], AXES_MAX[4])};
498 createHist(mPull[i][j][0], name, name, AXIS_BINS[j], binsPt.get());
499 createHist(mPull[i][j][1], fname, fname, AXIS_BINS[j], binsPt.get());
500 } else {
501 createHist(mPull[i][j][0], name, name, AXIS_BINS[j], AXES_MIN[j], AXES_MAX[j]);
502 createHist(mPull[i][j][1], fname, fname, AXIS_BINS[j], AXES_MIN[j], AXES_MAX[j]);
503 }
504 snprintf(name, 2048, "pull_%s_vs_%s", VSPARAMETER_NAMES[i], VSPARAMETER_NAMES[j]);
505 if (j == 4) {
506 std::unique_ptr<double[]> binsPt{CreateLogAxis(AXIS_BINS[4], AXES_MIN[4], AXES_MAX[4])};
507 createHist(mPull2[i][j], name, name, RES_AXIS_BINS[0], -PULL_AXIS, PULL_AXIS, AXIS_BINS[j], binsPt.get());
508 } else {
509 createHist(mPull2[i][j], name, name, RES_AXIS_BINS[0], -PULL_AXIS, PULL_AXIS, AXIS_BINS[j], AXES_MIN[j], AXES_MAX[j]);
510 }
511 }
512 }
513 }
514
515 // Create Cluster Histograms
516 if (mQATasks & taskClusterAttach) {
517 for (int32_t i = 0; i < N_CLS_TYPE * N_CLS_HIST - 1; i++) {
518 int32_t ioffset = i >= (2 * N_CLS_HIST - 1) ? (2 * N_CLS_HIST - 1) : i >= N_CLS_HIST ? N_CLS_HIST : 0;
519 int32_t itype = i >= (2 * N_CLS_HIST - 1) ? 2 : i >= N_CLS_HIST ? 1 : 0;
520 snprintf(name, 2048, "clusters%s%s", CLUSTER_NAMES_SHORT[i - ioffset], CLUSTER_TYPES[itype]);
521 std::unique_ptr<double[]> binsPt{CreateLogAxis(AXIS_BINS[4], PT_MIN_CLUST, PT_MAX)};
522 createHist(mClusters[i], name, name, AXIS_BINS[4], binsPt.get());
523 }
524 }
525
526 if (mQATasks & taskTrackStatistics) {
527 // Create Tracks Histograms
528 for (int32_t i = 0; i < 2; i++) {
529 snprintf(name, 2048, i ? "nrows_with_cluster" : "nclusters");
530 createHist(mNCl[i], name, name, 160, 0, 159);
531 }
532 snprintf(name, 2048, "tracks");
533 std::unique_ptr<double[]> binsPt{CreateLogAxis(AXIS_BINS[4], PT_MIN_CLUST, PT_MAX)};
534 createHist(mTracks, name, name, AXIS_BINS[4], binsPt.get());
535 createHist(mClXY, "clXY", "clXY", 1000, -250, 250, 1000, -250, 250);
536 }
537
538 if ((mQATasks & taskClusterCounts) && mConfig.clusterRejectionHistograms) {
539 int32_t num = DoClusterCounts(nullptr, 2);
540 mHistClusterCount.resize(num);
541 DoClusterCounts(nullptr, 1);
542 }
543
544 for (uint32_t i = 0; i < mHist1D->size(); i++) {
545 *mHist1D_pos[i] = &(*mHist1D)[i];
546 }
547 for (uint32_t i = 0; i < mHist2D->size(); i++) {
548 *mHist2D_pos[i] = &(*mHist2D)[i];
549 }
550 for (uint32_t i = 0; i < mHist1Dd->size(); i++) {
551 *mHist1Dd_pos[i] = &(*mHist1Dd)[i];
552 }
553 for (uint32_t i = 0; i < mHistGraph->size(); i++) {
554 *mHistGraph_pos[i] = &(*mHistGraph)[i];
555 }
556
557 return 0;
558}
559
560int32_t GPUQA::loadHistograms(std::vector<TH1F>& i1, std::vector<TH2F>& i2, std::vector<TH1D>& i3, std::vector<TGraphAsymmErrors>& i4, int32_t tasks)
561{
562 if (tasks == -1) {
563 tasks = taskDefaultPostprocess;
564 }
565 if (mQAInitialized && (!mHaveExternalHists || tasks != mQATasks)) {
566 throw std::runtime_error("QA not initialized or initialized with different task array");
567 }
568 mHist1D = &i1;
569 mHist2D = &i2;
570 mHist1Dd = &i3;
571 mHistGraph = &i4;
572 mHist1D_pos.clear();
573 mHist2D_pos.clear();
574 mHist1Dd_pos.clear();
575 mHistGraph_pos.clear();
576 mHaveExternalHists = true;
577 if (mConfig.noMC) {
578 tasks &= tasksNoQC;
579 }
580 mQATasks = tasks;
581 if (InitQACreateHistograms()) {
582 return 1;
583 }
584 mQAInitialized = true;
585 return 0;
586}
587
588void GPUQA::DumpO2MCData(const char* filename) const
589{
590 FILE* fp = fopen(filename, "w+b");
591 if (fp == nullptr) {
592 return;
593 }
594 uint32_t n = mMCInfos.size();
595 fwrite(&n, sizeof(n), 1, fp);
596 fwrite(mMCInfos.data(), sizeof(mMCInfos[0]), n, fp);
597 n = mMCInfosCol.size();
598 fwrite(&n, sizeof(n), 1, fp);
599 fwrite(mMCInfosCol.data(), sizeof(mMCInfosCol[0]), n, fp);
600 n = mMCEventOffset.size();
601 fwrite(&n, sizeof(n), 1, fp);
602 fwrite(mMCEventOffset.data(), sizeof(mMCEventOffset[0]), n, fp);
603 fclose(fp);
604}
605
606int32_t GPUQA::ReadO2MCData(const char* filename)
607{
608 FILE* fp = fopen(filename, "rb");
609 if (fp == nullptr) {
610 return 1;
611 }
612 uint32_t n;
613 uint32_t x;
614 if ((x = fread(&n, sizeof(n), 1, fp)) != 1) {
615 fclose(fp);
616 return 1;
617 }
618 mMCInfos.resize(n);
619 if (fread(mMCInfos.data(), sizeof(mMCInfos[0]), n, fp) != n) {
620 fclose(fp);
621 return 1;
622 }
623 if ((x = fread(&n, sizeof(n), 1, fp)) != 1) {
624 fclose(fp);
625 return 1;
626 }
627 mMCInfosCol.resize(n);
628 if (fread(mMCInfosCol.data(), sizeof(mMCInfosCol[0]), n, fp) != n) {
629 fclose(fp);
630 return 1;
631 }
632 if ((x = fread(&n, sizeof(n), 1, fp)) != 1) {
633 fclose(fp);
634 return 1;
635 }
636 mMCEventOffset.resize(n);
637 if (fread(mMCEventOffset.data(), sizeof(mMCEventOffset[0]), n, fp) != n) {
638 fclose(fp);
639 return 1;
640 }
641 if (mTracking && mTracking->GetProcessingSettings().debugLevel >= 2) {
642 printf("Read %ld bytes MC Infos\n", ftell(fp));
643 }
644 fclose(fp);
645 if (mTracking) {
646 CopyO2MCtoIOPtr(&mTracking->mIOPtrs);
647 }
648 return 0;
649}
650
651void GPUQA::CopyO2MCtoIOPtr(GPUTrackingInOutPointers* ptr)
652{
653 ptr->mcInfosTPC = mMCInfos.data();
654 ptr->nMCInfosTPC = mMCInfos.size();
655 ptr->mcInfosTPCCol = mMCInfosCol.data();
656 ptr->nMCInfosTPCCol = mMCInfosCol.size();
657}
658
659void GPUQA::InitO2MCData(GPUTrackingInOutPointers* updateIOPtr)
660{
661#ifdef GPUCA_O2_LIB
662 if (!mO2MCDataLoaded) {
663 HighResTimer timer;
664 if (mTracking && mTracking->GetProcessingSettings().debugLevel) {
665 GPUInfo("Start reading O2 Track MC information");
666 timer.Start();
667 }
668 static constexpr float PRIM_MAX_T = 0.01f;
669
670 o2::steer::MCKinematicsReader mcReader("collisioncontext.root");
671 std::vector<int32_t> refId;
672
673 auto dc = o2::steer::DigitizationContext::loadFromFile("collisioncontext.root");
674 auto evrec = dc->getEventRecords();
675
676 uint32_t nSimSources = mcReader.getNSources();
677 mMCEventOffset.resize(nSimSources);
678 uint32_t nSimTotalEvents = 0;
679 uint32_t nSimTotalTracks = 0;
680 for (uint32_t i = 0; i < nSimSources; i++) {
681 mMCEventOffset[i] = nSimTotalEvents;
682 nSimTotalEvents += mcReader.getNEvents(i);
683 }
684
685 mMCInfosCol.resize(nSimTotalEvents);
686 for (int32_t iSim = 0; iSim < mcReader.getNSources(); iSim++) {
687 for (int32_t i = 0; i < mcReader.getNEvents(iSim); i++) {
688 auto ir = evrec[i];
691
692 const std::vector<o2::MCTrack>& tracks = mcReader.getTracks(iSim, i);
693 const std::vector<o2::TrackReference>& trackRefs = mcReader.getTrackRefsByEvent(iSim, i);
694
695 refId.resize(tracks.size());
696 std::fill(refId.begin(), refId.end(), -1);
697 for (uint32_t j = 0; j < trackRefs.size(); j++) {
698 if (trackRefs[j].getDetectorId() == o2::detectors::DetID::TPC) {
699 int32_t trkId = trackRefs[j].getTrackID();
700 if (refId[trkId] == -1) {
701 refId[trkId] = j;
702 }
703 }
704 }
705 mMCInfosCol[mMCEventOffset[iSim] + i].first = mMCInfos.size();
706 mMCInfosCol[mMCEventOffset[iSim] + i].num = tracks.size();
707 mMCInfos.resize(mMCInfos.size() + tracks.size());
708 for (uint32_t j = 0; j < tracks.size(); j++) {
709 auto& info = mMCInfos[mMCInfosCol[mMCEventOffset[iSim] + i].first + j];
710 const auto& trk = tracks[j];
711 TParticlePDG* particle = TDatabasePDG::Instance()->GetParticle(trk.GetPdgCode());
712 Int_t pid = -1;
713 if (abs(trk.GetPdgCode()) == kElectron) {
714 pid = 0;
715 }
716 if (abs(trk.GetPdgCode()) == kMuonMinus) {
717 pid = 1;
718 }
719 if (abs(trk.GetPdgCode()) == kPiPlus) {
720 pid = 2;
721 }
722 if (abs(trk.GetPdgCode()) == kKPlus) {
723 pid = 3;
724 }
725 if (abs(trk.GetPdgCode()) == kProton) {
726 pid = 4;
727 }
728
729 info.charge = particle ? particle->Charge() : 0;
730 info.prim = trk.T() < PRIM_MAX_T;
731 info.primDaughters = 0;
732 if (trk.getFirstDaughterTrackId() != -1) {
733 for (int32_t k = trk.getFirstDaughterTrackId(); k <= trk.getLastDaughterTrackId(); k++) {
734 if (tracks[k].T() < PRIM_MAX_T) {
735 info.primDaughters = 1;
736 break;
737 }
738 }
739 }
740 info.pid = pid;
741 info.t0 = timebin;
742 if (refId[j] >= 0) {
743 const auto& trkRef = trackRefs[refId[j]];
744 info.x = trkRef.X();
745 info.y = trkRef.Y();
746 info.z = trkRef.Z();
747 info.pX = trkRef.Px();
748 info.pY = trkRef.Py();
749 info.pZ = trkRef.Pz();
750 info.genRadius = std::sqrt(trk.GetStartVertexCoordinatesX() * trk.GetStartVertexCoordinatesX() + trk.GetStartVertexCoordinatesY() * trk.GetStartVertexCoordinatesY() + trk.GetStartVertexCoordinatesZ() * trk.GetStartVertexCoordinatesZ());
751 } else {
752 info.x = info.y = info.z = info.pX = info.pY = info.pZ = 0;
753 info.genRadius = 0;
754 }
755 }
756 }
757 }
758 if (mTracking && mTracking->GetProcessingSettings().debugLevel) {
759 GPUInfo("Finished reading O2 Track MC information (%f seconds)", timer.GetCurrentElapsedTime());
760 }
761 mO2MCDataLoaded = true;
762 }
763 if (updateIOPtr) {
764 CopyO2MCtoIOPtr(updateIOPtr);
765 }
766#endif
767}
768
769int32_t GPUQA::InitQA(int32_t tasks)
770{
771 if (mQAInitialized) {
772 throw std::runtime_error("QA already initialized");
773 }
774 if (tasks == -1) {
775 tasks = taskDefault;
776 }
777
778 mHist1D = new std::vector<TH1F>;
779 mHist2D = new std::vector<TH2F>;
780 mHist1Dd = new std::vector<TH1D>;
781 mHistGraph = new std::vector<TGraphAsymmErrors>;
782 if (mConfig.noMC) {
783 tasks &= tasksNoQC;
784 }
785 mQATasks = tasks;
786
787 if (mTracking->GetProcessingSettings().qcRunFraction != 100.f && mQATasks != taskClusterCounts) {
788 throw std::runtime_error("QA with qcRunFraction only supported for taskClusterCounts");
789 }
790
791 if (mTracking) {
792 mClNative = mTracking->mIOPtrs.clustersNative;
793 }
794
795 if (InitQACreateHistograms()) {
796 return 1;
797 }
798
799 if (mConfig.enableLocalOutput) {
800 mkdir("plots", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
801 }
802
803#ifdef GPUCA_O2_LIB
804 if (!mConfig.noMC) {
805 InitO2MCData(mTracking ? &mTracking->mIOPtrs : nullptr);
806 }
807#endif
808
809 if (mConfig.matchMCLabels.size()) {
810 uint32_t nFiles = mConfig.matchMCLabels.size();
811 std::vector<std::unique_ptr<TFile>> files;
812 std::vector<std::vector<std::vector<int32_t>>*> labelsBuffer(nFiles);
813 std::vector<std::vector<std::vector<int32_t>>*> effBuffer(nFiles);
814 for (uint32_t i = 0; i < nFiles; i++) {
815 files.emplace_back(std::make_unique<TFile>(mConfig.matchMCLabels[i].c_str()));
816 labelsBuffer[i] = (std::vector<std::vector<int32_t>>*)files[i]->Get("mcLabelBuffer");
817 effBuffer[i] = (std::vector<std::vector<int32_t>>*)files[i]->Get("mcEffBuffer");
818 if (labelsBuffer[i] == nullptr || effBuffer[i] == nullptr) {
819 GPUError("Error opening / reading from labels file %u/%s: %p %p", i, mConfig.matchMCLabels[i].c_str(), (void*)labelsBuffer[i], (void*)effBuffer[i]);
820 exit(1);
821 }
822 }
823
824 mGoodTracks.resize(labelsBuffer[0]->size());
825 mGoodHits.resize(labelsBuffer[0]->size());
826 for (uint32_t iEvent = 0; iEvent < labelsBuffer[0]->size(); iEvent++) {
827 std::vector<bool> labelsOK((*effBuffer[0])[iEvent].size());
828 for (uint32_t k = 0; k < (*effBuffer[0])[iEvent].size(); k++) {
829 labelsOK[k] = false;
830 for (uint32_t l = 0; l < nFiles; l++) {
831 if ((*effBuffer[0])[iEvent][k] != (*effBuffer[l])[iEvent][k]) {
832 labelsOK[k] = true;
833 break;
834 }
835 }
836 }
837 mGoodTracks[iEvent].resize((*labelsBuffer[0])[iEvent].size());
838 for (uint32_t k = 0; k < (*labelsBuffer[0])[iEvent].size(); k++) {
839 if ((*labelsBuffer[0])[iEvent][k] == MC_LABEL_INVALID) {
840 continue;
841 }
842 mGoodTracks[iEvent][k] = labelsOK[abs((*labelsBuffer[0])[iEvent][k])];
843 }
844 }
845 }
846 mQAInitialized = true;
847 return 0;
848}
849
850void GPUQA::RunQA(bool matchOnly, const std::vector<o2::tpc::TrackTPC>* tracksExternal, const std::vector<o2::MCCompLabel>* tracksExtMC, const o2::tpc::ClusterNativeAccess* clNative)
851{
852 if (!mQAInitialized) {
853 throw std::runtime_error("QA not initialized");
854 }
855 if (mTracking && mTracking->GetProcessingSettings().debugLevel >= 2) {
856 GPUInfo("Running QA - Mask %d, Efficiency %d, Resolution %d, Pulls %d, Cluster Attachment %d, Track Statistics %d, Cluster Counts %d", mQATasks, (int32_t)(mQATasks & taskTrackingEff), (int32_t)(mQATasks & taskTrackingRes), (int32_t)(mQATasks & taskTrackingResPull), (int32_t)(mQATasks & taskClusterAttach), (int32_t)(mQATasks & taskTrackStatistics), (int32_t)(mQATasks & taskClusterCounts));
857 }
858 if (!clNative && mTracking) {
859 clNative = mTracking->mIOPtrs.clustersNative;
860 }
861 mClNative = clNative;
862
863#ifdef GPUCA_TPC_GEOMETRY_O2
864 uint32_t nSimEvents = GetNMCCollissions();
865 if (mTrackMCLabelsReverse.size() < nSimEvents) {
866 mTrackMCLabelsReverse.resize(nSimEvents);
867 }
868 if (mRecTracks.size() < nSimEvents) {
869 mRecTracks.resize(nSimEvents);
870 }
871 if (mFakeTracks.size() < nSimEvents) {
872 mFakeTracks.resize(nSimEvents);
873 }
874 if (mMCParam.size() < nSimEvents) {
875 mMCParam.resize(nSimEvents);
876 }
877#endif
878
879 // Initialize Arrays
880 uint32_t nReconstructedTracks = 0;
881 if (tracksExternal) {
882#ifdef GPUCA_O2_LIB
883 nReconstructedTracks = tracksExternal->size();
884#endif
885 } else {
886 nReconstructedTracks = mTracking->mIOPtrs.nMergedTracks;
887 }
888 mTrackMCLabels.resize(nReconstructedTracks);
889 for (uint32_t iCol = 0; iCol < GetNMCCollissions(); iCol++) {
890 mTrackMCLabelsReverse[iCol].resize(GetNMCTracks(iCol));
891 mRecTracks[iCol].resize(GetNMCTracks(iCol));
892 mFakeTracks[iCol].resize(GetNMCTracks(iCol));
893 mMCParam[iCol].resize(GetNMCTracks(iCol));
894 memset(mRecTracks[iCol].data(), 0, mRecTracks[iCol].size() * sizeof(mRecTracks[iCol][0]));
895 memset(mFakeTracks[iCol].data(), 0, mFakeTracks[iCol].size() * sizeof(mFakeTracks[iCol][0]));
896 for (size_t i = 0; i < mTrackMCLabelsReverse[iCol].size(); i++) {
897 mTrackMCLabelsReverse[iCol][i] = -1;
898 }
899 }
900 if (mQATasks & taskClusterAttach && GetNMCLabels()) {
901 mClusterParam.resize(GetNMCLabels());
902 memset(mClusterParam.data(), 0, mClusterParam.size() * sizeof(mClusterParam[0]));
903 }
904 HighResTimer timer;
905
906 mNEvents++;
907 if (mConfig.writeMCLabels) {
908 mcEffBuffer.resize(mNEvents);
909 mcLabelBuffer.resize(mNEvents);
910 mcEffBuffer[mNEvents - 1].resize(GetNMCTracks(0));
911 mcLabelBuffer[mNEvents - 1].resize(nReconstructedTracks);
912 }
913
914 bool mcAvail = mcPresent() || tracksExtMC;
915
916 if (mcAvail) {
917 // Assign Track MC Labels
918 timer.Start();
919 if (tracksExternal) {
920#ifdef GPUCA_O2_LIB
921 for (uint32_t i = 0; i < tracksExternal->size(); i++) {
922 mTrackMCLabels[i] = (*tracksExtMC)[i];
923 }
924#endif
925 } else {
926 tbb::parallel_for(tbb::blocked_range<uint32_t>(0, nReconstructedTracks, (QA_DEBUG == 0) ? 32 : nReconstructedTracks), [&](const tbb::blocked_range<uint32_t>& range) {
927 auto acc = GPUTPCTrkLbl<true, mcLabelI_t>(GetClusterLabels(), 1.f - mConfig.recThreshold);
928 for (auto i = range.begin(); i < range.end(); i++) {
929 acc.reset();
930 int32_t nClusters = 0;
931 const GPUTPCGMMergedTrack& track = mTracking->mIOPtrs.mergedTracks[i];
932 std::vector<mcLabel_t> labels;
933 for (uint32_t k = 0; k < track.NClusters(); k++) {
934 if (mTracking->mIOPtrs.mergedTrackHits[track.FirstClusterRef() + k].state & GPUTPCGMMergedTrackHit::flagReject) {
935 continue;
936 }
937 nClusters++;
938 uint32_t hitId = mTracking->mIOPtrs.mergedTrackHits[track.FirstClusterRef() + k].num;
939 if (hitId >= GetNMCLabels()) {
940 GPUError("Invalid hit id %u > %d (nClusters %d)", hitId, GetNMCLabels(), mTracking->mIOPtrs.clustersNative ? mTracking->mIOPtrs.clustersNative->nClustersTotal : 0);
941 throw std::runtime_error("qa error");
942 }
943 acc.addLabel(hitId);
944 for (int32_t j = 0; j < GetMCLabelNID(hitId); j++) {
945 if (GetMCLabelID(hitId, j) >= (int32_t)GetNMCTracks(GetMCLabelCol(hitId, j))) {
946 GPUError("Invalid label %d > %d (hit %d, label %d, col %d)", GetMCLabelID(hitId, j), GetNMCTracks(GetMCLabelCol(hitId, j)), hitId, j, (int32_t)GetMCLabelCol(hitId, j));
947 throw std::runtime_error("qa error");
948 }
949 if (GetMCLabelID(hitId, j) >= 0) {
950 if (QA_DEBUG >= 3 && track.OK()) {
951 GPUInfo("Track %d Cluster %u Label %d: %d (%f)", i, k, j, GetMCLabelID(hitId, j), GetMCLabelWeight(hitId, j));
952 }
953 }
954 }
955 }
956
957 float maxweight, sumweight;
958 int32_t maxcount;
959 auto maxLabel = acc.computeLabel(&maxweight, &sumweight, &maxcount);
960 mTrackMCLabels[i] = maxLabel;
961 if (QA_DEBUG && track.OK() && GetNMCTracks(maxLabel) > (uint32_t)maxLabel.getTrackID()) {
962 const mcInfo_t& mc = GetMCTrack(maxLabel);
963 GPUInfo("Track %d label %d (fake %d) weight %f clusters %d (fitted %d) (%f%% %f%%) Pt %f", i, maxLabel.getTrackID(), (int32_t)(maxLabel.isFake()), maxweight, nClusters, track.NClustersFitted(), 100.f * maxweight / sumweight, 100.f * (float)maxcount / (float)nClusters,
964 std::sqrt(mc.pX * mc.pX + mc.pY * mc.pY));
965 }
966 }
967 });
968 }
969 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
970 GPUInfo("QA Time: Assign Track Labels:\t\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
971 }
972
973 for (uint32_t i = 0; i < nReconstructedTracks; i++) {
974 const GPUTPCGMMergedTrack* track = mTracking ? &mTracking->mIOPtrs.mergedTracks[i] : nullptr;
975 mcLabelI_t label = mTrackMCLabels[i];
976 if (mQATasks & taskClusterAttach) {
977 // fill cluster attachment status
978 if (!track->OK()) {
979 continue;
980 }
981 if (!mTrackMCLabels[i].isValid()) {
982 for (uint32_t k = 0; k < track->NClusters(); k++) {
983 if (mTracking->mIOPtrs.mergedTrackHits[track->FirstClusterRef() + k].state & GPUTPCGMMergedTrackHit::flagReject) {
984 continue;
985 }
986 mClusterParam[mTracking->mIOPtrs.mergedTrackHits[track->FirstClusterRef() + k].num].fakeAttached++;
987 }
988 continue;
989 }
990 if (mMCTrackMin == -1 || (label.getTrackID() >= mMCTrackMin && label.getTrackID() < mMCTrackMax)) {
991 for (uint32_t k = 0; k < track->NClusters(); k++) {
992 if (mTracking->mIOPtrs.mergedTrackHits[track->FirstClusterRef() + k].state & GPUTPCGMMergedTrackHit::flagReject) {
993 continue;
994 }
995 int32_t hitId = mTracking->mIOPtrs.mergedTrackHits[track->FirstClusterRef() + k].num;
996 bool correct = false;
997 for (int32_t j = 0; j < GetMCLabelNID(hitId); j++) {
998 if (label == GetMCLabel(hitId, j)) {
999 correct = true;
1000 break;
1001 }
1002 }
1003 if (correct) {
1004 mClusterParam[hitId].attached++;
1005 } else {
1006 mClusterParam[hitId].fakeAttached++;
1007 }
1008 }
1009 }
1010 }
1011
1012 if (mTrackMCLabels[i].isFake()) {
1013 (GetMCTrackObj(mFakeTracks, label))++;
1014 } else if (tracksExternal || !track->MergedLooper()) {
1015 GetMCTrackObj(mRecTracks, label)++;
1016 if (mMCTrackMin == -1 || (label.getTrackID() >= mMCTrackMin && label.getTrackID() < mMCTrackMax)) {
1017 int32_t& revLabel = GetMCTrackObj(mTrackMCLabelsReverse, label);
1018 if (tracksExternal) {
1019#ifdef GPUCA_O2_LIB
1020 if (revLabel == -1 || fabsf((*tracksExternal)[i].getZ()) < fabsf((*tracksExternal)[revLabel].getZ())) {
1021 revLabel = i;
1022 }
1023#endif
1024 } else {
1025 const auto* trks = mTracking->mIOPtrs.mergedTracks;
1026 bool comp;
1027 if (revLabel == -1) {
1028 comp = true;
1029 } else if (mTracking->GetParam().par.earlyTpcTransform) {
1030 comp = fabsf(trks[i].GetParam().GetZ() + trks[i].GetParam().GetTZOffset()) < fabsf(trks[revLabel].GetParam().GetZ() + trks[revLabel].GetParam().GetTZOffset());
1031 } else {
1032 float shift1 = mTracking->GetTPCTransformHelper()->getCorrMap()->convDeltaTimeToDeltaZinTimeFrame(trks[i].CSide() * GPUChainTracking::NSECTORS / 2, trks[i].GetParam().GetTZOffset());
1033 float shift2 = mTracking->GetTPCTransformHelper()->getCorrMap()->convDeltaTimeToDeltaZinTimeFrame(trks[revLabel].CSide() * GPUChainTracking::NSECTORS / 2, trks[revLabel].GetParam().GetTZOffset());
1034 comp = fabsf(trks[i].GetParam().GetZ() + shift1) < fabsf(trks[revLabel].GetParam().GetZ() + shift2);
1035 }
1036 if (revLabel == -1 || !trks[revLabel].OK() || (trks[i].OK() && comp)) {
1037 revLabel = i;
1038 }
1039 }
1040 }
1041 }
1042 }
1043 if ((mQATasks & taskClusterAttach) && mTracking->mIOPtrs.mergedTrackHitAttachment) {
1044 // fill cluster adjacent status
1045 for (uint32_t i = 0; i < GetNMCLabels(); i++) {
1046 if (mClusterParam[i].attached == 0 && mClusterParam[i].fakeAttached == 0) {
1047 int32_t attach = mTracking->mIOPtrs.mergedTrackHitAttachment[i];
1049 int32_t track = attach & gputpcgmmergertypes::attachTrackMask;
1050 mcLabelI_t trackL = mTrackMCLabels[track];
1051 bool fake = true;
1052 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1053 // GPUInfo("Attach %x Track %d / %d:%d", attach, track, j, GetMCLabelID(i, j));
1054 if (trackL == GetMCLabel(i, j)) {
1055 fake = false;
1056 break;
1057 }
1058 }
1059 if (fake) {
1060 mClusterParam[i].fakeAdjacent++;
1061 } else {
1062 mClusterParam[i].adjacent++;
1063 }
1064 }
1065 }
1066 }
1067 }
1068
1069 if (mConfig.matchMCLabels.size()) {
1070 mGoodHits[mNEvents - 1].resize(GetNMCLabels());
1071 std::vector<bool> allowMCLabels(GetNMCTracks(0));
1072 for (uint32_t k = 0; k < GetNMCTracks(0); k++) {
1073 allowMCLabels[k] = false;
1074 }
1075 for (uint32_t i = 0; i < nReconstructedTracks; i++) {
1076 if (!mGoodTracks[mNEvents - 1][i]) {
1077 continue;
1078 }
1079 if (mConfig.matchDisplayMinPt > 0) {
1080 if (!mTrackMCLabels[i].isValid()) {
1081 continue;
1082 }
1083 const mcInfo_t& info = GetMCTrack(mTrackMCLabels[i]);
1084 if (info.pX * info.pX + info.pY * info.pY < mConfig.matchDisplayMinPt * mConfig.matchDisplayMinPt) {
1085 continue;
1086 }
1087 }
1088
1089 const GPUTPCGMMergedTrack& track = mTracking->mIOPtrs.mergedTracks[i];
1090 for (uint32_t j = 0; j < track.NClusters(); j++) {
1091 int32_t hitId = mTracking->mIOPtrs.mergedTrackHits[track.FirstClusterRef() + j].num;
1092 if (GetMCLabelNID(hitId)) {
1093 int32_t mcID = GetMCLabelID(hitId, 0);
1094 if (mcID >= 0) {
1095 allowMCLabels[mcID] = true;
1096 }
1097 }
1098 }
1099 }
1100 for (uint32_t i = 0; i < GetNMCLabels(); i++) {
1101 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1102 int32_t mcID = GetMCLabelID(i, j);
1103 if (mcID >= 0 && allowMCLabels[mcID]) {
1104 mGoodHits[mNEvents - 1][i] = true;
1105 }
1106 }
1107 }
1108 }
1109 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1110 GPUInfo("QA Time: Cluster attach status:\t\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1111 }
1112
1113 if (matchOnly) {
1114 return;
1115 }
1116
1117 // Recompute fNWeightCls (might have changed after merging events into timeframes)
1118 for (uint32_t iCol = 0; iCol < GetNMCCollissions(); iCol++) {
1119 for (uint32_t i = 0; i < GetNMCTracks(iCol); i++) {
1120 mMCParam[iCol][i].nWeightCls = 0.;
1121 }
1122 }
1123 for (uint32_t i = 0; i < GetNMCLabels(); i++) {
1124 float weightTotal = 0.f;
1125 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1126 if (GetMCLabelID(i, j) >= 0) {
1127 weightTotal += GetMCLabelWeight(i, j);
1128 }
1129 }
1130 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1131 if (GetMCLabelID(i, j) >= 0) {
1132 GetMCTrackObj(mMCParam, GetMCLabel(i, j)).nWeightCls += GetMCLabelWeight(i, j) / weightTotal;
1133 }
1134 }
1135 }
1136 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1137 GPUInfo("QA Time: Compute cluster label weights:\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1138 }
1139
1140 // Compute MC Track Parameters for MC Tracks
1141 tbb::parallel_for<uint32_t>(0, GetNMCCollissions(), [&](auto iCol) {
1142 for (uint32_t i = 0; i < GetNMCTracks(iCol); i++) {
1143 const mcInfo_t& info = GetMCTrack(i, iCol);
1144 additionalMCParameters& mc2 = mMCParam[iCol][i];
1145 mc2.pt = std::sqrt(info.pX * info.pX + info.pY * info.pY);
1146 mc2.phi = M_PI + std::atan2(-info.pY, -info.pX);
1147 float p = info.pX * info.pX + info.pY * info.pY + info.pZ * info.pZ;
1148 if (p < 1e-18) {
1149 mc2.theta = mc2.eta = 0.f;
1150 } else {
1151 mc2.theta = info.pZ == 0 ? (M_PI / 2) : (std::acos(info.pZ / std::sqrt(p)));
1152 mc2.eta = -std::log(std::tan(0.5 * mc2.theta));
1153 }
1154 if (mConfig.writeMCLabels) {
1155 std::vector<int32_t>& effBuffer = mcEffBuffer[mNEvents - 1];
1156 effBuffer[i] = mRecTracks[iCol][i] * 1000 + mFakeTracks[iCol][i];
1157 }
1158 } // clang-format off
1159 }, tbb::simple_partitioner()); // clang-format on
1160 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1161 GPUInfo("QA Time: Compute track mc parameters:\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1162 }
1163
1164 // Fill Efficiency Histograms
1165 if (mQATasks & taskTrackingEff) {
1166 for (uint32_t iCol = 0; iCol < GetNMCCollissions(); iCol++) {
1167 for (uint32_t i = 0; i < GetNMCTracks(iCol); i++) {
1168 if ((mMCTrackMin != -1 && (int32_t)i < mMCTrackMin) || (mMCTrackMax != -1 && (int32_t)i >= mMCTrackMax)) {
1169 continue;
1170 }
1171 const mcInfo_t& info = GetMCTrack(i, iCol);
1172 const additionalMCParameters& mc2 = mMCParam[iCol][i];
1173 if (mc2.nWeightCls == 0.f) {
1174 continue;
1175 }
1176 const float& mcpt = mc2.pt;
1177 const float& mcphi = mc2.phi;
1178 const float& mceta = mc2.eta;
1179
1180 if (info.primDaughters) {
1181 continue;
1182 }
1183 if (mc2.nWeightCls < MIN_WEIGHT_CLS) {
1184 continue;
1185 }
1186 int32_t findable = mc2.nWeightCls >= FINDABLE_WEIGHT_CLS;
1187 if (info.pid < 0) {
1188 continue;
1189 }
1190 if (info.charge == 0.f) {
1191 continue;
1192 }
1193 if (mConfig.filterCharge && info.charge * mConfig.filterCharge < 0) {
1194 continue;
1195 }
1196 if (mConfig.filterPID >= 0 && info.pid != mConfig.filterPID) {
1197 continue;
1198 }
1199
1200 if (fabsf(mceta) > ETA_MAX || mcpt < PT_MIN || mcpt > PT_MAX) {
1201 continue;
1202 }
1203
1204 float alpha = std::atan2(info.y, info.x);
1205 alpha /= M_PI / 9.f;
1206 alpha = std::floor(alpha);
1207 alpha *= M_PI / 9.f;
1208 alpha += M_PI / 18.f;
1209
1210 float c = std::cos(alpha);
1211 float s = std::sin(alpha);
1212 float localY = -info.x * s + info.y * c;
1213
1214 if (mConfig.dumpToROOT) {
1215 static auto effdump = GPUROOTDump<TNtuple>::getNew("eff", "alpha:x:y:z:mcphi:mceta:mcpt:rec:fake:findable:prim");
1216 float localX = info.x * c + info.y * s;
1217 effdump.Fill(alpha, localX, localY, info.z, mcphi, mceta, mcpt, mRecTracks[iCol][i], mFakeTracks[iCol][i], findable, info.prim);
1218 }
1219
1220 for (int32_t j = 0; j < 4; j++) {
1221 for (int32_t k = 0; k < 2; k++) {
1222 if (k == 0 && findable == 0) {
1223 continue;
1224 }
1225
1226 int32_t val = (j == 0) ? (mRecTracks[iCol][i] ? 1 : 0) : (j == 1) ? (mRecTracks[iCol][i] ? mRecTracks[iCol][i] - 1 : 0) : (j == 2) ? mFakeTracks[iCol][i] : 1;
1227 if (val == 0) {
1228 continue;
1229 }
1230
1231 for (int32_t l = 0; l < 5; l++) {
1232 if (info.prim && mcpt < PT_MIN_PRIM) {
1233 continue;
1234 }
1235 if (l != 3 && fabsf(mceta) > ETA_MAX2) {
1236 continue;
1237 }
1238 if (l < 4 && mcpt < 1.f / mConfig.qpt) {
1239 continue;
1240 }
1241
1242 float pos = l == 0 ? localY : l == 1 ? info.z : l == 2 ? mcphi : l == 3 ? mceta : mcpt;
1243
1244 mEff[j][k][!info.prim][l]->Fill(pos, val);
1245 }
1246 }
1247 }
1248 }
1249 }
1250 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1251 GPUInfo("QA Time: Fill efficiency histograms:\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1252 }
1253 }
1254
1255 // Fill Resolution Histograms
1256 if (mQATasks & (taskTrackingRes | taskTrackingResPull)) {
1257 GPUTPCGMPropagator prop;
1258 prop.SetMaxSinPhi(.999);
1259 prop.SetMaterialTPC();
1260 prop.SetPolynomialField(&mParam->polynomialField);
1261
1262 for (uint32_t i = 0; i < mTrackMCLabels.size(); i++) {
1263 if (mConfig.writeMCLabels) {
1264 std::vector<int32_t>& labelBuffer = mcLabelBuffer[mNEvents - 1];
1265 labelBuffer[i] = mTrackMCLabels[i].getTrackID();
1266 }
1267 if (mTrackMCLabels[i].isFake()) {
1268 continue;
1269 }
1270 const mcInfo_t& mc1 = GetMCTrack(mTrackMCLabels[i]);
1271 const additionalMCParameters& mc2 = GetMCTrackObj(mMCParam, mTrackMCLabels[i]);
1272
1273 if (mc1.primDaughters) {
1274 continue;
1275 }
1276 if (!tracksExternal) {
1277 if (!mTracking->mIOPtrs.mergedTracks[i].OK()) {
1278 continue;
1279 }
1280 if (mTracking->mIOPtrs.mergedTracks[i].MergedLooper()) {
1281 continue;
1282 }
1283 }
1284 if ((mMCTrackMin != -1 && mTrackMCLabels[i].getTrackID() < mMCTrackMin) || (mMCTrackMax != -1 && mTrackMCLabels[i].getTrackID() >= mMCTrackMax)) {
1285 continue;
1286 }
1287 if (fabsf(mc2.eta) > ETA_MAX || mc2.pt < PT_MIN || mc2.pt > PT_MAX) {
1288 continue;
1289 }
1290 if (mc1.charge == 0.f) {
1291 continue;
1292 }
1293 if (mc1.pid < 0) {
1294 continue;
1295 }
1296 if (mConfig.filterCharge && mc1.charge * mConfig.filterCharge < 0) {
1297 continue;
1298 }
1299 if (mConfig.filterPID >= 0 && mc1.pid != mConfig.filterPID) {
1300 continue;
1301 }
1302 if (mc2.nWeightCls < MIN_WEIGHT_CLS) {
1303 continue;
1304 }
1305 if (mConfig.resPrimaries == 1 && !mc1.prim) {
1306 continue;
1307 } else if (mConfig.resPrimaries == 2 && mc1.prim) {
1308 continue;
1309 }
1310 if (GetMCTrackObj(mTrackMCLabelsReverse, mTrackMCLabels[i]) != (int32_t)i) {
1311 continue;
1312 }
1313
1315 float alpha = 0.f;
1316 int32_t side;
1317 if (tracksExternal) {
1318#ifdef GPUCA_O2_LIB
1319 for (int32_t k = 0; k < 5; k++) {
1320 param.Par()[k] = (*tracksExternal)[i].getParams()[k];
1321 }
1322 for (int32_t k = 0; k < 15; k++) {
1323 param.Cov()[k] = (*tracksExternal)[i].getCov()[k];
1324 }
1325 param.X() = (*tracksExternal)[i].getX();
1326 param.TZOffset() = (*tracksExternal)[i].getTime0();
1327 alpha = (*tracksExternal)[i].getAlpha();
1328 side = (*tracksExternal)[i].hasBothSidesClusters() ? 2 : ((*tracksExternal)[i].hasCSideClusters() ? 1 : 0);
1329#endif
1330 } else {
1331 param = mTracking->mIOPtrs.mergedTracks[i].GetParam();
1332 alpha = mTracking->mIOPtrs.mergedTracks[i].GetAlpha();
1333 side = mTracking->mIOPtrs.mergedTracks[i].CCE() ? 2 : (mTracking->mIOPtrs.mergedTracks[i].CSide() ? 1 : 0);
1334 }
1335
1336 float mclocal[4]; // Rotated x,y,Px,Py mc-coordinates - the MC data should be rotated since the track is propagated best along x
1337 float c = std::cos(alpha);
1338 float s = std::sin(alpha);
1339 float x = mc1.x;
1340 float y = mc1.y;
1341 mclocal[0] = x * c + y * s;
1342 mclocal[1] = -x * s + y * c;
1343 float px = mc1.pX;
1344 float py = mc1.pY;
1345 mclocal[2] = px * c + py * s;
1346 mclocal[3] = -px * s + py * c;
1347
1348 if (mclocal[0] < TRACK_EXPECTED_REFERENCE_X - 3) {
1349 continue;
1350 }
1351 if (mclocal[0] > param.GetX() + 20) {
1352 continue;
1353 }
1354 if (param.GetX() > mConfig.maxResX) {
1355 continue;
1356 }
1357
1358 auto getdz = [this, &param, &mc1, &side, tracksExternal]() {
1359 if (tracksExternal) {
1360 return param.GetZ();
1361 }
1362 if (!mParam->continuousMaxTimeBin) {
1363 return param.GetZ() - mc1.z;
1364 }
1365#ifdef GPUCA_TPC_GEOMETRY_O2
1366 if (!mParam->par.earlyTpcTransform) {
1367 float shift = side == 2 ? 0 : mTracking->GetTPCTransformHelper()->getCorrMap()->convDeltaTimeToDeltaZinTimeFrame(side * GPUChainTracking::NSECTORS / 2, param.GetTZOffset() - mc1.t0);
1368 return param.GetZ() + shift - mc1.z;
1369 }
1370#endif
1371 return param.Z() + param.TZOffset() - mc1.z;
1372 };
1373
1374 prop.SetTrack(&param, alpha);
1375 bool inFlyDirection = 0;
1376 if (mConfig.strict) {
1377 const float dx = param.X() - std::max<float>(mclocal[0], TRACK_EXPECTED_REFERENCE_X_DEFAULT); // Limit distance check
1378 const float dy = param.Y() - mclocal[1];
1379 const float dz = getdz();
1380 if (dx * dx + dy * dy + dz * dz > 5.f * 5.f) {
1381 continue;
1382 }
1383 }
1384
1385 if (prop.PropagateToXAlpha(mclocal[0], alpha, inFlyDirection)) {
1386 continue;
1387 }
1388 if (fabsf(param.Y() - mclocal[1]) > (mConfig.strict ? 1.f : 4.f) || fabsf(getdz()) > (mConfig.strict ? 1.f : 4.f)) {
1389 continue;
1390 }
1391 float charge = mc1.charge > 0 ? 1.f : -1.f;
1392
1393 float deltaY = param.GetY() - mclocal[1];
1394 float deltaZ = getdz();
1395 float deltaPhiNative = param.GetSinPhi() - mclocal[3] / mc2.pt;
1396 float deltaPhi = std::asin(param.GetSinPhi()) - std::atan2(mclocal[3], mclocal[2]);
1397 float deltaLambdaNative = param.GetDzDs() - mc1.pZ / mc2.pt;
1398 float deltaLambda = std::atan(param.GetDzDs()) - std::atan2(mc1.pZ, mc2.pt);
1399 float deltaPtNative = (param.GetQPt() - charge / mc2.pt) * charge;
1400 float deltaPt = (fabsf(1.f / param.GetQPt()) - mc2.pt) / mc2.pt;
1401
1402 float paramval[5] = {mclocal[1], mc1.z, mc2.phi, mc2.eta, mc2.pt};
1403 float resval[5] = {deltaY, deltaZ, mConfig.nativeFitResolutions ? deltaPhiNative : deltaPhi, mConfig.nativeFitResolutions ? deltaLambdaNative : deltaLambda, mConfig.nativeFitResolutions ? deltaPtNative : deltaPt};
1404 float pullval[5] = {deltaY / std::sqrt(param.GetErr2Y()), deltaZ / std::sqrt(param.GetErr2Z()), deltaPhiNative / std::sqrt(param.GetErr2SinPhi()), deltaLambdaNative / std::sqrt(param.GetErr2DzDs()), deltaPtNative / std::sqrt(param.GetErr2QPt())};
1405
1406 for (int32_t j = 0; j < 5; j++) {
1407 for (int32_t k = 0; k < 5; k++) {
1408 if (k != 3 && fabsf(mc2.eta) > ETA_MAX2) {
1409 continue;
1410 }
1411 if (k < 4 && mc2.pt < 1.f / mConfig.qpt) {
1412 continue;
1413 }
1414 if (mQATasks & taskTrackingRes) {
1415 mRes2[j][k]->Fill(resval[j], paramval[k]);
1416 }
1417 if (mQATasks & taskTrackingResPull) {
1418 mPull2[j][k]->Fill(pullval[j], paramval[k]);
1419 }
1420 }
1421 }
1422 }
1423 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1424 GPUInfo("QA Time: Fill resolution histograms:\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1425 }
1426 }
1427
1428 if (mQATasks & taskClusterAttach) {
1429 // Fill cluster histograms
1430 for (uint32_t iTrk = 0; iTrk < nReconstructedTracks; iTrk++) {
1431 const GPUTPCGMMergedTrack& track = mTracking->mIOPtrs.mergedTracks[iTrk];
1432 if (!track.OK()) {
1433 continue;
1434 }
1435 if (!mTrackMCLabels[iTrk].isValid()) {
1436 for (uint32_t k = 0; k < track.NClusters(); k++) {
1437 if (mTracking->mIOPtrs.mergedTrackHits[track.FirstClusterRef() + k].state & GPUTPCGMMergedTrackHit::flagReject) {
1438 continue;
1439 }
1440 int32_t hitId = mTracking->mIOPtrs.mergedTrackHits[track.FirstClusterRef() + k].num;
1441 float totalWeight = 0.;
1442 for (int32_t j = 0; j < GetMCLabelNID(hitId); j++) {
1443 if (GetMCLabelID(hitId, j) >= 0 && GetMCTrackObj(mMCParam, GetMCLabel(hitId, j)).pt > GPUCA_MIN_TRACK_PTB5_DEFAULT) {
1444 totalWeight += GetMCLabelWeight(hitId, j);
1445 }
1446 }
1447 int32_t attach = mTracking->mIOPtrs.mergedTrackHitAttachment[hitId];
1449 if (totalWeight > 0) {
1450 float weight = 1.f / (totalWeight * (mClusterParam[hitId].attached + mClusterParam[hitId].fakeAttached));
1451 for (int32_t j = 0; j < GetMCLabelNID(hitId); j++) {
1452 mcLabelI_t label = GetMCLabel(hitId, j);
1453 if (!label.isFake() && GetMCTrackObj(mMCParam, label).pt > GPUCA_MIN_TRACK_PTB5_DEFAULT) {
1454 float pt = GetMCTrackObj(mMCParam, label).pt;
1455 if (pt < PT_MIN_CLUST) {
1456 pt = PT_MIN_CLUST;
1457 }
1458 mClusters[CL_fake]->Fill(pt, GetMCLabelWeight(hitId, j) * weight);
1459 mClusters[CL_att_adj]->Fill(pt, GetMCLabelWeight(hitId, j) * weight);
1460 if (GetMCTrackObj(mRecTracks, label)) {
1461 mClusters[CL_tracks]->Fill(pt, GetMCLabelWeight(hitId, j) * weight);
1462 }
1463 mClusters[CL_all]->Fill(pt, GetMCLabelWeight(hitId, j) * weight);
1464 if (protect || physics) {
1465 mClusters[CL_prot]->Fill(pt, GetMCLabelWeight(hitId, j) * weight);
1466 }
1467 if (physics) {
1468 mClusters[CL_physics]->Fill(pt, GetMCLabelWeight(hitId, j) * weight);
1469 }
1470 }
1471 }
1472 } else {
1473 float weight = 1.f / (mClusterParam[hitId].attached + mClusterParam[hitId].fakeAttached);
1474 mClusters[CL_fake]->Fill(0.f, weight);
1475 mClusters[CL_att_adj]->Fill(0.f, weight);
1476 mClusters[CL_all]->Fill(0.f, weight);
1477 mClusterCounts.nUnaccessible += weight;
1478 if (protect || physics) {
1479 mClusters[CL_prot]->Fill(0.f, weight);
1480 }
1481 if (physics) {
1482 mClusters[CL_physics]->Fill(0.f, weight);
1483 }
1484 }
1485 }
1486 continue;
1487 }
1488 mcLabelI_t label = mTrackMCLabels[iTrk];
1489 if (mMCTrackMin != -1 && (label.getTrackID() < mMCTrackMin || label.getTrackID() >= mMCTrackMax)) {
1490 continue;
1491 }
1492 for (uint32_t k = 0; k < track.NClusters(); k++) {
1493 if (mTracking->mIOPtrs.mergedTrackHits[track.FirstClusterRef() + k].state & GPUTPCGMMergedTrackHit::flagReject) {
1494 continue;
1495 }
1496 int32_t hitId = mTracking->mIOPtrs.mergedTrackHits[track.FirstClusterRef() + k].num;
1497 float pt = GetMCTrackObj(mMCParam, label).pt;
1498 if (pt < PT_MIN_CLUST) {
1499 pt = PT_MIN_CLUST;
1500 }
1501 float weight = 1.f / (mClusterParam[hitId].attached + mClusterParam[hitId].fakeAttached);
1502 bool correct = false;
1503 for (int32_t j = 0; j < GetMCLabelNID(hitId); j++) {
1504 if (label == GetMCLabel(hitId, j)) {
1505 correct = true;
1506 break;
1507 }
1508 }
1509 if (correct) {
1510 mClusters[CL_attached]->Fill(pt, weight);
1511 mClusters[CL_tracks]->Fill(pt, weight);
1512 } else {
1513 mClusters[CL_fake]->Fill(pt, weight);
1514 }
1515 mClusters[CL_att_adj]->Fill(pt, weight);
1516 mClusters[CL_all]->Fill(pt, weight);
1517 int32_t attach = mTracking->mIOPtrs.mergedTrackHitAttachment[hitId];
1519 if (protect || physics) {
1520 mClusters[CL_prot]->Fill(pt, weight);
1521 }
1522 if (physics) {
1523 mClusters[CL_physics]->Fill(pt, weight);
1524 }
1525 }
1526 }
1527 for (uint32_t i = 0; i < GetNMCLabels(); i++) {
1528 if ((mMCTrackMin != -1 && GetMCLabelID(i, 0) < mMCTrackMin) || (mMCTrackMax != -1 && GetMCLabelID(i, 0) >= mMCTrackMax)) {
1529 continue;
1530 }
1531 if (mClusterParam[i].attached || mClusterParam[i].fakeAttached) {
1532 continue;
1533 }
1534 int32_t attach = mTracking->mIOPtrs.mergedTrackHitAttachment[i];
1536 if (mClusterParam[i].adjacent) {
1537 int32_t label = mTracking->mIOPtrs.mergedTrackHitAttachment[i] & gputpcgmmergertypes::attachTrackMask;
1538 if (!mTrackMCLabels[label].isValid()) {
1539 float totalWeight = 0.;
1540 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1541 mcLabelI_t labelT = GetMCLabel(i, j);
1542 if (!labelT.isFake() && GetMCTrackObj(mMCParam, labelT).pt > GPUCA_MIN_TRACK_PTB5_DEFAULT) {
1543 totalWeight += GetMCLabelWeight(i, j);
1544 }
1545 }
1546 float weight = 1.f / totalWeight;
1547 if (totalWeight > 0) {
1548 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1549 mcLabelI_t labelT = GetMCLabel(i, j);
1550 if (!labelT.isFake() && GetMCTrackObj(mMCParam, labelT).pt > GPUCA_MIN_TRACK_PTB5_DEFAULT) {
1551 float pt = GetMCTrackObj(mMCParam, labelT).pt;
1552 if (pt < PT_MIN_CLUST) {
1553 pt = PT_MIN_CLUST;
1554 }
1555 if (GetMCTrackObj(mRecTracks, labelT)) {
1556 mClusters[CL_tracks]->Fill(pt, GetMCLabelWeight(i, j) * weight);
1557 }
1558 mClusters[CL_att_adj]->Fill(pt, GetMCLabelWeight(i, j) * weight);
1559 mClusters[CL_fakeAdj]->Fill(pt, GetMCLabelWeight(i, j) * weight);
1560 mClusters[CL_all]->Fill(pt, GetMCLabelWeight(i, j) * weight);
1561 if (protect || physics) {
1562 mClusters[CL_prot]->Fill(pt, GetMCLabelWeight(i, j) * weight);
1563 }
1564 if (physics) {
1565 mClusters[CL_physics]->Fill(pt, GetMCLabelWeight(i, j) * weight);
1566 }
1567 }
1568 }
1569 } else {
1570 mClusters[CL_att_adj]->Fill(0.f, 1.f);
1571 mClusters[CL_fakeAdj]->Fill(0.f, 1.f);
1572 mClusters[CL_all]->Fill(0.f, 1.f);
1573 mClusterCounts.nUnaccessible++;
1574 if (protect || physics) {
1575 mClusters[CL_prot]->Fill(0.f, 1.f);
1576 }
1577 if (physics) {
1578 mClusters[CL_physics]->Fill(0.f, 1.f);
1579 }
1580 }
1581 } else {
1582 float pt = GetMCTrackObj(mMCParam, mTrackMCLabels[label]).pt;
1583 if (pt < PT_MIN_CLUST) {
1584 pt = PT_MIN_CLUST;
1585 }
1586 mClusters[CL_att_adj]->Fill(pt, 1.f);
1587 mClusters[CL_tracks]->Fill(pt, 1.f);
1588 mClusters[CL_all]->Fill(pt, 1.f);
1589 if (protect || physics) {
1590 mClusters[CL_prot]->Fill(pt, 1.f);
1591 }
1592 if (physics) {
1593 mClusters[CL_physics]->Fill(pt, 1.f);
1594 }
1595 }
1596 } else {
1597 float totalWeight = 0.;
1598 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1599 mcLabelI_t labelT = GetMCLabel(i, j);
1600 if (!labelT.isFake() && GetMCTrackObj(mMCParam, labelT).pt > GPUCA_MIN_TRACK_PTB5_DEFAULT) {
1601 totalWeight += GetMCLabelWeight(i, j);
1602 }
1603 }
1604 if (totalWeight > 0) {
1605 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1606 mcLabelI_t label = GetMCLabel(i, j);
1607 if (!label.isFake() && GetMCTrackObj(mMCParam, label).pt > GPUCA_MIN_TRACK_PTB5_DEFAULT) {
1608 float pt = GetMCTrackObj(mMCParam, label).pt;
1609 if (pt < PT_MIN_CLUST) {
1610 pt = PT_MIN_CLUST;
1611 }
1612 float weight = GetMCLabelWeight(i, j) / totalWeight;
1613 if (mClusterParam[i].fakeAdjacent) {
1614 mClusters[CL_fakeAdj]->Fill(pt, weight);
1615 }
1616 if (mClusterParam[i].fakeAdjacent) {
1617 mClusters[CL_att_adj]->Fill(pt, weight);
1618 }
1619 if (GetMCTrackObj(mRecTracks, label)) {
1620 mClusters[CL_tracks]->Fill(pt, weight);
1621 }
1622 mClusters[CL_all]->Fill(pt, weight);
1623 if (protect || physics) {
1624 mClusters[CL_prot]->Fill(pt, weight);
1625 }
1626 if (physics) {
1627 mClusters[CL_physics]->Fill(pt, weight);
1628 }
1629 }
1630 }
1631 } else {
1632 if (mClusterParam[i].fakeAdjacent) {
1633 mClusters[CL_fakeAdj]->Fill(0.f, 1.f);
1634 }
1635 if (mClusterParam[i].fakeAdjacent) {
1636 mClusters[CL_att_adj]->Fill(0.f, 1.f);
1637 }
1638 mClusters[CL_all]->Fill(0.f, 1.f);
1639 mClusterCounts.nUnaccessible++;
1640 if (protect || physics) {
1641 mClusters[CL_prot]->Fill(0.f, 1.f);
1642 }
1643 if (physics) {
1644 mClusters[CL_physics]->Fill(0.f, 1.f);
1645 }
1646 }
1647 }
1648 }
1649
1650 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1651 GPUInfo("QA Time: Fill cluster histograms:\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1652 }
1653 }
1654 } else if (!mConfig.inputHistogramsOnly && !mConfig.noMC && (mQATasks & (taskTrackingEff | taskTrackingRes | taskTrackingResPull | taskClusterAttach))) {
1655 GPUWarning("No MC information available, only running partial TPC QA!");
1656 }
1657
1658 if (mQATasks & taskTrackStatistics) {
1659 // Fill track statistic histograms
1660 for (uint32_t i = 0; i < nReconstructedTracks; i++) {
1661 const GPUTPCGMMergedTrack& track = mTracking->mIOPtrs.mergedTracks[i];
1662 if (!track.OK()) {
1663 continue;
1664 }
1665 mTracks->Fill(1.f / fabsf(track.GetParam().GetQPt()));
1666 mNCl[0]->Fill(track.NClustersFitted());
1667 uint32_t nClCorrected = 0;
1668 int32_t lastSector = -1, lastRow = -1;
1669 const auto& trackClusters = mTracking->mIOPtrs.mergedTrackHits;
1670 for (uint32_t j = 0; j < track.NClusters(); j++) {
1671 if (trackClusters[track.FirstClusterRef() + j].state & GPUTPCGMMergedTrackHit::flagReject) {
1672 continue;
1673 }
1674 if (trackClusters[track.FirstClusterRef() + j].sector == lastSector && trackClusters[track.FirstClusterRef() + j].row == lastRow) {
1675 continue;
1676 }
1677 if (trackClusters[track.FirstClusterRef() + j].leg != trackClusters[track.FirstClusterRef() + track.NClusters() - 1].leg) {
1678 continue;
1679 }
1680 nClCorrected++;
1681 lastSector = trackClusters[track.FirstClusterRef() + j].sector;
1682 lastRow = trackClusters[track.FirstClusterRef() + j].sector;
1683 }
1684 mNCl[1]->Fill(nClCorrected);
1685 }
1686 if (mClNative && mTracking && mTracking->GetTPCTransformHelper()) {
1687 for (uint32_t i = 0; i < GPUChainTracking::NSECTORS; i++) {
1688 for (uint32_t j = 0; j < GPUCA_ROW_COUNT; j++) {
1689 for (uint32_t k = 0; k < mClNative->nClusters[i][j]; k++) {
1690 const auto& cl = mClNative->clusters[i][j][k];
1691 float x, y, z;
1692 GPUTPCConvertImpl::convert(*mTracking->GetTPCTransformHelper()->getCorrMap(), mTracking->GetParam(), i, j, cl.getPad(), cl.getTime(), x, y, z);
1693 mTracking->GetParam().Sector2Global(i, x, y, z, &x, &y, &z);
1694 mClXY->Fill(x, y);
1695 }
1696 }
1697 }
1698 }
1699
1700 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1701 GPUInfo("QA Time: Fill track statistics:\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1702 }
1703 }
1704
1705 uint32_t nCl = clNative ? clNative->nClustersTotal : mTracking->GetTPCMerger().NMaxClusters();
1706 mClusterCounts.nTotal += nCl;
1707 if (mQATasks & taskClusterCounts) {
1708 for (uint32_t i = 0; i < nCl; i++) {
1709 int32_t attach = mTracking->mIOPtrs.mergedTrackHitAttachment[i];
1711
1712 if (mcAvail) {
1713 float totalWeight = 0, weight400 = 0, weight40 = 0;
1714 for (int32_t j = 0; j < GetMCLabelNID(i); j++) {
1715 const auto& label = GetMCLabel(i, j);
1716 if (GetMCLabelID(label) >= 0) {
1717 totalWeight += GetMCLabelWeight(label);
1718 if (GetMCTrackObj(mMCParam, label).pt >= 0.4) {
1719 weight400 += GetMCLabelWeight(label);
1720 }
1721 if (GetMCTrackObj(mMCParam, label).pt <= 0.04) {
1722 weight40 += GetMCLabelWeight(label);
1723 }
1724 }
1725 }
1726 if (totalWeight > 0 && 10.f * weight400 >= totalWeight) {
1727 if (!unattached && !protect && !physics) {
1728 mClusterCounts.nFakeRemove400++;
1729 int32_t totalFake = weight400 < 0.9f * totalWeight;
1730 if (totalFake) {
1731 mClusterCounts.nFullFakeRemove400++;
1732 }
1733 /*printf("Fake removal (%d): Hit %7d, attached %d lowPt %d looper %d tube200 %d highIncl %d tube %d bad %d recPt %7.2f recLabel %6d", totalFake, i, (int32_t) (mClusterParam[i].attached || mClusterParam[i].fakeAttached),
1734 (int32_t) lowPt, (int32_t) ((attach & gputpcgmmergertypes::attachGoodLeg) == 0), (int32_t) ((attach & gputpcgmmergertypes::attachTube) && mev200),
1735 (int32_t) ((attach & gputpcgmmergertypes::attachHighIncl) != 0), (int32_t) ((attach & gputpcgmmergertypes::attachTube) != 0), (int32_t) ((attach & gputpcgmmergertypes::attachGood) == 0),
1736 fabsf(qpt) > 0 ? 1.f / qpt : 0.f, id);
1737 for (int32_t j = 0;j < GetMCLabelNID(i);j++)
1738 {
1739 //if (GetMCLabelID(i, j) < 0) break;
1740 printf(" - label%d %6d weight %5d", j, GetMCLabelID(i, j), (int32_t) GetMCLabelWeight(i, j));
1741 if (GetMCLabelID(i, j) >= 0) printf(" - pt %7.2f", mMCParam[GetMCLabelID(i, j)].pt);
1742 else printf(" ");
1743 }
1744 printf("\n");*/
1745 }
1746 mClusterCounts.nAbove400++;
1747 }
1748 if (totalWeight > 0 && weight40 >= 0.9 * totalWeight) {
1749 mClusterCounts.nBelow40++;
1750 if (protect || physics) {
1751 mClusterCounts.nFakeProtect40++;
1752 }
1753 }
1754 }
1755 if (physics) {
1756 mClusterCounts.nPhysics++;
1757 }
1758 if (physics || protect) {
1759 mClusterCounts.nProt++;
1760 }
1761 if (unattached) {
1762 mClusterCounts.nUnattached++;
1763 }
1764 }
1765 }
1766
1767 // Process cluster count statistics
1768 if ((mQATasks & taskClusterCounts) && mConfig.clusterRejectionHistograms) {
1769 DoClusterCounts(nullptr);
1770 mClusterCounts = counts_t();
1771 }
1772
1773 if (QA_TIMING || (mTracking && mTracking->GetProcessingSettings().debugLevel >= 3)) {
1774 GPUInfo("QA Time: Cluster Counts:\t%6.0f us", timer.GetCurrentElapsedTime(true) * 1e6);
1775 }
1776
1777 if (mConfig.dumpToROOT) {
1778 if (!clNative || !mTracking || !mTracking->mIOPtrs.mergedTrackHitAttachment || !mTracking->mIOPtrs.mergedTracks) {
1779 throw std::runtime_error("Cannot dump non o2::tpc::clusterNative clusters, need also hit attachmend and GPU tracks");
1780 }
1781 uint32_t clid = 0;
1782 for (uint32_t i = 0; i < GPUChainTracking::NSECTORS; i++) {
1783 for (uint32_t j = 0; j < GPUCA_ROW_COUNT; j++) {
1784 for (uint32_t k = 0; k < mClNative->nClusters[i][j]; k++) {
1785 const auto& cl = mClNative->clusters[i][j][k];
1786 uint32_t attach = mTracking->mIOPtrs.mergedTrackHitAttachment[clid];
1787 float x = 0, y = 0, z = 0;
1789 uint32_t track = attach & gputpcgmmergertypes::attachTrackMask;
1790 const auto& trk = mTracking->mIOPtrs.mergedTracks[track];
1791 mTracking->GetTPCTransformHelper()->Transform(i, j, cl.getPad(), cl.getTime(), x, y, z, trk.GetParam().GetTZOffset());
1792 mTracking->GetParam().Sector2Global(i, x, y, z, &x, &y, &z);
1793 }
1794 uint32_t extState = mTracking->mIOPtrs.mergedTrackHitStates ? mTracking->mIOPtrs.mergedTrackHitStates[clid] : 0;
1795
1796 if (mConfig.dumpToROOT >= 2) {
1799 memset((void*)&trk, 0, sizeof(trk));
1800 memset((void*)&trkHit, 0, sizeof(trkHit));
1802 uint32_t track = attach & gputpcgmmergertypes::attachTrackMask;
1803 trk = mTracking->mIOPtrs.mergedTracks[track];
1804 for (uint32_t l = 0; l < trk.NClusters(); l++) {
1805 const auto& tmp = mTracking->mIOPtrs.mergedTrackHits[trk.FirstClusterRef() + l];
1806 if (tmp.num == clid) {
1807 trkHit = tmp;
1808 break;
1809 }
1810 }
1811 }
1812 static auto cldump = GPUROOTDump<o2::tpc::ClusterNative, GPUTPCGMMergedTrack, GPUTPCGMMergedTrackHit, uint32_t, uint32_t, float, float, float, uint32_t, uint32_t, uint32_t>::getNew("cluster", "track", "trackHit", "attach", "extState", "x", "y", "z", "sector", "row", "nEv", "clusterTree");
1813 cldump.Fill(cl, trk, trkHit, attach, extState, x, y, z, i, j, mNEvents - 1);
1814 } else {
1815 static auto cldump = GPUROOTDump<o2::tpc::ClusterNative, uint32_t, uint32_t, float, float, float, uint32_t, uint32_t, uint32_t>::getNew("cluster", "attach", "extState", "x", "y", "z", "sector", "row", "nEv", "clusterTree");
1816 cldump.Fill(cl, attach, extState, x, y, z, i, j, mNEvents - 1);
1817 }
1818 clid++;
1819 }
1820 }
1821 }
1822
1823 static auto trkdump = GPUROOTDump<uint32_t, GPUTPCGMMergedTrack>::getNew("nEv", "track", "tracksTree");
1824 for (uint32_t i = 0; i < mTracking->mIOPtrs.nMergedTracks; i++) {
1825 if (mTracking->mIOPtrs.mergedTracks[i].OK()) {
1826 trkdump.Fill(mNEvents - 1, mTracking->mIOPtrs.mergedTracks[i]);
1827 }
1828 }
1829
1830 if (mTracking && mTracking->GetProcessingSettings().createO2Output) {
1831 static auto o2trkdump = GPUROOTDump<uint32_t, o2::tpc::TrackTPC>::getNew("nEv", "track", "tracksO2Tree");
1832 for (uint32_t i = 0; i < mTracking->mIOPtrs.nOutputTracksTPCO2; i++) {
1833 o2trkdump.Fill(mNEvents - 1, mTracking->mIOPtrs.outputTracksTPCO2[i]);
1834 }
1835 }
1836 }
1837 mTrackingScratchBuffer.clear();
1838 mTrackingScratchBuffer.shrink_to_fit();
1839}
1840
1841void GPUQA::GetName(char* fname, int32_t k)
1842{
1843 const int32_t nNewInput = mConfig.inputHistogramsOnly ? 0 : 1;
1844 if (k || mConfig.inputHistogramsOnly || mConfig.name.size()) {
1845 if (!(mConfig.inputHistogramsOnly || k)) {
1846 snprintf(fname, 1024, "%s - ", mConfig.name.c_str());
1847 } else if (mConfig.compareInputNames.size() > (unsigned)(k - nNewInput)) {
1848 snprintf(fname, 1024, "%s - ", mConfig.compareInputNames[k - nNewInput].c_str());
1849 } else {
1850 strcpy(fname, mConfig.compareInputs[k - nNewInput].c_str());
1851 if (strlen(fname) > 5 && strcmp(fname + strlen(fname) - 5, ".root") == 0) {
1852 fname[strlen(fname) - 5] = 0;
1853 }
1854 strcat(fname, " - ");
1855 }
1856 } else {
1857 fname[0] = 0;
1858 }
1859}
1860
1861template <class T>
1862T* GPUQA::GetHist(T*& ee, std::vector<std::unique_ptr<TFile>>& tin, int32_t k, int32_t nNewInput)
1863{
1864 T* e = ee;
1865 if ((mConfig.inputHistogramsOnly || k) && (e = dynamic_cast<T*>(tin[k - nNewInput]->Get(e->GetName()))) == nullptr) {
1866 GPUWarning("Missing histogram in input %s: %s", mConfig.compareInputs[k - nNewInput].c_str(), ee->GetName());
1867 return (nullptr);
1868 }
1869 ee = e;
1870 return (e);
1871}
1872
1873void GPUQA::DrawQAHistogramsCleanup()
1874{
1875 clearGarbagageCollector();
1876}
1877
1878void GPUQA::resetHists()
1879{
1880 if (!mQAInitialized) {
1881 throw std::runtime_error("QA not initialized");
1882 }
1883 if (mHaveExternalHists) {
1884 throw std::runtime_error("Cannot reset external hists");
1885 }
1886 for (auto& h : *mHist1D) {
1887 h.Reset();
1888 }
1889 for (auto& h : *mHist2D) {
1890 h.Reset();
1891 }
1892 for (auto& h : *mHist1Dd) {
1893 h.Reset();
1894 }
1895 for (auto& h : *mHistGraph) {
1896 h = TGraphAsymmErrors();
1897 }
1898 mClusterCounts = counts_t();
1899}
1900
1901int32_t GPUQA::DrawQAHistograms(TObjArray* qcout)
1902{
1903 const auto oldRootIgnoreLevel = gErrorIgnoreLevel;
1904 gErrorIgnoreLevel = kWarning;
1905 if (!mQAInitialized) {
1906 throw std::runtime_error("QA not initialized");
1907 }
1908
1909 if (mTracking && mTracking->GetProcessingSettings().debugLevel >= 2) {
1910 printf("Creating QA Histograms\n");
1911 }
1912
1913 std::vector<Color_t> colorNums(COLORCOUNT);
1914 if (!qcout) {
1915 static int32_t initColorsInitialized = initColors();
1916 (void)initColorsInitialized;
1917 }
1918 for (int32_t i = 0; i < COLORCOUNT; i++) {
1919 colorNums[i] = qcout ? defaultColorNums[i] : mColors[i]->GetNumber();
1920 }
1921
1922 bool mcAvail = mcPresent();
1923 char name[2048], fname[1024];
1924
1925 const int32_t nNewInput = mConfig.inputHistogramsOnly ? 0 : 1;
1926 const int32_t ConfigNumInputs = nNewInput + mConfig.compareInputs.size();
1927
1928 std::vector<std::unique_ptr<TFile>> tin;
1929 for (uint32_t i = 0; i < mConfig.compareInputs.size(); i++) {
1930 tin.emplace_back(std::make_unique<TFile>(mConfig.compareInputs[i].c_str()));
1931 }
1932 std::unique_ptr<TFile> tout = nullptr;
1933 if (mConfig.output.size()) {
1934 tout = std::make_unique<TFile>(mConfig.output.c_str(), "RECREATE");
1935 }
1936
1937 if (mConfig.enableLocalOutput || mConfig.shipToQCAsCanvas) {
1938 float legendSpacingString = 0.025;
1939 for (int32_t i = 0; i < ConfigNumInputs; i++) {
1940 GetName(fname, i);
1941 if (strlen(fname) * 0.006 > legendSpacingString) {
1942 legendSpacingString = strlen(fname) * 0.006;
1943 }
1944 }
1945
1946 // Create Canvas / Pads for Efficiency Histograms
1947 if (mQATasks & taskTrackingEff) {
1948 for (int32_t ii = 0; ii < 6; ii++) {
1949 int32_t i = ii == 5 ? 4 : ii;
1950 snprintf(fname, 1024, "eff_vs_%s_layout", VSPARAMETER_NAMES[ii]);
1951 snprintf(name, 2048, "Efficiency versus %s", VSPARAMETER_NAMES[i]);
1952 mCEff[ii] = createGarbageCollected<TCanvas>(fname, name, 0, 0, 700, 700. * 2. / 3.);
1953 mCEff[ii]->cd();
1954 float dy = 1. / 2.;
1955 mPEff[ii][0] = createGarbageCollected<TPad>("p0", "", 0.0, dy * 0, 0.5, dy * 1);
1956 mPEff[ii][0]->Draw();
1957 mPEff[ii][0]->SetRightMargin(0.04);
1958 mPEff[ii][1] = createGarbageCollected<TPad>("p1", "", 0.5, dy * 0, 1.0, dy * 1);
1959 mPEff[ii][1]->Draw();
1960 mPEff[ii][1]->SetRightMargin(0.04);
1961 mPEff[ii][2] = createGarbageCollected<TPad>("p2", "", 0.0, dy * 1, 0.5, dy * 2 - .001);
1962 mPEff[ii][2]->Draw();
1963 mPEff[ii][2]->SetRightMargin(0.04);
1964 mPEff[ii][3] = createGarbageCollected<TPad>("p3", "", 0.5, dy * 1, 1.0, dy * 2 - .001);
1965 mPEff[ii][3]->Draw();
1966 mPEff[ii][3]->SetRightMargin(0.04);
1967 mLEff[ii] = createGarbageCollected<TLegend>(0.92 - legendSpacingString * 1.45, 0.83 - (0.93 - 0.82) / 2. * (float)ConfigNumInputs, 0.98, 0.849);
1968 SetLegend(mLEff[ii]);
1969 }
1970 }
1971
1972 // Create Canvas / Pads for Resolution Histograms
1973 if (mQATasks & taskTrackingRes) {
1974 for (int32_t ii = 0; ii < 7; ii++) {
1975 int32_t i = ii == 5 ? 4 : ii;
1976 if (ii == 6) {
1977 snprintf(fname, 1024, "res_integral_layout");
1978 snprintf(name, 2048, "Integral Resolution");
1979 } else {
1980 snprintf(fname, 1024, "res_vs_%s_layout", VSPARAMETER_NAMES[ii]);
1981 snprintf(name, 2048, "Resolution versus %s", VSPARAMETER_NAMES[i]);
1982 }
1983 mCRes[ii] = createGarbageCollected<TCanvas>(fname, name, 0, 0, 700, 700. * 2. / 3.);
1984 mCRes[ii]->cd();
1985 gStyle->SetOptFit(1);
1986
1987 float dy = 1. / 2.;
1988 mPRes[ii][3] = createGarbageCollected<TPad>("p0", "", 0.0, dy * 0, 0.5, dy * 1);
1989 mPRes[ii][3]->Draw();
1990 mPRes[ii][3]->SetRightMargin(0.04);
1991 mPRes[ii][4] = createGarbageCollected<TPad>("p1", "", 0.5, dy * 0, 1.0, dy * 1);
1992 mPRes[ii][4]->Draw();
1993 mPRes[ii][4]->SetRightMargin(0.04);
1994 mPRes[ii][0] = createGarbageCollected<TPad>("p2", "", 0.0, dy * 1, 1. / 3., dy * 2 - .001);
1995 mPRes[ii][0]->Draw();
1996 mPRes[ii][0]->SetRightMargin(0.04);
1997 mPRes[ii][0]->SetLeftMargin(0.15);
1998 mPRes[ii][1] = createGarbageCollected<TPad>("p3", "", 1. / 3., dy * 1, 2. / 3., dy * 2 - .001);
1999 mPRes[ii][1]->Draw();
2000 mPRes[ii][1]->SetRightMargin(0.04);
2001 mPRes[ii][1]->SetLeftMargin(0.135);
2002 mPRes[ii][2] = createGarbageCollected<TPad>("p4", "", 2. / 3., dy * 1, 1.0, dy * 2 - .001);
2003 mPRes[ii][2]->Draw();
2004 mPRes[ii][2]->SetRightMargin(0.06);
2005 mPRes[ii][2]->SetLeftMargin(0.135);
2006 if (ii < 6) {
2007 mLRes[ii] = createGarbageCollected<TLegend>(0.9 - legendSpacingString * 1.45, 0.93 - (0.93 - 0.86) / 2. * (float)ConfigNumInputs, 0.98, 0.949);
2008 SetLegend(mLRes[ii]);
2009 }
2010 }
2011 }
2012
2013 // Create Canvas / Pads for Pull Histograms
2014 if (mQATasks & taskTrackingResPull) {
2015 for (int32_t ii = 0; ii < 7; ii++) {
2016 int32_t i = ii == 5 ? 4 : ii;
2017
2018 if (ii == 6) {
2019 snprintf(fname, 1024, "pull_integral_layout");
2020 snprintf(name, 2048, "Integral Pull");
2021 } else {
2022 snprintf(fname, 1024, "pull_vs_%s_layout", VSPARAMETER_NAMES[ii]);
2023 snprintf(name, 2048, "Pull versus %s", VSPARAMETER_NAMES[i]);
2024 }
2025 mCPull[ii] = createGarbageCollected<TCanvas>(fname, name, 0, 0, 700, 700. * 2. / 3.);
2026 mCPull[ii]->cd();
2027 gStyle->SetOptFit(1);
2028
2029 float dy = 1. / 2.;
2030 mPPull[ii][3] = createGarbageCollected<TPad>("p0", "", 0.0, dy * 0, 0.5, dy * 1);
2031 mPPull[ii][3]->Draw();
2032 mPPull[ii][3]->SetRightMargin(0.04);
2033 mPPull[ii][4] = createGarbageCollected<TPad>("p1", "", 0.5, dy * 0, 1.0, dy * 1);
2034 mPPull[ii][4]->Draw();
2035 mPPull[ii][4]->SetRightMargin(0.04);
2036 mPPull[ii][0] = createGarbageCollected<TPad>("p2", "", 0.0, dy * 1, 1. / 3., dy * 2 - .001);
2037 mPPull[ii][0]->Draw();
2038 mPPull[ii][0]->SetRightMargin(0.04);
2039 mPPull[ii][0]->SetLeftMargin(0.15);
2040 mPPull[ii][1] = createGarbageCollected<TPad>("p3", "", 1. / 3., dy * 1, 2. / 3., dy * 2 - .001);
2041 mPPull[ii][1]->Draw();
2042 mPPull[ii][1]->SetRightMargin(0.04);
2043 mPPull[ii][1]->SetLeftMargin(0.135);
2044 mPPull[ii][2] = createGarbageCollected<TPad>("p4", "", 2. / 3., dy * 1, 1.0, dy * 2 - .001);
2045 mPPull[ii][2]->Draw();
2046 mPPull[ii][2]->SetRightMargin(0.06);
2047 mPPull[ii][2]->SetLeftMargin(0.135);
2048 if (ii < 6) {
2049 mLPull[ii] = createGarbageCollected<TLegend>(0.9 - legendSpacingString * 1.45, 0.93 - (0.93 - 0.86) / 2. * (float)ConfigNumInputs, 0.98, 0.949);
2050 SetLegend(mLPull[ii]);
2051 }
2052 }
2053 }
2054
2055 // Create Canvas for Cluster Histos
2056 if (mQATasks & taskClusterAttach) {
2057 for (int32_t i = 0; i < 3; i++) {
2058 snprintf(fname, 1024, "clusters_%s_layout", CLUSTER_TYPES[i]);
2059 mCClust[i] = createGarbageCollected<TCanvas>(fname, CLUSTER_TITLES[i], 0, 0, 700, 700. * 2. / 3.);
2060 mCClust[i]->cd();
2061 mPClust[i] = createGarbageCollected<TPad>("p0", "", 0.0, 0.0, 1.0, 1.0);
2062 mPClust[i]->Draw();
2063 float y1 = i != 1 ? 0.77 : 0.27, y2 = i != 1 ? 0.9 : 0.42;
2064 mLClust[i] = createGarbageCollected<TLegend>(i == 2 ? 0.1 : (0.65 - legendSpacingString * 1.45), y2 - (y2 - y1) * (ConfigNumInputs + (i != 1) / 2.) + 0.005, i == 2 ? (0.3 + legendSpacingString * 1.45) : 0.9, y2);
2065 SetLegend(mLClust[i]);
2066 }
2067 }
2068
2069 // Create Canvas for track statistic histos
2070 if (mQATasks & taskTrackStatistics) {
2071 mCTracks = createGarbageCollected<TCanvas>("ctracks", "Track Pt", 0, 0, 700, 700. * 2. / 3.);
2072 mCTracks->cd();
2073 mPTracks = createGarbageCollected<TPad>("p0", "", 0.0, 0.0, 1.0, 1.0);
2074 mPTracks->Draw();
2075 mLTracks = createGarbageCollected<TLegend>(0.9 - legendSpacingString * 1.45, 0.93 - (0.93 - 0.86) / 2. * (float)ConfigNumInputs, 0.98, 0.949);
2076 SetLegend(mLTracks);
2077
2078 for (int32_t i = 0; i < 2; i++) {
2079 snprintf(name, 2048, "cncl%d Pull", i);
2080 mCNCl[i] = createGarbageCollected<TCanvas>(name, i ? "Number of clusters (corrected for multiple per row)" : "Number of clusters per track", 0, 0, 700, 700. * 2. / 3.);
2081 mCNCl[i]->cd();
2082 mPNCl[i] = createGarbageCollected<TPad>("p0", "", 0.0, 0.0, 1.0, 1.0);
2083 mPNCl[i]->Draw();
2084 mLNCl[i] = createGarbageCollected<TLegend>(0.9 - legendSpacingString * 1.45, 0.93 - (0.93 - 0.86) / 2. * (float)ConfigNumInputs, 0.98, 0.949);
2085 SetLegend(mLNCl[i]);
2086 }
2087
2088 mCClXY = createGarbageCollected<TCanvas>("clxy", "Number of clusters per X / Y", 0, 0, 700, 700. * 2. / 3.);
2089 mCClXY->cd();
2090 mPClXY = createGarbageCollected<TPad>("p0", "", 0.0, 0.0, 1.0, 1.0);
2091 mPClXY->Draw();
2092 }
2093 }
2094
2095 if (mConfig.enableLocalOutput && !mConfig.inputHistogramsOnly && (mQATasks & taskTrackingEff) && mcPresent()) {
2096 GPUInfo("QA Stats: Eff: Tracks Prim %d (Eta %d, Pt %d) %f%% (%f%%) Sec %d (Eta %d, Pt %d) %f%% (%f%%) - Res: Tracks %d (Eta %d, Pt %d)", (int32_t)mEff[3][1][0][0]->GetEntries(), (int32_t)mEff[3][1][0][3]->GetEntries(), (int32_t)mEff[3][1][0][4]->GetEntries(),
2097 mEff[0][0][0][0]->GetSumOfWeights() / std::max(1., mEff[3][0][0][0]->GetSumOfWeights()), mEff[0][1][0][0]->GetSumOfWeights() / std::max(1., mEff[3][1][0][0]->GetSumOfWeights()), (int32_t)mEff[3][1][1][0]->GetEntries(), (int32_t)mEff[3][1][1][3]->GetEntries(),
2098 (int32_t)mEff[3][1][1][4]->GetEntries(), mEff[0][0][1][0]->GetSumOfWeights() / std::max(1., mEff[3][0][1][0]->GetSumOfWeights()), mEff[0][1][1][0]->GetSumOfWeights() / std::max(1., mEff[3][1][1][0]->GetSumOfWeights()), (int32_t)mRes2[0][0]->GetEntries(),
2099 (int32_t)mRes2[0][3]->GetEntries(), (int32_t)mRes2[0][4]->GetEntries());
2100 }
2101
2102 int32_t flagShowVsPtLog = (mConfig.enableLocalOutput || mConfig.shipToQCAsCanvas) ? 1 : 0;
2103
2104 if (mQATasks & taskTrackingEff) {
2105 // Process / Draw Efficiency Histograms
2106 for (int32_t ii = 0; ii < 5 + flagShowVsPtLog; ii++) {
2107 int32_t i = ii == 5 ? 4 : ii;
2108 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2109 for (int32_t j = 0; j < 4; j++) {
2110 if (mConfig.enableLocalOutput || mConfig.shipToQCAsCanvas) {
2111 mPEff[ii][j]->cd();
2112 if (ii == 5) {
2113 mPEff[ii][j]->SetLogx();
2114 }
2115 }
2116 for (int32_t l = 0; l < 3; l++) {
2117 if (k == 0 && mConfig.inputHistogramsOnly == 0 && ii != 5) {
2118 if (l == 0) {
2119 // Divide eff, compute all for fake/clone
2120 auto oldLevel = gErrorIgnoreLevel;
2121 gErrorIgnoreLevel = kError;
2122 mEffResult[0][j / 2][j % 2][i]->Divide(mEff[l][j / 2][j % 2][i], mEff[3][j / 2][j % 2][i], "cl=0.683 b(1,1) mode");
2123 gErrorIgnoreLevel = oldLevel;
2124 mEff[3][j / 2][j % 2][i]->Reset(); // Sum up rec + clone + fake for clone/fake rate
2125 mEff[3][j / 2][j % 2][i]->Add(mEff[0][j / 2][j % 2][i]);
2126 mEff[3][j / 2][j % 2][i]->Add(mEff[1][j / 2][j % 2][i]);
2127 mEff[3][j / 2][j % 2][i]->Add(mEff[2][j / 2][j % 2][i]);
2128 } else {
2129 // Divide fake/clone
2130 auto oldLevel = gErrorIgnoreLevel;
2131 gErrorIgnoreLevel = kError;
2132 mEffResult[l][j / 2][j % 2][i]->Divide(mEff[l][j / 2][j % 2][i], mEff[3][j / 2][j % 2][i], "cl=0.683 b(1,1) mode");
2133 gErrorIgnoreLevel = oldLevel;
2134 }
2135 }
2136
2137 TGraphAsymmErrors* e = mEffResult[l][j / 2][j % 2][i];
2138
2139 if (!mConfig.inputHistogramsOnly && k == 0) {
2140 if (tout) {
2141 mEff[l][j / 2][j % 2][i]->Write();
2142 e->Write();
2143 if (l == 2) {
2144 mEff[3][j / 2][j % 2][i]->Write(); // Store also all histogram!
2145 }
2146 }
2147 } else if (GetHist(e, tin, k, nNewInput) == nullptr) {
2148 continue;
2149 }
2150 e->SetTitle(EFFICIENCY_TITLES[j]);
2151 e->GetYaxis()->SetTitle("(Efficiency)");
2152 e->GetXaxis()->SetTitle(XAXIS_TITLES[i]);
2153
2154 e->SetLineWidth(1);
2155 e->SetLineStyle(CONFIG_DASHED_MARKERS ? k + 1 : 1);
2156 SetAxisSize(e);
2157 if (qcout && !mConfig.shipToQCAsCanvas) {
2158 qcout->Add(e);
2159 }
2160 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2161 continue;
2162 }
2163 e->SetMarkerColor(kBlack);
2164 e->SetLineColor(colorNums[(l == 2 ? (ConfigNumInputs * 2 + k) : (k * 2 + l)) % COLORCOUNT]);
2165 e->GetHistogram()->GetYaxis()->SetRangeUser(-0.02, 1.02);
2166 e->Draw(k || l ? "same P" : "AP");
2167 if (j == 0) {
2168 GetName(fname, k);
2169 snprintf(name, 2048, "%s%s", fname, EFF_NAMES[l]);
2170 mLEff[ii]->AddEntry(e, name, "l");
2171 }
2172 }
2173 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2174 continue;
2175 }
2176 mCEff[ii]->cd();
2177 ChangePadTitleSize(mPEff[ii][j], 0.056);
2178 }
2179 }
2180 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2181 continue;
2182 }
2183
2184 mLEff[ii]->Draw();
2185
2186 if (qcout) {
2187 qcout->Add(mCEff[ii]);
2188 }
2189 if (!mConfig.enableLocalOutput) {
2190 continue;
2191 }
2192 doPerfFigure(0.2, 0.295, 0.025);
2193 mCEff[ii]->Print(Form("plots/eff_vs_%s.pdf", VSPARAMETER_NAMES[ii]));
2194 if (mConfig.writeRootFiles) {
2195 mCEff[ii]->Print(Form("plots/eff_vs_%s.root", VSPARAMETER_NAMES[ii]));
2196 }
2197 }
2198 }
2199
2200 if (mQATasks & (taskTrackingRes | taskTrackingResPull)) {
2201 // Process / Draw Resolution Histograms
2202 TH1D *resIntegral[5] = {}, *pullIntegral[5] = {};
2203 TCanvas* cfit = nullptr;
2204 std::unique_ptr<TF1> customGaus = std::make_unique<TF1>("G", "[0]*exp(-(x-[1])*(x-[1])/(2.*[2]*[2]))");
2205 for (int32_t p = 0; p < 2; p++) {
2206 if ((p == 0 && (mQATasks & taskTrackingRes) == 0) || (p == 1 && (mQATasks & taskTrackingResPull) == 0)) {
2207 continue;
2208 }
2209 for (int32_t ii = 0; ii < 5 + flagShowVsPtLog; ii++) {
2210 TCanvas* can = p ? mCPull[ii] : mCRes[ii];
2211 TLegend* leg = p ? mLPull[ii] : mLRes[ii];
2212 int32_t i = ii == 5 ? 4 : ii;
2213 for (int32_t j = 0; j < 5; j++) {
2214 TH2F* src = p ? mPull2[j][i] : mRes2[j][i];
2215 TH1F** dst = p ? mPull[j][i] : mRes[j][i];
2216 TH1D*& dstIntegral = p ? pullIntegral[j] : resIntegral[j];
2217 TPad* pad = p ? mPPull[ii][j] : mPRes[ii][j];
2218
2219 if (!mConfig.inputHistogramsOnly && ii != 5) {
2220 if (cfit == nullptr) {
2221 cfit = createGarbageCollected<TCanvas>();
2222 }
2223 cfit->cd();
2224
2225 TAxis* axis = src->GetYaxis();
2226 int32_t nBins = axis->GetNbins();
2227 int32_t integ = 1;
2228 for (int32_t bin = 1; bin <= nBins; bin++) {
2229 int32_t bin0 = std::max(bin - integ, 0);
2230 int32_t bin1 = std::min(bin + integ, nBins);
2231 std::unique_ptr<TH1D> proj{src->ProjectionX("proj", bin0, bin1)};
2232 proj->ClearUnderflowAndOverflow();
2233 if (proj->GetEntries()) {
2234 uint32_t rebin = 1;
2235 while (proj->GetMaximum() < 50 && rebin < sizeof(RES_AXIS_BINS) / sizeof(RES_AXIS_BINS[0])) {
2236 proj->Rebin(RES_AXIS_BINS[rebin - 1] / RES_AXIS_BINS[rebin]);
2237 rebin++;
2238 }
2239
2240 if (proj->GetEntries() < 20 || proj->GetRMS() < 0.00001) {
2241 dst[0]->SetBinContent(bin, proj->GetRMS());
2242 dst[0]->SetBinError(bin, std::sqrt(proj->GetRMS()));
2243 dst[1]->SetBinContent(bin, proj->GetMean());
2244 dst[1]->SetBinError(bin, std::sqrt(proj->GetRMS()));
2245 } else {
2246 proj->GetXaxis()->SetRange(0, 0);
2247 proj->GetXaxis()->SetRangeUser(std::max(proj->GetXaxis()->GetXmin(), proj->GetMean() - 3. * proj->GetRMS()), std::min(proj->GetXaxis()->GetXmax(), proj->GetMean() + 3. * proj->GetRMS()));
2248 bool forceLogLike = proj->GetMaximum() < 20;
2249 for (int32_t k = forceLogLike ? 2 : 0; k < 3; k++) {
2250 proj->Fit("gaus", forceLogLike || k == 2 ? "sQl" : k ? "sQww" : "sQ");
2251 TF1* fitFunc = proj->GetFunction("gaus");
2252
2253 if (k && !forceLogLike) {
2254 customGaus->SetParameters(fitFunc->GetParameter(0), fitFunc->GetParameter(1), fitFunc->GetParameter(2));
2255 proj->Fit(customGaus.get(), "sQ");
2256 fitFunc = customGaus.get();
2257 }
2258
2259 const float sigma = fabs(fitFunc->GetParameter(2));
2260 dst[0]->SetBinContent(bin, sigma);
2261 dst[1]->SetBinContent(bin, fitFunc->GetParameter(1));
2262 dst[0]->SetBinError(bin, fitFunc->GetParError(2));
2263 dst[1]->SetBinError(bin, fitFunc->GetParError(1));
2264
2265 const bool fail1 = sigma <= 0.f;
2266 const bool fail2 = fabs(proj->GetMean() - dst[1]->GetBinContent(bin)) > std::min<float>(p ? PULL_AXIS : mConfig.nativeFitResolutions ? RES_AXES_NATIVE[j] : RES_AXES[j], 3.f * proj->GetRMS());
2267 const bool fail3 = dst[0]->GetBinContent(bin) > 3.f * proj->GetRMS() || dst[0]->GetBinError(bin) > 1 || dst[1]->GetBinError(bin) > 1;
2268 const bool fail4 = fitFunc->GetParameter(0) < proj->GetMaximum() / 5.;
2269 const bool fail = fail1 || fail2 || fail3 || fail4;
2270 // if (p == 0 && ii == 4 && j == 2) DrawHisto(proj, Form("Hist_bin_%d-%d_vs_%d____%d_%d___%f-%f___%f-%f___%d.pdf", p, j, ii, bin, k, dst[0]->GetBinContent(bin), proj->GetRMS(), dst[1]->GetBinContent(bin), proj->GetMean(), (int32_t) fail), "");
2271
2272 if (!fail) {
2273 break;
2274 } else if (k >= 2) {
2275 dst[0]->SetBinContent(bin, proj->GetRMS());
2276 dst[0]->SetBinError(bin, std::sqrt(proj->GetRMS()));
2277 dst[1]->SetBinContent(bin, proj->GetMean());
2278 dst[1]->SetBinError(bin, std::sqrt(proj->GetRMS()));
2279 }
2280 }
2281 }
2282 } else {
2283 dst[0]->SetBinContent(bin, 0.f);
2284 dst[0]->SetBinError(bin, 0.f);
2285 dst[1]->SetBinContent(bin, 0.f);
2286 dst[1]->SetBinError(bin, 0.f);
2287 }
2288 }
2289 if (ii == 0) {
2290 dstIntegral = src->ProjectionX(mConfig.nativeFitResolutions ? PARAMETER_NAMES_NATIVE[j] : PARAMETER_NAMES[j], 0, nBins + 1);
2291 uint32_t rebin = 1;
2292 while (dstIntegral->GetMaximum() < 50 && rebin < sizeof(RES_AXIS_BINS) / sizeof(RES_AXIS_BINS[0])) {
2293 dstIntegral->Rebin(RES_AXIS_BINS[rebin - 1] / RES_AXIS_BINS[rebin]);
2294 rebin++;
2295 }
2296 }
2297 }
2298 if (ii == 0) {
2299 if (mConfig.inputHistogramsOnly) {
2300 dstIntegral = createGarbageCollected<TH1D>();
2301 }
2302 snprintf(fname, 1024, p ? "IntPull%s" : "IntRes%s", VSPARAMETER_NAMES[j]);
2303 snprintf(name, 2048, p ? "%s Pull" : "%s Resolution", p || mConfig.nativeFitResolutions ? PARAMETER_NAMES_NATIVE[j] : PARAMETER_NAMES[j]);
2304 dstIntegral->SetName(fname);
2305 dstIntegral->SetTitle(name);
2306 }
2307 if (mConfig.enableLocalOutput || mConfig.shipToQCAsCanvas) {
2308 pad->cd();
2309 }
2310 int32_t numColor = 0;
2311 float tmpMax = -1000.;
2312 float tmpMin = 1000.;
2313
2314 for (int32_t l = 0; l < 2; l++) {
2315 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2316 TH1F* e = dst[l];
2317 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2318 continue;
2319 }
2320 if (nNewInput && k == 0 && ii != 5) {
2321 if (p == 0) {
2322 e->Scale(mConfig.nativeFitResolutions ? SCALE_NATIVE[j] : SCALE[j]);
2323 }
2324 }
2325 if (ii == 4) {
2326 e->GetXaxis()->SetRangeUser(0.2, PT_MAX);
2327 } else if (LOG_PT_MIN > 0 && ii == 5) {
2328 e->GetXaxis()->SetRangeUser(LOG_PT_MIN, PT_MAX);
2329 } else if (ii == 5) {
2330 e->GetXaxis()->SetRange(1, 0);
2331 }
2332 e->SetMinimum(-1111);
2333 e->SetMaximum(-1111);
2334
2335 if (e->GetMaximum() > tmpMax) {
2336 tmpMax = e->GetMaximum();
2337 }
2338 if (e->GetMinimum() < tmpMin) {
2339 tmpMin = e->GetMinimum();
2340 }
2341 }
2342 }
2343
2344 float tmpSpan;
2345 tmpSpan = tmpMax - tmpMin;
2346 tmpMax += tmpSpan * .02;
2347 tmpMin -= tmpSpan * .02;
2348 if (j == 2 && i < 3) {
2349 tmpMax += tmpSpan * 0.13 * ConfigNumInputs;
2350 }
2351
2352 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2353 for (int32_t l = 0; l < 2; l++) {
2354 TH1F* e = dst[l];
2355 if (!mConfig.inputHistogramsOnly && k == 0) {
2356 snprintf(name, 2048, p ? "%s Pull" : "%s Resolution", p || mConfig.nativeFitResolutions ? PARAMETER_NAMES_NATIVE[j] : PARAMETER_NAMES[j]);
2357 e->SetTitle(name);
2358 e->SetStats(kFALSE);
2359 if (tout) {
2360 if (l == 0) {
2361 mRes2[j][i]->SetOption("colz");
2362 mRes2[j][i]->Write();
2363 }
2364 e->Write();
2365 }
2366 } else if (GetHist(e, tin, k, nNewInput) == nullptr) {
2367 continue;
2368 }
2369 e->SetMaximum(tmpMax);
2370 e->SetMinimum(tmpMin);
2371 e->SetLineWidth(1);
2372 e->SetLineStyle(CONFIG_DASHED_MARKERS ? k + 1 : 1);
2373 SetAxisSize(e);
2374 e->GetYaxis()->SetTitle(p ? AXIS_TITLES_PULL[j] : mConfig.nativeFitResolutions ? AXIS_TITLES_NATIVE[j] : AXIS_TITLES[j]);
2375 e->GetXaxis()->SetTitle(XAXIS_TITLES[i]);
2376 if (LOG_PT_MIN > 0 && ii == 5) {
2377 e->GetXaxis()->SetRangeUser(LOG_PT_MIN, PT_MAX);
2378 }
2379
2380 if (j == 0) {
2381 e->GetYaxis()->SetTitleOffset(1.5);
2382 } else if (j < 3) {
2383 e->GetYaxis()->SetTitleOffset(1.4);
2384 }
2385 if (qcout && !mConfig.shipToQCAsCanvas) {
2386 qcout->Add(e);
2387 }
2388 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2389 continue;
2390 }
2391
2392 e->SetMarkerColor(kBlack);
2393 e->SetLineColor(colorNums[numColor++ % COLORCOUNT]);
2394 e->Draw(k || l ? "same" : "");
2395 if (j == 0) {
2396 GetName(fname, k);
2397 if (p) {
2398 snprintf(name, 2048, "%s%s", fname, l ? "Mean" : "Pull");
2399 } else {
2400 snprintf(name, 2048, "%s%s", fname, l ? "Mean" : "Resolution");
2401 }
2402 leg->AddEntry(e, name, "l");
2403 }
2404 }
2405 }
2406 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2407 continue;
2408 }
2409
2410 if (ii == 5) {
2411 pad->SetLogx();
2412 }
2413 can->cd();
2414 if (j == 4) {
2415 ChangePadTitleSize(pad, 0.056);
2416 }
2417 }
2418 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2419 continue;
2420 }
2421
2422 leg->Draw();
2423
2424 if (qcout) {
2425 qcout->Add(can);
2426 }
2427 if (!mConfig.enableLocalOutput) {
2428 continue;
2429 }
2430 doPerfFigure(0.2, 0.295, 0.025);
2431 can->Print(Form(p ? "plots/pull_vs_%s.pdf" : "plots/res_vs_%s.pdf", VSPARAMETER_NAMES[ii]));
2432 if (mConfig.writeRootFiles) {
2433 can->Print(Form(p ? "plots/pull_vs_%s.root" : "plots/res_vs_%s.root", VSPARAMETER_NAMES[ii]));
2434 }
2435 }
2436 }
2437
2438 // Process Integral Resolution Histogreams
2439 for (int32_t p = 0; p < 2; p++) {
2440 if ((p == 0 && (mQATasks & taskTrackingRes) == 0) || (p == 1 && (mQATasks & taskTrackingResPull) == 0)) {
2441 continue;
2442 }
2443 TCanvas* can = p ? mCPull[6] : mCRes[6];
2444 for (int32_t i = 0; i < 5; i++) {
2445 TPad* pad = p ? mPPull[6][i] : mPRes[6][i];
2446 TH1D* hist = p ? pullIntegral[i] : resIntegral[i];
2447 int32_t numColor = 0;
2448 if (mConfig.enableLocalOutput || mConfig.shipToQCAsCanvas) {
2449 pad->cd();
2450 }
2451 if (!mConfig.inputHistogramsOnly && mcAvail) {
2452 TH1D* e = hist;
2453 if (e && e->GetEntries()) {
2454 e->Fit("gaus", "sQ");
2455 }
2456 }
2457
2458 float tmpMax = 0;
2459 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2460 TH1D* e = hist;
2461 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2462 continue;
2463 }
2464 e->SetMaximum(-1111);
2465 if (e->GetMaximum() > tmpMax) {
2466 tmpMax = e->GetMaximum();
2467 }
2468 }
2469
2470 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2471 TH1D* e = hist;
2472 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2473 continue;
2474 }
2475 e->SetMaximum(tmpMax * 1.02);
2476 e->SetMinimum(tmpMax * -0.02);
2477 if (tout && !mConfig.inputHistogramsOnly && k == 0) {
2478 e->Write();
2479 }
2480 if (qcout && !mConfig.shipToQCAsCanvas) {
2481 qcout->Add(e);
2482 }
2483 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2484 continue;
2485 }
2486
2487 e->SetLineColor(colorNums[numColor++ % COLORCOUNT]);
2488 e->Draw(k == 0 ? "" : "same");
2489 }
2490 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2491 continue;
2492 }
2493 can->cd();
2494 }
2495 if (qcout) {
2496 qcout->Add(can);
2497 }
2498 if (!mConfig.enableLocalOutput) {
2499 continue;
2500 }
2501
2502 can->Print(p ? "plots/pull_integral.pdf" : "plots/res_integral.pdf");
2503 if (mConfig.writeRootFiles) {
2504 can->Print(p ? "plots/pull_integral.root" : "plots/res_integral.root");
2505 }
2506 }
2507 }
2508
2509 uint64_t attachClusterCounts[N_CLS_HIST];
2510 if (mQATasks & taskClusterAttach) {
2511 // Process Cluster Attachment Histograms
2512 if (mConfig.inputHistogramsOnly == 0) {
2513 for (int32_t i = N_CLS_HIST; i < N_CLS_TYPE * N_CLS_HIST - 1; i++) {
2514 mClusters[i]->Sumw2(true);
2515 }
2516 double totalVal = 0;
2517 if (!CLUST_HIST_INT_SUM) {
2518 for (int32_t j = 0; j < mClusters[N_CLS_HIST - 1]->GetXaxis()->GetNbins() + 2; j++) {
2519 totalVal += mClusters[N_CLS_HIST - 1]->GetBinContent(j);
2520 }
2521 }
2522 if (totalVal == 0.) {
2523 totalVal = 1.;
2524 }
2525 for (int32_t i = 0; i < N_CLS_HIST; i++) {
2526 double val = 0;
2527 for (int32_t j = 0; j < mClusters[i]->GetXaxis()->GetNbins() + 2; j++) {
2528 val += mClusters[i]->GetBinContent(j);
2529 mClusters[2 * N_CLS_HIST - 1 + i]->SetBinContent(j, val / totalVal);
2530 }
2531 attachClusterCounts[i] = val;
2532 }
2533
2534 if (!CLUST_HIST_INT_SUM) {
2535 for (int32_t i = 0; i < N_CLS_HIST; i++) {
2536 mClusters[2 * N_CLS_HIST - 1 + i]->SetMaximum(1.02);
2537 mClusters[2 * N_CLS_HIST - 1 + i]->SetMinimum(-0.02);
2538 }
2539 }
2540
2541 for (int32_t i = 0; i < N_CLS_HIST - 1; i++) {
2542 auto oldLevel = gErrorIgnoreLevel;
2543 gErrorIgnoreLevel = kError;
2544 mClusters[N_CLS_HIST + i]->Divide(mClusters[i], mClusters[N_CLS_HIST - 1], 1, 1, "B");
2545 gErrorIgnoreLevel = oldLevel;
2546 mClusters[N_CLS_HIST + i]->SetMinimum(-0.02);
2547 mClusters[N_CLS_HIST + i]->SetMaximum(1.02);
2548 }
2549 }
2550
2551 float tmpMax[2] = {0, 0}, tmpMin[2] = {0, 0};
2552 for (int32_t l = 0; l <= CLUST_HIST_INT_SUM; l++) {
2553 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2554 TH1* e = mClusters[l ? (N_CLS_TYPE * N_CLS_HIST - 2) : (N_CLS_HIST - 1)];
2555 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2556 continue;
2557 }
2558 e->SetMinimum(-1111);
2559 e->SetMaximum(-1111);
2560 if (l == 0) {
2561 e->GetXaxis()->SetRange(2, AXIS_BINS[4]);
2562 }
2563 if (e->GetMaximum() > tmpMax[l]) {
2564 tmpMax[l] = e->GetMaximum();
2565 }
2566 if (e->GetMinimum() < tmpMin[l]) {
2567 tmpMin[l] = e->GetMinimum();
2568 }
2569 }
2570 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2571 for (int32_t i = 0; i < N_CLS_HIST; i++) {
2572 TH1* e = mClusters[l ? (2 * N_CLS_HIST - 1 + i) : i];
2573 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2574 continue;
2575 }
2576 e->SetMaximum(tmpMax[l] * 1.02);
2577 e->SetMinimum(tmpMax[l] * -0.02);
2578 }
2579 }
2580 }
2581
2582 for (int32_t i = 0; i < N_CLS_TYPE; i++) {
2583 if (mConfig.enableLocalOutput || mConfig.shipToQCAsCanvas) {
2584 mPClust[i]->cd();
2585 mPClust[i]->SetLogx();
2586 }
2587 int32_t begin = i == 2 ? (2 * N_CLS_HIST - 1) : i == 1 ? N_CLS_HIST : 0;
2588 int32_t end = i == 2 ? (3 * N_CLS_HIST - 1) : i == 1 ? (2 * N_CLS_HIST - 1) : N_CLS_HIST;
2589 int32_t numColor = 0;
2590 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2591 for (int32_t j = end - 1; j >= begin; j--) {
2592 TH1* e = mClusters[j];
2593 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2594 continue;
2595 }
2596
2597 e->SetTitle(CLUSTER_TITLES[i]);
2598 e->GetYaxis()->SetTitle(i == 0 ? "Number of TPC clusters" : i == 1 ? "Fraction of TPC clusters" : CLUST_HIST_INT_SUM ? "Total TPC clusters (integrated)" : "Fraction of TPC clusters (integrated)");
2599 e->GetXaxis()->SetTitle("#it{p}_{Tmc} (GeV/#it{c})");
2600 e->GetXaxis()->SetTitleOffset(1.1);
2601 e->GetXaxis()->SetLabelOffset(-0.005);
2602 if (tout && !mConfig.inputHistogramsOnly && k == 0) {
2603 e->Write();
2604 }
2605 e->SetStats(kFALSE);
2606 e->SetLineWidth(1);
2607 e->SetLineStyle(CONFIG_DASHED_MARKERS ? j + 1 : 1);
2608 if (i == 0) {
2609 e->GetXaxis()->SetRange(2, AXIS_BINS[4]);
2610 }
2611 if (qcout && !mConfig.shipToQCAsCanvas) {
2612 qcout->Add(e);
2613 }
2614 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2615 continue;
2616 }
2617
2618 e->SetMarkerColor(kBlack);
2619 e->SetLineColor(colorNums[numColor++ % COLORCOUNT]);
2620 e->Draw(j == end - 1 && k == 0 ? "" : "same");
2621 GetName(fname, k);
2622 snprintf(name, 2048, "%s%s", fname, CLUSTER_NAMES[j - begin]);
2623 mLClust[i]->AddEntry(e, name, "l");
2624 }
2625 }
2626 if (ConfigNumInputs == 1) {
2627 TH1* e = reinterpret_cast<TH1F*>(mClusters[begin + CL_att_adj]->Clone());
2628 e->Add(mClusters[begin + CL_prot], -1);
2629 if (qcout && !mConfig.shipToQCAsCanvas) {
2630 qcout->Add(e);
2631 }
2632 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2633 continue;
2634 }
2635
2636 e->SetLineColor(colorNums[numColor++ % COLORCOUNT]);
2637 e->Draw("same");
2638 mLClust[i]->AddEntry(e, "Removed (Strategy A)", "l");
2639 }
2640 if (!mConfig.enableLocalOutput && !mConfig.shipToQCAsCanvas) {
2641 continue;
2642 }
2643
2644 mLClust[i]->Draw();
2645
2646 if (qcout) {
2647 qcout->Add(mCClust[i]);
2648 }
2649 if (!mConfig.enableLocalOutput) {
2650 continue;
2651 }
2652 doPerfFigure(i != 2 ? 0.37 : 0.6, 0.295, 0.030);
2653 mCClust[i]->cd();
2654 mCClust[i]->Print(i == 2 ? "plots/clusters_integral.pdf" : i == 1 ? "plots/clusters_relative.pdf" : "plots/clusters.pdf");
2655 if (mConfig.writeRootFiles) {
2656 mCClust[i]->Print(i == 2 ? "plots/clusters_integral.root" : i == 1 ? "plots/clusters_relative.root" : "plots/clusters.root");
2657 }
2658 }
2659 }
2660
2661 // Process cluster count statistics
2662 if ((mQATasks & taskClusterCounts) && !mHaveExternalHists && !mConfig.clusterRejectionHistograms && !mConfig.inputHistogramsOnly) {
2663 DoClusterCounts(attachClusterCounts);
2664 }
2665 if ((qcout || tout) && (mQATasks & taskClusterCounts) && mConfig.clusterRejectionHistograms) {
2666 for (uint32_t i = 0; i < mHistClusterCount.size(); i++) {
2667 if (tout) {
2668 mHistClusterCount[i]->Write();
2669 }
2670 if (qcout) {
2671 qcout->Add(mHistClusterCount[i]);
2672 }
2673 }
2674 }
2675
2676 if (mQATasks & taskTrackStatistics) {
2677 // Process track statistic histograms
2678 float tmpMax = 0.;
2679 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2680 TH1F* e = mTracks;
2681 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2682 continue;
2683 }
2684 e->SetMaximum(-1111);
2685 if (e->GetMaximum() > tmpMax) {
2686 tmpMax = e->GetMaximum();
2687 }
2688 }
2689 mPTracks->cd();
2690 mPTracks->SetLogx();
2691 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2692 TH1F* e = mTracks;
2693 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2694 continue;
2695 }
2696 if (tout && !mConfig.inputHistogramsOnly && k == 0) {
2697 e->Write();
2698 }
2699 e->SetMaximum(tmpMax * 1.02);
2700 e->SetMinimum(tmpMax * -0.02);
2701 e->SetStats(kFALSE);
2702 e->SetLineWidth(1);
2703 e->GetYaxis()->SetTitle("a.u.");
2704 e->GetXaxis()->SetTitle("#it{p}_{Tmc} (GeV/#it{c})");
2705 if (qcout) {
2706 qcout->Add(e);
2707 }
2708 e->SetMarkerColor(kBlack);
2709 e->SetLineColor(colorNums[k % COLORCOUNT]);
2710 e->Draw(k == 0 ? "" : "same");
2711 GetName(fname, k);
2712 snprintf(name, 2048, "%sTrack Pt", fname);
2713 mLTracks->AddEntry(e, name, "l");
2714 }
2715 mLTracks->Draw();
2716 mCTracks->cd();
2717 mCTracks->Print("plots/tracks.pdf");
2718 if (mConfig.writeRootFiles) {
2719 mCTracks->Print("plots/tracks.root");
2720 }
2721
2722 for (int32_t i = 0; i < 2; i++) {
2723 tmpMax = 0.;
2724 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2725 TH1F* e = mNCl[i];
2726 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2727 continue;
2728 }
2729 e->SetMaximum(-1111);
2730 if (e->GetMaximum() > tmpMax) {
2731 tmpMax = e->GetMaximum();
2732 }
2733 }
2734 mPNCl[i]->cd();
2735 for (int32_t k = 0; k < ConfigNumInputs; k++) {
2736 TH1F* e = mNCl[i];
2737 if (GetHist(e, tin, k, nNewInput) == nullptr) {
2738 continue;
2739 }
2740 if (tout && !mConfig.inputHistogramsOnly && k == 0) {
2741 e->Write();
2742 }
2743 e->SetMaximum(tmpMax * 1.02);
2744 e->SetMinimum(tmpMax * -0.02);
2745 e->SetStats(kFALSE);
2746 e->SetLineWidth(1);
2747 e->GetYaxis()->SetTitle("a.u.");
2748 e->GetXaxis()->SetTitle("NClusters");
2749 if (qcout) {
2750 qcout->Add(e);
2751 }
2752 e->SetMarkerColor(kBlack);
2753 e->SetLineColor(colorNums[k % COLORCOUNT]);
2754 e->Draw(k == 0 ? "" : "same");
2755 GetName(fname, k);
2756 snprintf(name, 2048, "%sNClusters%d", fname, i);
2757 mLNCl[i]->AddEntry(e, name, "l");
2758 }
2759 mLNCl[i]->Draw();
2760 mCNCl[i]->cd();
2761 snprintf(name, 2048, "plots/nClusters%s.pdf", i ? "_corrected" : "");
2762 mCNCl[i]->Print(name);
2763 if (mConfig.writeRootFiles) {
2764 snprintf(name, 2048, "plots/nClusters%s.root", i ? "_corrected" : "");
2765 mCNCl[i]->Print(name);
2766 }
2767 }
2768
2769 mPClXY->cd();
2770 mClXY->SetOption("colz");
2771 mClXY->Draw();
2772 mCClXY->cd();
2773 mCClXY->Print("plots/clustersXY.pdf");
2774 if (mConfig.writeRootFiles) {
2775 mCClXY->Print("plots/clustersXY.root");
2776 }
2777 }
2778
2779 if (tout && !mConfig.inputHistogramsOnly && mConfig.writeMCLabels) {
2780 gInterpreter->GenerateDictionary("vector<vector<int32_t>>", "");
2781 tout->WriteObject(&mcEffBuffer, "mcEffBuffer");
2782 tout->WriteObject(&mcLabelBuffer, "mcLabelBuffer");
2783 remove("AutoDict_vector_vector_int__.cxx");
2784 remove("AutoDict_vector_vector_int___cxx_ACLiC_dict_rdict.pcm");
2785 remove("AutoDict_vector_vector_int___cxx.d");
2786 remove("AutoDict_vector_vector_int___cxx.so");
2787 }
2788
2789 if (tout) {
2790 tout->Close();
2791 }
2792 for (uint32_t i = 0; i < mConfig.compareInputs.size(); i++) {
2793 tin[i]->Close();
2794 }
2795 if (!qcout) {
2796 clearGarbagageCollector();
2797 }
2798 GPUInfo("GPU TPC QA histograms have been written to %s files", mConfig.writeRootFiles ? ".pdf and .root" : ".pdf");
2799 gErrorIgnoreLevel = oldRootIgnoreLevel;
2800 return (0);
2801}
2802
2803void GPUQA::PrintClusterCount(int32_t mode, int32_t& num, const char* name, uint64_t n, uint64_t normalization)
2804{
2805 if (mode == 2) {
2806 // do nothing, just count num
2807 } else if (mode == 1) {
2808 char name2[128];
2809 snprintf(name2, 128, "clusterCount%d_", num);
2810 char* ptr = name2 + strlen(name2);
2811 for (uint32_t i = 0; i < strlen(name); i++) {
2812 if ((name[i] >= 'a' && name[i] <= 'z') || (name[i] >= 'A' && name[i] <= 'Z') || (name[i] >= '0' && name[i] <= '9')) {
2813 *(ptr++) = name[i];
2814 }
2815 }
2816 *ptr = 0;
2817 createHist(mHistClusterCount[num], name2, name, 1000, 0, mConfig.histMaxNClusters, 1000, 0, 100);
2818 } else if (mode == 0) {
2819 if (normalization && mConfig.enableLocalOutput) {
2820 printf("\t%35s: %'12" PRIu64 " (%6.2f%%)\n", name, n, 100.f * n / normalization);
2821 }
2822 if (mConfig.clusterRejectionHistograms) {
2823 float ratio = 100.f * n / std::max<uint64_t>(normalization, 1);
2824 mHistClusterCount[num]->Fill(normalization, ratio, 1);
2825 }
2826 }
2827 num++;
2828}
2829
2830int32_t GPUQA::DoClusterCounts(uint64_t* attachClusterCounts, int32_t mode)
2831{
2832 int32_t num = 0;
2833 if (mcPresent() && (mQATasks & taskClusterAttach) && attachClusterCounts) {
2834 for (int32_t i = 0; i < N_CLS_HIST; i++) {
2835 PrintClusterCount(mode, num, CLUSTER_NAMES[i], attachClusterCounts[i], mClusterCounts.nTotal);
2836 }
2837 PrintClusterCount(mode, num, "Unattached", attachClusterCounts[N_CLS_HIST - 1] - attachClusterCounts[CL_att_adj], mClusterCounts.nTotal);
2838 PrintClusterCount(mode, num, "Removed (Strategy A)", attachClusterCounts[CL_att_adj] - attachClusterCounts[CL_prot], mClusterCounts.nTotal); // Attached + Adjacent (also fake) - protected
2839 PrintClusterCount(mode, num, "Unaccessible", mClusterCounts.nUnaccessible, mClusterCounts.nTotal); // No contribution from track >= 10 MeV, unattached or fake-attached/adjacent
2840 } else {
2841 PrintClusterCount(mode, num, "All Clusters", mClusterCounts.nTotal, mClusterCounts.nTotal);
2842 PrintClusterCount(mode, num, "Used in Physics", mClusterCounts.nPhysics, mClusterCounts.nTotal);
2843 PrintClusterCount(mode, num, "Protected", mClusterCounts.nProt, mClusterCounts.nTotal);
2844 PrintClusterCount(mode, num, "Unattached", mClusterCounts.nUnattached, mClusterCounts.nTotal);
2845 PrintClusterCount(mode, num, "Removed (Strategy A)", mClusterCounts.nTotal - mClusterCounts.nUnattached - mClusterCounts.nProt, mClusterCounts.nTotal);
2846 PrintClusterCount(mode, num, "Removed (Strategy B)", mClusterCounts.nTotal - mClusterCounts.nProt, mClusterCounts.nTotal);
2847 }
2848
2849 PrintClusterCount(mode, num, "Merged Loopers (Afterburner)", mClusterCounts.nMergedLooper, mClusterCounts.nTotal);
2850 PrintClusterCount(mode, num, "High Inclination Angle", mClusterCounts.nHighIncl, mClusterCounts.nTotal);
2851 PrintClusterCount(mode, num, "Rejected", mClusterCounts.nRejected, mClusterCounts.nTotal);
2852 PrintClusterCount(mode, num, "Tube (> 200 MeV)", mClusterCounts.nTube, mClusterCounts.nTotal);
2853 PrintClusterCount(mode, num, "Tube (< 200 MeV)", mClusterCounts.nTube200, mClusterCounts.nTotal);
2854 PrintClusterCount(mode, num, "Looping Legs", mClusterCounts.nLoopers, mClusterCounts.nTotal);
2855 PrintClusterCount(mode, num, "Low Pt < 50 MeV", mClusterCounts.nLowPt, mClusterCounts.nTotal);
2856 PrintClusterCount(mode, num, "Low Pt < 200 MeV", mClusterCounts.n200MeV, mClusterCounts.nTotal);
2857
2858 if (mcPresent() && (mQATasks & taskClusterAttach)) {
2859 PrintClusterCount(mode, num, "Tracks > 400 MeV", mClusterCounts.nAbove400, mClusterCounts.nTotal);
2860 PrintClusterCount(mode, num, "Fake Removed (> 400 MeV)", mClusterCounts.nFakeRemove400, mClusterCounts.nAbove400);
2861 PrintClusterCount(mode, num, "Full Fake Removed (> 400 MeV)", mClusterCounts.nFullFakeRemove400, mClusterCounts.nAbove400);
2862 PrintClusterCount(mode, num, "Tracks < 40 MeV", mClusterCounts.nBelow40, mClusterCounts.nTotal);
2863 PrintClusterCount(mode, num, "Fake Protect (< 40 MeV)", mClusterCounts.nFakeProtect40, mClusterCounts.nBelow40);
2864 }
2865 return num;
2866}
2867
2868void* GPUQA::AllocateScratchBuffer(size_t nBytes)
2869{
2870 mTrackingScratchBuffer.resize((nBytes + sizeof(mTrackingScratchBuffer[0]) - 1) / sizeof(mTrackingScratchBuffer[0]));
2871 return mTrackingScratchBuffer.data();
2872}
A const (ready only) version of MCTruthContainer.
Helper class to access correction maps.
int16_t charge
Definition RawEventData.h:5
int32_t i
#define GPUCA_MIN_TRACK_PTB5_DEFAULT
#define TRACK_EXPECTED_REFERENCE_X_DEFAULT
Definition GPUQA.cxx:212
#define TRACK_EXPECTED_REFERENCE_X
Definition GPUQA.cxx:265
#define QA_DEBUG
Definition GPUQA.cxx:15
#define QA_TIMING
Definition GPUQA.cxx:16
#define CHECK_CLUSTER_STATE_NOCOUNT()
Definition GPUQA.cxx:126
#define CHECK_CLUSTER_STATE()
Definition GPUQA.cxx:113
int16_t Color_t
Definition GPUQA.h:32
GPUChain * chain
uint8_t leg
#define GPUCA_ROW_COUNT
Definition of the MCTrack class.
Definition of the Names Generator class.
uint16_t pos
Definition RawData.h:3
uint32_t j
Definition RawData.h:0
uint32_t side
Definition RawData.h:0
uint16_t pid
Definition RawData.h:2
uint32_t c
Definition RawData.h:2
Definition of TPCFastTransform class.
TBranch * ptr
int nClusters
double num
void Start()
Definition timer.cxx:57
double GetCurrentElapsedTime(bool reset=false)
Definition timer.cxx:110
Class for time synchronization of RawReader instances.
static constexpr ID TPC
Definition DetID.h:64
static constexpr int32_t NSECTORS
Definition GPUChain.h:54
int32_t ReadO2MCData(const char *filename)
Definition GPUQA.h:54
bool clusterRemovable(int32_t attach, bool prot) const
Definition GPUQA.h:52
~GPUQA()=default
Definition GPUQA.cxx:343
void * AllocateScratchBuffer(size_t nBytes)
Definition GPUQA.h:55
void SetMCTrackRange(int32_t min, int32_t max)
Definition GPUQA.h:47
mcLabelI_t GetMCTrackLabel(uint32_t trackId) const
Definition GPUQA.h:51
int32_t DrawQAHistograms()
Definition GPUQA.h:46
int32_t InitQA(int32_t tasks=0)
Definition GPUQA.h:44
void DumpO2MCData(const char *filename) const
Definition GPUQA.h:53
int32_t mcLabelI_t
Definition GPUQA.h:43
void RunQA(bool matchOnly=false)
Definition GPUQA.h:45
GPUQA(void *chain)
Definition GPUQA.h:41
static GPUROOTDump< T, Args... > getNew(const char *name1, Names... names)
Definition GPUROOTDump.h:64
static DigitizationContext * loadFromFile(std::string_view filename="")
GLdouble n
Definition glcorearb.h:1982
GLfloat GLfloat GLfloat alpha
Definition glcorearb.h:279
GLint GLenum GLint x
Definition glcorearb.h:403
GLenum mode
Definition glcorearb.h:266
GLenum src
Definition glcorearb.h:1767
GLuint GLfloat GLfloat GLfloat GLfloat y1
Definition glcorearb.h:5034
GLsizeiptr size
Definition glcorearb.h:659
GLuint GLuint end
Definition glcorearb.h:469
const GLdouble * v
Definition glcorearb.h:832
GLuint const GLchar * name
Definition glcorearb.h:781
GLuint GLuint GLfloat weight
Definition glcorearb.h:5477
GLenum GLint * range
Definition glcorearb.h:1899
GLint y
Definition glcorearb.h:270
GLenum GLenum dst
Definition glcorearb.h:1767
GLboolean * data
Definition glcorearb.h:298
GLuint GLsizei const GLchar * label
Definition glcorearb.h:2519
typedef void(APIENTRYP PFNGLCULLFACEPROC)(GLenum mode)
GLuint GLfloat * val
Definition glcorearb.h:1582
GLenum GLfloat param
Definition glcorearb.h:271
GLuint id
Definition glcorearb.h:650
GLdouble GLdouble GLdouble z
Definition glcorearb.h:843
const float3 float float float y2
Definition MathUtils.h:42
constexpr int LHCBCPERTIMEBIN
Definition Constants.h:38
Enum< T >::Iterator begin(Enum< T >)
Definition Defs.h:173
value_T f3
Definition TrackUtils.h:93
value_T f1
Definition TrackUtils.h:91
value_T f2
Definition TrackUtils.h:92
struct o2::upgrades_utils::@453 tracks
structure to keep trigger-related info
Defining DataPointCompositeObject explicitly as copiable.
std::string filename()
bool isValid(std::string alias)
int64_t differenceInBC(const InteractionRecord &other) const
std::tuple< std::vector< std::unique_ptr< TCanvas > >, std::vector< std::unique_ptr< TLegend > >, std::vector< std::unique_ptr< TPad > >, std::vector< std::unique_ptr< TLatex > >, std::vector< std::unique_ptr< TH1D > > > v
Definition GPUQA.cxx:321
IR getFirstIRofTF(const IR &rec) const
get 1st IR of TF corresponding to the 1st sampled orbit (in MC)
Definition HBFUtils.h:71
constexpr size_t min
constexpr size_t max
o2::InteractionRecord ir(0, 0)
vec clear()
o2::InteractionRecord ir0(3, 5)