Project
Loading...
Searching...
No Matches
Efficiency.cxx
Go to the documentation of this file.
1// Copyright 2019-2020 CERN and copyright holders of ALICE O2.
2// See https://alice-o2.web.cern.ch/copyright for details of the copyright holders.
3// All rights not expressly granted are reserved.
4//
5// This software is distributed under the terms of the GNU General Public
6// License v3 (GPL Version 3), copied verbatim in the file "COPYING".
7//
8// In applying this license CERN does not waive the privileges and immunities
9// granted to it by virtue of its status as an Intergovernmental Organization
10// or submit itself to any jurisdiction.
11#include "TGeoGlobalMagField.h"
22#include "Framework/Task.h"
24#include "ITStracking/IOUtils.h"
29
30#include <TEfficiency.h>
31#include <TH1.h>
32#include <TH1D.h>
33#include <TH1I.h>
34#include <TH2D.h>
35#include <TH3D.h>
36#include <TCanvas.h>
37#include <TEfficiency.h>
38#include <TStyle.h>
39#include <TLegend.h>
40#include <TGraphErrors.h>
41#include <TGraphAsymmErrors.h>
42#include <TF1.h>
43#include <TObjArray.h>
44#include <THStack.h>
45#include <TString.h>
46#include <TAttMarker.h>
47#include <TArrayD.h>
48#include <numeric>
49
50#define NLAYERS 3
51
52namespace o2::its::study
53{
54using namespace o2::framework;
55using namespace o2::globaltracking;
56
58
59class EfficiencyStudy : public Task
60{
61 public:
62 EfficiencyStudy(std::shared_ptr<DataRequest> dr,
63 mask_t src,
64 bool useMC,
65 std::shared_ptr<o2::steer::MCKinematicsReader> kineReader,
66 std::shared_ptr<o2::base::GRPGeomRequest> gr) : mDataRequest(dr), mTracksSrc(src), mUseMC(useMC), mKineReader(kineReader), mGGCCDBRequest(gr){};
67
68 ~EfficiencyStudy() final = default;
69 void init(InitContext&) final;
70 void run(ProcessingContext&) final;
72 void finaliseCCDB(ConcreteDataMatcher&, void*) final;
73 void initialiseRun(o2::globaltracking::RecoContainer&);
74 void stileEfficiencyGraph(std::unique_ptr<TEfficiency>& eff, const char* name, const char* title, bool bidimensional, const int markerStyle, const double markersize, const int markercolor, const int linercolor);
75 int getDCAClusterTrackMC(int countDuplicated);
76 void studyDCAcutsMC();
79 void getEfficiency(bool isMC);
80 void process(o2::globaltracking::RecoContainer&);
81 void setClusterDictionary(const o2::itsmft::TopologyDictionary* d) { mDict = d; }
82
83 private:
84 void updateTimeDependentParams(ProcessingContext& pc);
85 bool mVerboseOutput = false;
86 bool mUseMC;
87 std::string mOutFileName;
88 double b;
89 std::shared_ptr<o2::steer::MCKinematicsReader> mKineReader;
90 GeometryTGeo* mGeometry;
91 const o2::itsmft::TopologyDictionary* mDict = nullptr;
92 float mrangesPt[NLAYERS][2] = {{0., 0.5}, {0.5, 2.}, {2., 7.5}};
93
94 // Spans
95 gsl::span<const o2::itsmft::ROFRecord> mTracksROFRecords;
96 gsl::span<const o2::itsmft::ROFRecord> mClustersROFRecords;
97 gsl::span<const o2::its::TrackITS> mTracks;
98 gsl::span<const o2::MCCompLabel> mTracksMCLabels;
99 gsl::span<const o2::itsmft::CompClusterExt> mClusters;
100 gsl::span<const unsigned char> mClusPatterns;
101 gsl::span<const int> mInputITSidxs;
102 const o2::dataformats::MCLabelContainer* mClustersMCLCont;
103 std::vector<o2::BaseCluster<float>> mITSClustersArray;
104
105 // Data
106 GTrackID::mask_t mTracksSrc{};
107 std::shared_ptr<DataRequest> mDataRequest;
108
109 // Utils
110 std::shared_ptr<o2::base::GRPGeomRequest> mGGCCDBRequest;
111 std::unique_ptr<TFile> mOutFile;
112 int mDuplicated_layer[NLAYERS] = {0};
113
115
116 // DCA betweeen track and original cluster
117 std::unique_ptr<TH1D> mDCAxyOriginal[NLAYERS];
118 std::unique_ptr<TH1D> mDCAzOriginal[NLAYERS];
119 // DCA betweeen track and duplicated cluster
120 std::unique_ptr<TH1D> mDCAxyDuplicated;
121 std::unique_ptr<TH1D> mDCAzDuplicated;
122
123 // DCA betweeen track and duplicated cluster per layer
124 std::unique_ptr<TH1D> mDCAxyDuplicated_layer[NLAYERS];
125 std::unique_ptr<TH1D> mDCAzDuplicated_layer[NLAYERS];
126
127 // phi, eta, pt of the cluster
128 std::unique_ptr<TH1D> mPhiOriginal[NLAYERS];
129 std::unique_ptr<TH1D> mEtaOriginal[NLAYERS];
130 std::unique_ptr<TH1D> mPtOriginal[NLAYERS];
131 std::unique_ptr<TH1D> mPtDuplicated[NLAYERS];
132 std::unique_ptr<TH1D> mEtaDuplicated[NLAYERS];
133 std::unique_ptr<TH1D> mPhiDuplicated[NLAYERS];
134 std::unique_ptr<TH1D> mPhiOriginalIfDuplicated[NLAYERS];
135
136 std::unique_ptr<TH2D> mZvsPhiDUplicated[NLAYERS];
137
138 // position of the clusters
139 std::unique_ptr<TH3D> m3DClusterPositions;
140 std::unique_ptr<TH3D> m3DDuplicatedClusterPositions;
141 std::unique_ptr<TH2D> m2DClusterOriginalPositions;
142 std::unique_ptr<TH2D> m2DClusterDuplicatedPositions;
143
144 // Efficiency histos
145 std::unique_ptr<TH1D> mEfficiencyGoodMatch;
146 std::unique_ptr<TH1D> mEfficiencyFakeMatch;
147 std::unique_ptr<TH1D> mEfficiencyTotal;
148 std::unique_ptr<TH1D> mEfficiencyGoodMatch_layer[NLAYERS];
149 std::unique_ptr<TH1D> mEfficiencyFakeMatch_layer[NLAYERS];
150 std::unique_ptr<TH1D> mEfficiencyTotal_layer[NLAYERS];
151 std::unique_ptr<TH2D> mEfficiencyGoodMatchPt_layer[NLAYERS];
152 std::unique_ptr<TH2D> mEfficiencyFakeMatchPt_layer[NLAYERS];
153 std::unique_ptr<TH2D> mEfficiencyGoodMatchEta_layer[NLAYERS];
154 std::unique_ptr<TH2D> mEfficiencyFakeMatchEta_layer[NLAYERS];
155 std::unique_ptr<TH2D> mEfficiencyGoodMatchPhi_layer[NLAYERS];
156 std::unique_ptr<TH2D> mEfficiencyGoodMatchPhiOriginal_layer[NLAYERS];
157 std::unique_ptr<TH2D> mEfficiencyFakeMatchPhi_layer[NLAYERS];
158
159 // std::unique_ptr<TH2D> mEfficiencyColEta[NLAYERS];
160 std::unique_ptr<TH2D> mDenColEta[NLAYERS];
161 std::unique_ptr<TH2D> mNumColEta[NLAYERS];
162 std::unique_ptr<TH2D> mDenRowPhi[NLAYERS];
163 std::unique_ptr<TH2D> mNumRowPhi[NLAYERS];
164 std::unique_ptr<TH2D> mDenRowCol[NLAYERS];
165 std::unique_ptr<TH2D> mNumRowCol[NLAYERS];
166
167 // phi, eta, pt of the duplicated cluster per layer
168 std::unique_ptr<TH2D> mPt_EtaDupl[NLAYERS];
169
170 // duplicated per layer and per cut
171 std::unique_ptr<TH1D> mDuplicatedEtaAllPt[NLAYERS];
172 std::unique_ptr<TH1D> mDuplicatedEta[NLAYERS][3];
173 std::unique_ptr<TH1D> mDuplicatedPhiAllPt[NLAYERS];
174 std::unique_ptr<TH1D> mDuplicatedPhi[NLAYERS][3];
175 std::unique_ptr<TH1D> mDuplicatedPt[NLAYERS];
176 std::unique_ptr<TH1D> mDuplicatedRow[NLAYERS];
177 std::unique_ptr<TH1D> mDuplicatedCol[NLAYERS];
178 std::unique_ptr<TH1D> mDuplicatedZ[NLAYERS];
179 std::unique_ptr<TH2D> mDuplicatedPtEta[NLAYERS];
180 std::unique_ptr<TH2D> mDuplicatedPtPhi[NLAYERS];
181 std::unique_ptr<TH2D> mDuplicatedEtaPhi[NLAYERS];
182
183 // matches per layer and per cut
184 std::unique_ptr<TH1D> mNGoodMatchesEtaAllPt[NLAYERS];
185 std::unique_ptr<TH1D> mNGoodMatchesEta[NLAYERS][3];
186 std::unique_ptr<TH1D> mNGoodMatchesPhiAllPt[NLAYERS];
187 std::unique_ptr<TH1D> mNGoodMatchesPhi[NLAYERS][3];
188
189 std::unique_ptr<TH1D> mNFakeMatchesEtaAllPt[NLAYERS];
190 std::unique_ptr<TH1D> mNFakeMatchesEta[NLAYERS][3];
191 std::unique_ptr<TH1D> mNFakeMatchesPhiAllPt[NLAYERS];
192 std::unique_ptr<TH1D> mNFakeMatchesPhi[NLAYERS][3];
193
194 std::unique_ptr<TH1D> mNGoodMatchesPt[NLAYERS];
195 std::unique_ptr<TH1D> mNFakeMatchesPt[NLAYERS];
196
197 std::unique_ptr<TH1D> mNGoodMatchesRow[NLAYERS];
198 std::unique_ptr<TH1D> mNFakeMatchesRow[NLAYERS];
199
200 std::unique_ptr<TH1D> mNGoodMatchesCol[NLAYERS];
201 std::unique_ptr<TH1D> mNFakeMatchesCol[NLAYERS];
202
203 std::unique_ptr<TH1D> mNGoodMatchesZ[NLAYERS];
204 std::unique_ptr<TH1D> mNFakeMatchesZ[NLAYERS];
205
206 std::unique_ptr<TH2D> mNGoodMatchesPtEta[NLAYERS];
207 std::unique_ptr<TH2D> mNFakeMatchesPtEta[NLAYERS];
208
209 std::unique_ptr<TH2D> mNGoodMatchesPtPhi[NLAYERS];
210 std::unique_ptr<TH2D> mNFakeMatchesPtPhi[NLAYERS];
211
212 std::unique_ptr<TH2D> mNGoodMatchesEtaPhi[NLAYERS];
213 std::unique_ptr<TH2D> mNFakeMatchesEtaPhi[NLAYERS];
214
215 // calculating the efficiency with TEfficiency class
216 std::unique_ptr<TEfficiency> mEffPtGood[NLAYERS];
217 std::unique_ptr<TEfficiency> mEffPtFake[NLAYERS];
218 std::unique_ptr<TEfficiency> mEffRowGood[NLAYERS];
219 std::unique_ptr<TEfficiency> mEffRowFake[NLAYERS];
220 std::unique_ptr<TEfficiency> mEffColGood[NLAYERS];
221 std::unique_ptr<TEfficiency> mEffColFake[NLAYERS];
222 std::unique_ptr<TEfficiency> mEffZGood[NLAYERS];
223 std::unique_ptr<TEfficiency> mEffZFake[NLAYERS];
224 std::unique_ptr<TEfficiency> mEffPtEtaGood[NLAYERS];
225 std::unique_ptr<TEfficiency> mEffPtEtaFake[NLAYERS];
226 std::unique_ptr<TEfficiency> mEffPtPhiGood[NLAYERS];
227 std::unique_ptr<TEfficiency> mEffPtPhiFake[NLAYERS];
228 std::unique_ptr<TEfficiency> mEffEtaPhiGood[NLAYERS];
229 std::unique_ptr<TEfficiency> mEffEtaPhiFake[NLAYERS];
230
231 std::unique_ptr<TEfficiency> mEffEtaGoodAllPt[NLAYERS];
232 std::unique_ptr<TEfficiency> mEffEtaGood[NLAYERS][3];
233 std::unique_ptr<TEfficiency> mEffEtaFakeAllPt[NLAYERS];
234 std::unique_ptr<TEfficiency> mEffEtaFake[NLAYERS][3];
235
236 std::unique_ptr<TEfficiency> mEffPhiGoodAllPt[NLAYERS];
237 std::unique_ptr<TEfficiency> mEffPhiGood[NLAYERS][3];
238 std::unique_ptr<TEfficiency> mEffPhiFakeAllPt[NLAYERS];
239 std::unique_ptr<TEfficiency> mEffPhiFake[NLAYERS][3];
240
241 std::unique_ptr<TH2D> mnGoodMatchesPt_layer[NLAYERS];
242 std::unique_ptr<TH2D> mnFakeMatchesPt_layer[NLAYERS];
243
244 std::unique_ptr<TH2D> mnGoodMatchesEta_layer[NLAYERS];
245 std::unique_ptr<TH2D> mnFakeMatchesEta_layer[NLAYERS];
246
247 std::unique_ptr<TH2D> mnGoodMatchesPhi_layer[NLAYERS];
248 std::unique_ptr<TH2D> mnGoodMatchesPhiOriginal_layer[NLAYERS];
249 std::unique_ptr<TH2D> mnFakeMatchesPhi_layer[NLAYERS];
250
251 std::unique_ptr<TH1D> DCAxyData[NLAYERS];
252 std::unique_ptr<TH1D> DCAzData[NLAYERS];
253
254 std::unique_ptr<TH1D> DCAxyRejected[NLAYERS];
255 std::unique_ptr<TH1D> DCAzRejected[NLAYERS];
256
257 std::unique_ptr<TH1D> denPt[NLAYERS];
258 std::unique_ptr<TH1D> numPt[NLAYERS];
259 std::unique_ptr<TH1D> numPtGood[NLAYERS];
260 std::unique_ptr<TH1D> numPtFake[NLAYERS];
261
262 std::unique_ptr<TH1D> denPhi[NLAYERS];
263 std::unique_ptr<TH1D> numPhi[NLAYERS];
264 std::unique_ptr<TH1D> numPhiGood[NLAYERS];
265 std::unique_ptr<TH1D> numPhiFake[NLAYERS];
266
267 std::unique_ptr<TH1D> denEta[NLAYERS];
268 std::unique_ptr<TH1D> numEta[NLAYERS];
269 std::unique_ptr<TH1D> numEtaGood[NLAYERS];
270 std::unique_ptr<TH1D> numEtaFake[NLAYERS];
271
272 std::unique_ptr<TH1D> denRow[NLAYERS];
273 std::unique_ptr<TH1D> numRow[NLAYERS];
274 std::unique_ptr<TH1D> numRowGood[NLAYERS];
275 std::unique_ptr<TH1D> numRowFake[NLAYERS];
276
277 std::unique_ptr<TH1D> denCol[NLAYERS];
278 std::unique_ptr<TH1D> numCol[NLAYERS];
279 std::unique_ptr<TH1D> numColGood[NLAYERS];
280 std::unique_ptr<TH1D> numColFake[NLAYERS];
281 std::unique_ptr<TH1D> denZ[NLAYERS];
282 std::unique_ptr<TH1D> numZ[NLAYERS];
283 std::unique_ptr<TH1D> numZGood[NLAYERS];
284 std::unique_ptr<TH1D> numZFake[NLAYERS];
285
286 std::unique_ptr<TH1D> numLayers;
287 std::unique_ptr<TH1D> denLayers;
288 std::unique_ptr<TH1D> numGoodLayers;
289 std::unique_ptr<TH1D> numFakeLayers;
290
291 int nDuplicatedClusters[NLAYERS] = {0};
292 int nTracksSelected[NLAYERS] = {0}; // denominator fot the efficiency calculation
293
294 std::unique_ptr<TH1D> IPOriginalxy[NLAYERS];
295 std::unique_ptr<TH1D> IPOriginalz[NLAYERS];
296
297 std::unique_ptr<TH1D> chipRowDuplicated[NLAYERS];
298 std::unique_ptr<TH1D> chipRowOriginalIfDuplicated[NLAYERS];
299
300 std::unique_ptr<TH1D> chi2trackAccepted;
301
303 std::unique_ptr<TH1D> phiFound[NLAYERS];
304 std::unique_ptr<TH1D> rowFound[NLAYERS];
305 std::unique_ptr<TH1D> phiNotFound[NLAYERS];
306 std::unique_ptr<TH1D> rowNotFound[NLAYERS];
307 std::unique_ptr<TH1D> zFound[NLAYERS];
308 std::unique_ptr<TH1D> zNotFound[NLAYERS];
309 std::unique_ptr<TH2D> colFoundOriginalVsDuplicated[NLAYERS];
310 std::unique_ptr<TH1D> colFoundOriginal[NLAYERS];
311 std::unique_ptr<TH1D> colNotFound[NLAYERS];
312 std::unique_ptr<TH1D> radiusFound[NLAYERS];
313 std::unique_ptr<TH1D> radiusNotFound[NLAYERS];
314 std::unique_ptr<TH2D> m2DClusterFoundPositions;
315 std::unique_ptr<TH2D> m2DClusterNotFoundPositions;
316 std::unique_ptr<TH1D> mChipNotFound;
317 std::unique_ptr<TH1D> mChipFound;
318 std::unique_ptr<TH2D> l0_00;
319 std::unique_ptr<TH2D> l1_15;
320 std::unique_ptr<TH2D> l2_19;
321 std::unique_ptr<TH2D> chipOrigVsOverlap;
322 std::unique_ptr<TH2D> chipmap;
323};
324
326{
327 LOGP(info, "init");
328
330
332 mOutFileName = pars.outFileName;
333 b = pars.b;
334
335 int nbPt = 75;
336 double xbins[nbPt + 1], ptcutl = 0.05, ptcuth = 7.5;
337 double a = std::log(ptcuth / ptcutl) / nbPt;
338 for (int i = 0; i <= nbPt; i++) {
339 xbins[i] = ptcutl * std::exp(i * a);
340 }
341
342 mOutFile = std::make_unique<TFile>(mOutFileName.c_str(), "recreate");
343
344 mDCAxyDuplicated = std::make_unique<TH1D>("dcaXYDuplicated", "Distance between track and duplicated cluster ;DCA xy (cm); ", 200, -0.01, 0.01);
345 mDCAzDuplicated = std::make_unique<TH1D>("dcaZDuplicated", "Distance between track and duplicated cluster ;DCA z (cm); ", 200, -0.01, 0.01);
346
347 m3DClusterPositions = std::make_unique<TH3D>("3DClusterPositions", ";x (cm);y (cm);z (cm)", 200, -10, 10, 200, -10, 10, 400, -20, 20);
348 m3DDuplicatedClusterPositions = std::make_unique<TH3D>("3DDuplicatedClusterPositions", ";x (cm);y (cm);z (cm)", 200, -10, 10, 200, -10, 10, 500, -30, 30);
349 m2DClusterOriginalPositions = std::make_unique<TH2D>("m2DClusterOriginalPositions", ";x (cm);y (cm)", 400, -10, 10, 400, -6, 6);
350 m2DClusterDuplicatedPositions = std::make_unique<TH2D>("m2DClusterDuplicatedPositions", ";x (cm);y (cm)", 400, -10, 10, 400, -6, 6);
351
352 mEfficiencyGoodMatch = std::make_unique<TH1D>("mEfficiencyGoodMatch", ";#sigma(DCA) cut;Efficiency;", 20, 0.5, 20.5);
353 mEfficiencyFakeMatch = std::make_unique<TH1D>("mEfficiencyFakeMatch", ";#sigma(DCA) cut;Efficiency;", 20, 0.5, 20.5);
354 mEfficiencyTotal = std::make_unique<TH1D>("mEfficiencyTotal", ";#sigma(DCA) cut;Efficiency;", 20, 0.5, 20.5);
355
356 chi2trackAccepted = std::make_unique<TH1D>("chi2trackAccepted", "; $#chi^{2}", 500, 0, 100);
357
358 m2DClusterFoundPositions = std::make_unique<TH2D>("m2DClusterFoundPositions", ";x (cm);y (cm)", 250, -5, 5, 250, -5, 5);
359 m2DClusterNotFoundPositions = std::make_unique<TH2D>("m2DClusterNotFoundPositions", ";x (cm);y (cm)", 250, -5, 5, 250, -5, 5);
360 mChipNotFound = std::make_unique<TH1D>("mChipNotFound", ";chipID", 432, 0, 432);
361 mChipFound = std::make_unique<TH1D>("mChipFound", ";chipID", 432, 0, 432);
362 l0_00 = std::make_unique<TH2D>("l0_00", ";col; row", 2304, -0.5, 9215.5, 128, -0.5, 511.5);
363 l1_15 = std::make_unique<TH2D>("l1_15", ";col; row", 2304, -0.5, 9215.5, 512, -0.5, 511.5);
364 l2_19 = std::make_unique<TH2D>("l2_19", ";col; row", 2304, -0.5, 9215.5, 512, -0.5, 511.5);
365 chipOrigVsOverlap = std::make_unique<TH2D>("chipOrigVsOverlap", ";chipID Overlap;chipID Original", 9, 0, 9, 9, 0, 9);
366 chipmap = std::make_unique<TH2D>("chipmap", ";Column;Row", 1024, 0, 1023, 512, -0.5, 511.5);
367
368 numLayers = std::make_unique<TH1D>("numLayers", "numLayers; ; Efficiency", 3, -0.5, 2.5);
369 numGoodLayers = std::make_unique<TH1D>("numGoodLayers", "numGoodLayers; ; Efficiency", 3, -0.5, 2.5);
370 numFakeLayers = std::make_unique<TH1D>("numFakeLayers", "numFakeLayers; ; Efficiency", 3, -0.5, 2.5);
371 denLayers = std::make_unique<TH1D>("denLayers", "denLayers; ; Efficiency", 3, -0.5, 2.5);
372
373 for (int i = 0; i < NLAYERS; i++) {
374
375 chipRowDuplicated[i] = std::make_unique<TH1D>(Form("chipPosDuplicated_L%d", i), Form("L%d; row", i), 512, -0.5, 511.5);
376 chipRowOriginalIfDuplicated[i] = std::make_unique<TH1D>(Form("chipPosOriginalIfDuplicated%d", i), Form("L%d; row", i), 512, -0.5, 511.5);
377
378 DCAxyData[i] = std::make_unique<TH1D>(Form("dcaXYData_L%d", i), "Distance between track and original cluster ;DCA xy (cm); ", 4000, -0.2, 0.2);
379 DCAzData[i] = std::make_unique<TH1D>(Form("dcaZData_L%d", i), "Distance between track and original cluster ;DCA z (cm); ", 4000, -0.2, 0.2);
380 DCAxyRejected[i] = std::make_unique<TH1D>(Form("DCAxyRejected%d", i), "Distance between track and original cluster (rejected) ;DCA xy (cm); ", 30000, -30, 30);
381 DCAzRejected[i] = std::make_unique<TH1D>(Form("DCAzRejected%d", i), "Distance between track and original cluster (rejected) ;DCA z (cm); ", 30000, -30, 30);
382
383 mDCAxyOriginal[i] = std::make_unique<TH1D>(Form("dcaXYOriginal_L%d", i), "Distance between track and original cluster ;DCA xy (cm); ", 200, -0.01, 0.01);
384 mDCAzOriginal[i] = std::make_unique<TH1D>(Form("dcaZOriginal_L%d", i), "Distance between track and original cluster ;DCA z (cm); ", 200, -0.01, 0.01);
385
386 mPhiOriginal[i] = std::make_unique<TH1D>(Form("phiOriginal_L%d", i), ";phi (rad); ", 90, -3.2, 3.2);
387 mEtaOriginal[i] = std::make_unique<TH1D>(Form("etaOriginal_L%d", i), ";eta (rad); ", 100, -2, 2);
388 mPtOriginal[i] = std::make_unique<TH1D>(Form("ptOriginal_L%d", i), ";pt (GeV/c); ", 100, 0, 10);
389
390 mZvsPhiDUplicated[i] = std::make_unique<TH2D>(Form("zvsphiDuplicated_L%d", i), ";z (cm);phi (rad)", 400, -20, 20, 90, -3.2, 3.2);
391
392 mPtDuplicated[i] = std::make_unique<TH1D>(Form("ptDuplicated_L%d", i), ";pt (GeV/c); ", nbPt, 0, 7.5); // xbins);
393 mEtaDuplicated[i] = std::make_unique<TH1D>(Form("etaDuplicated_L%d", i), ";eta; ", 40, -2, 2);
394 mPhiDuplicated[i] = std::make_unique<TH1D>(Form("phiDuplicated_L%d", i), ";phi (rad); ", 90, -3.2, 3.2);
395 mPhiOriginalIfDuplicated[i] = std::make_unique<TH1D>(Form("phiOriginalIfDuplicated_L%d", i), ";phi (rad); ", 90, -3.2, 3.2);
396 mDCAxyDuplicated_layer[i] = std::make_unique<TH1D>(Form("dcaXYDuplicated_layer_L%d", i), "Distance between track and duplicated cluster ;DCA xy (cm); ", 100, -0.01, 0.01);
397 mDCAzDuplicated_layer[i] = std::make_unique<TH1D>(Form("dcaZDuplicated_layer_L%d", i), "Distance between track and duplicated cluster ;DCA z (cm); ", 100, -0.01, 0.01);
398
399 mEfficiencyGoodMatch_layer[i] = std::make_unique<TH1D>(Form("mEfficiencyGoodMatch_layer_L%d", i), ";#sigma(DCA) cut;Efficiency;", 20, 0.5, 20.5);
400 mEfficiencyFakeMatch_layer[i] = std::make_unique<TH1D>(Form("mEfficiencyFakeMatch_layer_L%d", i), ";#sigma(DCA) cut;Efficiency;", 20, 0.5, 20.5);
401 mEfficiencyTotal_layer[i] = std::make_unique<TH1D>(Form("mEfficiencyTotal_layer_L%d", i), ";#sigma(DCA) cut;Efficiency;", 20, 0.5, 20.5);
402
403 mEfficiencyGoodMatchPt_layer[i] = std::make_unique<TH2D>(Form("mEfficiencyGoodMatchPt_layer_L%d", i), ";#it{p}_{T} (GeV/c);#sigma(DCA) cut;Efficiency;", nbPt, 0, 7.5, /* xbins*/ 20, 0.5, 20.5);
404 mEfficiencyFakeMatchPt_layer[i] = std::make_unique<TH2D>(Form("mEfficiencyFakeMatchPt_layer_L%d", i), ";#it{p}_{T} (GeV/c);#sigma(DCA) cut;Efficiency;", nbPt, 0, 7.5, /* xbins*/ 20, 0.5, 20.5);
405
406 mEfficiencyGoodMatchEta_layer[i] = std::make_unique<TH2D>(Form("mEfficiencyGoodMatchEta_layer_L%d", i), ";#eta;#sigma(DCA) cut;Efficiency;", 40, -2, 2, 20, 0.5, 20.5);
407 mEfficiencyFakeMatchEta_layer[i] = std::make_unique<TH2D>(Form("mEfficiencyFakeMatchEta_layer_L%d", i), ";#eta;#sigma(DCA) cut;Efficiency;", 40, -2, 2, 20, 0.5, 20.5);
408
409 mEfficiencyGoodMatchPhi_layer[i] = std::make_unique<TH2D>(Form("mEfficiencyGoodMatchPhi_layer_L%d", i), ";#phi;#sigma(DCA) cut;Efficiency;", 90, -3.2, 3.2, 20, 0.5, 20.5);
410 mEfficiencyGoodMatchPhiOriginal_layer[i] = std::make_unique<TH2D>(Form("mEfficiencyGoodMatchPhiOriginal_layer_L%d", i), ";#phi Original;#sigma(DCA) cut;Efficiency;", 90, -3.2, 3.2, 20, 0.5, 20.5);
411 mEfficiencyFakeMatchPhi_layer[i] = std::make_unique<TH2D>(Form("mEfficiencyFakeMatchPhi_layer_L%d", i), ";#phi;#sigma(DCA) cut;Efficiency;", 90, -3.2, 3.2, 20, 0.5, 20.5);
412
413 mPt_EtaDupl[i] = std::make_unique<TH2D>(Form("mPt_EtaDupl_L%d", i), ";#it{p}_{T} (GeV/c);#eta; ", 100, 0, 10, 100, -2, 2);
414
415 mDuplicatedPt[i] = std::make_unique<TH1D>(Form("mDuplicatedPt_log_L%d", i), Form("; #it{p}_{T} (GeV/c); Number of duplciated clusters L%d", i), nbPt, 0, 7.5 /* xbins*/);
416 mDuplicatedPt[i]->Sumw2();
417 mNGoodMatchesPt[i] = std::make_unique<TH1D>(Form("mNGoodMatchesPt_L%d", i), Form("; #it{p}_{T} (GeV/c); Number of good matches L%d", i), nbPt, 0, 7.5 /* xbins*/);
418 mNGoodMatchesPt[i]->Sumw2();
419 mNFakeMatchesPt[i] = std::make_unique<TH1D>(Form("mNFakeMatchesPt_L%d", i), Form("; #it{p}_{T} (GeV/c); Number of fake matches L%d", i), nbPt, 0, 7.5 /* xbins*/);
420 mNFakeMatchesPt[i]->Sumw2();
421
422 mDuplicatedRow[i] = std::make_unique<TH1D>(Form("mDuplicatedRow_L%d", i), Form("; Row; Number of duplciated clusters L%d", i), 128, -0.5, 511.5);
423 mDuplicatedRow[i]->Sumw2();
424 mNGoodMatchesRow[i] = std::make_unique<TH1D>(Form("mNGoodMatchesRow_L%d", i), Form("; Row; Number of good matches L%d", i), 128, -0.5, 511.5);
425 mNGoodMatchesRow[i]->Sumw2();
426 mNFakeMatchesRow[i] = std::make_unique<TH1D>(Form("mNFakeMatchesRow_L%d", i), Form(";Row; Number of fake matches L%d", i), 128, -0.5, 511.5);
427 mNFakeMatchesRow[i]->Sumw2();
428
429 mDuplicatedCol[i] = std::make_unique<TH1D>(Form("mDuplicatedCol_L%d", i), Form("; Col; Number of duplciated clusters L%d", i), 128, -0.5, 1023.5);
430 mDuplicatedCol[i]->Sumw2();
431 mNGoodMatchesCol[i] = std::make_unique<TH1D>(Form("mNGoodMatchesCol_L%d", i), Form("; Col; Number of good matches L%d", i), 128, -0.5, 1023.5);
432 mNGoodMatchesCol[i]->Sumw2();
433 mNFakeMatchesCol[i] = std::make_unique<TH1D>(Form("mNFakeMatchesCol_L%d", i), Form(";Col; Number of fake matches L%d", i), 128, -0.5, 1023.5);
434 mNFakeMatchesCol[i]->Sumw2();
435
436 mDuplicatedZ[i] = std::make_unique<TH1D>(Form("mDuplicatedZ_L%d", i), Form("; Z (cm); Number of duplciated clusters L%d", i), 100, -15, 15);
437 mDuplicatedZ[i]->Sumw2();
438 mNGoodMatchesZ[i] = std::make_unique<TH1D>(Form("mNGoodMatchesZ_L%d", i), Form("; Z (cm); Number of good matches L%d", i), 100, -15, 15);
439 mNGoodMatchesZ[i]->Sumw2();
440 mNFakeMatchesZ[i] = std::make_unique<TH1D>(Form("mNFakeMatchesZ_L%d", i), Form(";Z (cm); Number of fake matches L%d", i), 100, -15, 15);
441 mNFakeMatchesZ[i]->Sumw2();
442
443 mDuplicatedPtEta[i] = std::make_unique<TH2D>(Form("mDuplicatedPtEta_log_L%d", i), Form("; #it{p}_{T} (GeV/c);#eta; Number of duplciated clusters L%d", i), nbPt, 0, 7.5 /* xbins*/, 40, -2, 2);
444 mDuplicatedPtEta[i]->Sumw2();
445 mNGoodMatchesPtEta[i] = std::make_unique<TH2D>(Form("mNGoodMatchesPtEta_L%d", i), Form("; #it{p}_{T} (GeV/c);#eta; Number of good matches L%d", i), nbPt, 0, 7.5 /* xbins*/, 40, -2, 2);
446 mNGoodMatchesPtEta[i]->Sumw2();
447 mNFakeMatchesPtEta[i] = std::make_unique<TH2D>(Form("mNFakeMatchesPtEta_L%d", i), Form("; #it{p}_{T} (GeV/c);#eta; Number of good matches L%d", i), nbPt, 0, 7.5 /* xbins*/, 40, -2, 2);
448 mNFakeMatchesPtEta[i]->Sumw2();
449
450 mDuplicatedPtPhi[i] = std::make_unique<TH2D>(Form("mDuplicatedPtPhi_log_L%d", i), Form("; #it{p}_{T} (GeV/c);#phi (rad); Number of duplciated clusters L%d", i), nbPt, 0, 7.5 /* xbins*/, 90, -3.2, 3.2);
451 mDuplicatedPtPhi[i]->Sumw2();
452 mNGoodMatchesPtPhi[i] = std::make_unique<TH2D>(Form("mNGoodMatchesPtPhi_L%d", i), Form("; #it{p}_{T} (GeV/c);#phi (rad); Number of good matches L%d", i), nbPt, 0, 7.5 /* xbins*/, 90, -3.2, 3.2);
453 mNGoodMatchesPtPhi[i]->Sumw2();
454 mNFakeMatchesPtPhi[i] = std::make_unique<TH2D>(Form("mNFakeMatchesPtPhi_L%d", i), Form("; #it{p}_{T} (GeV/c);#phi (rad); Number of good matches L%d", i), nbPt, 0, 7.5 /* xbins*/, 90, -3.2, 3.2);
455 mNFakeMatchesPtPhi[i]->Sumw2();
456
457 mDuplicatedEtaPhi[i] = std::make_unique<TH2D>(Form("mDuplicatedEtaPhi_L%d", i), Form("; #eta;#phi (rad); Number of duplciated clusters L%d", i), 40, -2, 2, 90, -3.2, 3.2);
458 mDuplicatedEtaPhi[i]->Sumw2();
459 mNGoodMatchesEtaPhi[i] = std::make_unique<TH2D>(Form("mNGoodMatchesEtaPhi_L%d", i), Form("; #eta;#phi (rad); Number of good matches L%d", i), 40, -2, 2, 90, -3.2, 3.2);
460 mNGoodMatchesEtaPhi[i]->Sumw2();
461 mNFakeMatchesEtaPhi[i] = std::make_unique<TH2D>(Form("mNFakeMatchesEtaPhi_L%d", i), Form("; #eta;#phi (rad); Number of good matches L%d", i), 40, -2, 2, 90, -3.2, 3.2);
462 mNFakeMatchesEtaPhi[i]->Sumw2();
463
464 mDuplicatedEtaAllPt[i] = std::make_unique<TH1D>(Form("mDuplicatedEtaAllPt_L%d", i), Form("; #eta; Number of duplicated clusters L%d", i), 40, -2, 2);
465 mNGoodMatchesEtaAllPt[i] = std::make_unique<TH1D>(Form("mNGoodMatchesEtaAllPt_L%d", i), Form("; #eta; Number of good matches L%d", i), 40, -2, 2);
466 mNFakeMatchesEtaAllPt[i] = std::make_unique<TH1D>(Form("mNFakeMatchesEtaAllPt_L%d", i), Form("; #eta; Number of fake matches L%d", i), 40, -2, 2);
467
468 mDuplicatedPhiAllPt[i] = std::make_unique<TH1D>(Form("mDuplicatedPhiAllPt_L%d", i), Form("; #phi (rad); Number of duplicated clusters L%d", i), 90, -3.2, 3.2);
469 mNGoodMatchesPhiAllPt[i] = std::make_unique<TH1D>(Form("mNGoodMatchesPhiAllPt_L%d", i), Form("; #phi (rad); Number of good matches L%d", i), 90, -3.2, 3.2);
470 mNFakeMatchesPhiAllPt[i] = std::make_unique<TH1D>(Form("mNFakeMatchesPhiAllPt_L%d", i), Form("; #phi (rad); Number of fake matches L%d", i), 90, -3.2, 3.2);
471
472 mnGoodMatchesPt_layer[i] = std::make_unique<TH2D>(Form("mnGoodMatchesPt_layer_L%d", i), ";pt; nGoodMatches", nbPt, 0, 7.5 /* xbins*/, 20, 0.5, 20.5);
473 mnFakeMatchesPt_layer[i] = std::make_unique<TH2D>(Form("mnFakeMatchesPt_layer_L%d", i), ";pt; nFakeMatches", nbPt, 0, 7.5 /* xbins*/, 20, 0.5, 20.5);
474 mnGoodMatchesEta_layer[i] = std::make_unique<TH2D>(Form("mnGoodMatchesEta_layer_L%d", i), ";#eta; nGoodMatches", 40, -2, 2, 20, 0.5, 20.5);
475 mnFakeMatchesEta_layer[i] = std::make_unique<TH2D>(Form("mnFakeMatchesEta_layer_L%d", i), ";#eta; nFakeMatches", 40, -2, 2, 20, 0.5, 20.5);
476 mnGoodMatchesPhi_layer[i] = std::make_unique<TH2D>(Form("mnGoodMatchesPhi_layer_L%d", i), ";#Phi; nGoodMatches", 90, -3.2, 3.2, 20, 0.5, 20.5);
477 mnGoodMatchesPhiOriginal_layer[i] = std::make_unique<TH2D>(Form("mnGoodMatchesPhiOriginal_layer_L%d", i), ";#Phi of the original Cluster; nGoodMatches", 90, -3.2, 3.2, 20, 0.5, 20.5);
478 mnFakeMatchesPhi_layer[i] = std::make_unique<TH2D>(Form("mnFakeMatchesPhi_layer_L%d", i), ";#Phi; nFakeMatches", 90, -3.2, 3.2, 20, 0.5, 20.5);
479
480 denPt[i] = std::make_unique<TH1D>(Form("denPt_L%d", i), Form("denPt_L%d", i), nbPt, 0, 7.5 /* xbins*/);
481 numPt[i] = std::make_unique<TH1D>(Form("numPt_L%d", i), Form("numPt_L%d", i), nbPt, 0, 7.5 /* xbins*/);
482 numPtGood[i] = std::make_unique<TH1D>(Form("numPtGood_L%d", i), Form("numPtGood_L%d", i), nbPt, 0, 7.5 /* xbins*/);
483 numPtFake[i] = std::make_unique<TH1D>(Form("numPtFake_L%d", i), Form("numPtFake_L%d", i), nbPt, 0, 7.5 /* xbins*/);
484
485 denPhi[i] = std::make_unique<TH1D>(Form("denPhi_L%d", i), Form("denPhi_L%d", i), 90, -3.2, 3.2);
486 numPhi[i] = std::make_unique<TH1D>(Form("numPhi_L%d", i), Form("numPhi_L%d", i), 90, -3.2, 3.2);
487 numPhiGood[i] = std::make_unique<TH1D>(Form("numPhiGood_L%d", i), Form("numPhiGood_L%d", i), 90, -3.2, 3.2);
488 numPhiFake[i] = std::make_unique<TH1D>(Form("numPhiFake_L%d", i), Form("numPhiFake_L%d", i), 90, -3.2, 3.2);
489
490 denEta[i] = std::make_unique<TH1D>(Form("denEta_L%d", i), Form("denEta_L%d", i), 200, -2, 2);
491 numEta[i] = std::make_unique<TH1D>(Form("numEta_L%d", i), Form("numEta_L%d", i), 200, -2, 2);
492 numEtaGood[i] = std::make_unique<TH1D>(Form("numEtaGood_L%d", i), Form("numEtaGood_L%d", i), 200, -2, 2);
493 numEtaFake[i] = std::make_unique<TH1D>(Form("numEtaFake_L%d", i), Form("numEtaFake_L%d", i), 200, -2, 2);
494
495 denRow[i] = std::make_unique<TH1D>(Form("denRow_L%d", i), Form("denRow_L%d", i), 128, -0.5, 511.5);
496 numRow[i] = std::make_unique<TH1D>(Form("numRow_L%d", i), Form("numRow_L%d", i), 128, -0.5, 511.5);
497 numRowGood[i] = std::make_unique<TH1D>(Form("numRowGood_L%d", i), Form("numRowGood_L%d", i), 128, -0.5, 511.5);
498 numRowFake[i] = std::make_unique<TH1D>(Form("numRowFake_L%d", i), Form("numRowFake_L%d", i), 128, -0.5, 511.5);
499
500 denCol[i] = std::make_unique<TH1D>(Form("denCol_L%d", i), Form("denCol_L%d", i), 128, -0.5, 1023.5);
501 numCol[i] = std::make_unique<TH1D>(Form("numCol_L%d", i), Form("numCol_L%d", i), 128, -0.5, 1023.5);
502 numColGood[i] = std::make_unique<TH1D>(Form("numColGood_L%d", i), Form("numColGood_L%d", i), 128, -0.5, 1023.5);
503 numColFake[i] = std::make_unique<TH1D>(Form("numColFake_L%d", i), Form("numColFake_L%d", i), 128, -0.5, 1023.5);
504
505 denZ[i] = std::make_unique<TH1D>(Form("denZ_L%d", i), Form("denZ_L%d", i), 100, -15, 15);
506 numZ[i] = std::make_unique<TH1D>(Form("numZ_L%d", i), Form("numZ_L%d", i), 100, -15, 15);
507 numZGood[i] = std::make_unique<TH1D>(Form("numZGood_L%d", i), Form("numZGood_L%d", i), 100, -15, 15);
508 numZFake[i] = std::make_unique<TH1D>(Form("numZFake_L%d", i), Form("numZFake_L%d", i), 100, -15, 15);
509
510 mDenColEta[i] = std::make_unique<TH2D>(Form("mDenColEta_L%d", i), Form("mDenColEta_L%d", i), 128, -0.5, 1023.5, 50, -1, 1);
511 mNumColEta[i] = std::make_unique<TH2D>(Form("mNumColEta_L%d", i), Form("mNumColEta_L%d", i), 128, -0.5, 1023.5, 50, -1, 1);
512
513 mDenRowPhi[i] = std::make_unique<TH2D>(Form("mDenRowPhi_L%d", i), Form("mDenRowPhi_L%d", i), 128, -0.5, 511.5, 90, -3.2, 3.2);
514 mNumRowPhi[i] = std::make_unique<TH2D>(Form("mNumRowPhi_L%d", i), Form("mNumRowPhi_L%d", i), 128, -0.5, 511.5, 90, -3.2, 3.2);
515
516 mDenRowCol[i] = std::make_unique<TH2D>(Form("mDenRowCol_L%d", i), Form("mDenRowCol_L%d", i), 128, -0.5, 511.5, 128, -0.5, 1023.5);
517 mNumRowCol[i] = std::make_unique<TH2D>(Form("mNumRowCol_L%d", i), Form("mNumRowCol_L%d", i), 128, -0.5, 511.5, 128, -0.5, 1023.5);
518
519 IPOriginalxy[i] = std::make_unique<TH1D>(Form("IPOriginalxy_L%d", i), Form("IPOriginalxy_L%d", i), 500, -0.002, 0.002);
520 IPOriginalz[i] = std::make_unique<TH1D>(Form("IPOriginalz_L%d", i), Form("IPOriginalz_L%d", i), 200, -10, 10);
521
522 phiFound[i] = std::make_unique<TH1D>(Form("phiFound_L%d", i), Form("phiFound_L%d", i), 190, -3.2, 3.2);
523 rowFound[i] = std::make_unique<TH1D>(Form("rowFound_L%d", i), Form("rowFound_L%d", i), 128, -0.5, 511.5);
524 phiNotFound[i] = std::make_unique<TH1D>(Form("phiNotFound_L%d", i), Form("phiNotFound_L%d", i), 90, -3.2, 3.2);
525 rowNotFound[i] = std::make_unique<TH1D>(Form("rowNotFound_L%d", i), Form("rowNotFound_L%d", i), 128, -0.5, 511.5);
526 zFound[i] = std::make_unique<TH1D>(Form("zFound_L%d", i), Form("zFound_L%d", i), 100, -15, 15);
527 zNotFound[i] = std::make_unique<TH1D>(Form("zNotFound%d", i), Form("zNotFound%d", i), 100, -15, 15);
528 colFoundOriginalVsDuplicated[i] = std::make_unique<TH2D>(Form("colFoundOriginalVsDuplicated_L%d", i), Form("colFoundOriginalVsDuplicated_L%d; Col Original cluster; Col Overlap cluster", i), 9216, -0.5, 9215.5, 9216, -0.5, 9215.5);
529 colFoundOriginal[i] = std::make_unique<TH1D>(Form("colFoundOriginal_L%d", i), Form("colFoundOriginal_L%d; Col Original cluster;", i), 9216, -0.5, 9215.5);
530 colNotFound[i] = std::make_unique<TH1D>(Form("colNotFound_L%d", i), Form("colNotFound_L%d", i), 9216, -0.5, 9215.5);
531 radiusFound[i] = std::make_unique<TH1D>(Form("radiusFound_L%d", i), Form("radiusFound_L%d", i), 80, 0, 6);
532 radiusNotFound[i] = std::make_unique<TH1D>(Form("radiusNotFound_L%d", i), Form("radiusNotFound_L%d", i), 80, 0, 4);
533
534 for (int j = 0; j < 3; j++) {
535 mDuplicatedEta[i][j] = std::make_unique<TH1D>(Form("mDuplicatedEta_L%d_pt%d", i, j), Form("%f < #it{p}_{T} < %f GeV/c; #eta; Number of duplicated clusters L%d", mrangesPt[j][0], mrangesPt[j][1], i), 40, -2, 2);
536 mNGoodMatchesEta[i][j] = std::make_unique<TH1D>(Form("mNGoodMatchesEta_L%d_pt%d", i, j), Form("%f < #it{p}_{T} < %f GeV/c; #eta; Number of good matches L%d", mrangesPt[j][0], mrangesPt[j][1], i), 40, -2, 2);
537 mNFakeMatchesEta[i][j] = std::make_unique<TH1D>(Form("mNFakeMatchesEta_L%d_pt%d", i, j), Form("%f < #it{p}_{T} < %f GeV/c; #eta; Number of fake matches L%d", mrangesPt[j][0], mrangesPt[j][1], i), 40, -2, 2);
538
539 mDuplicatedPhi[i][j] = std::make_unique<TH1D>(Form("mDuplicatedPhi_L%d_pt%d", i, j), Form("%f < #it{p}_{T} < %f GeV/c; #phi; Number of duplicated clusters L%d", mrangesPt[j][0], mrangesPt[j][1], i), 90, -3.2, 3.2);
540 mNGoodMatchesPhi[i][j] = std::make_unique<TH1D>(Form("mNGoodMatchesPhi_L%d_pt%d", i, j), Form("%f < #it{p}_{T} < %f GeV/c; #phi; Number of good matches L%d", mrangesPt[j][0], mrangesPt[j][1], i), 90, -3.2, 3.2);
541 mNFakeMatchesPhi[i][j] = std::make_unique<TH1D>(Form("mNFakeMatchesPhi_L%d_pt%d", i, j), Form("%f < #it{p}_{T} < %f GeV/c; #phi; Number of fake matches L%d", mrangesPt[j][0], mrangesPt[j][1], i), 90, -3.2, 3.2);
542 }
543 }
544 gStyle->SetPalette(55);
545}
546
548{
549 LOGP(info, "--------------- run");
551 recoData.collectData(pc, *mDataRequest.get());
552
553 updateTimeDependentParams(pc); // Make sure this is called after recoData.collectData, which may load some conditions
554 initialiseRun(recoData);
555 process(recoData);
556}
557
559{
560 LOGP(info, "--------------- initialiseRun");
561 if (mUseMC) {
562 mTracksMCLabels = recoData.getITSTracksMCLabels();
563 mClustersMCLCont = recoData.getITSClustersMCLabels();
564 }
565 mITSClustersArray.clear();
566 mTracksROFRecords = recoData.getITSTracksROFRecords();
567 mTracks = recoData.getITSTracks();
568 mClusters = recoData.getITSClusters();
569 mClustersROFRecords = recoData.getITSClustersROFRecords();
570 mClusPatterns = recoData.getITSClustersPatterns();
571 mInputITSidxs = recoData.getITSTracksClusterRefs();
572 mITSClustersArray.reserve(mClusters.size());
573 auto pattIt = mClusPatterns.begin();
574 o2::its::ioutils::convertCompactClusters(mClusters, pattIt, mITSClustersArray, mDict); // clusters converted to 3D spacepoints
575}
576
577void EfficiencyStudy::stileEfficiencyGraph(std::unique_ptr<TEfficiency>& eff, const char* name, const char* title, bool bidimensional = false, const int markerStyle = kFullCircle, const double markersize = 1, const int markercolor = kBlack, const int linecolor = kBlack)
578{
579 eff->SetName(name);
580 eff->SetTitle(title);
581 if (!bidimensional) {
582 eff->SetMarkerStyle(markerStyle);
583 eff->SetMarkerSize(markersize);
584 eff->SetMarkerColor(markercolor);
585 eff->SetLineColor(linecolor);
586 }
587}
588
589int EfficiencyStudy::getDCAClusterTrackMC(int countDuplicated = 0)
590{
591 // get the DCA between the clusters and the track from MC and fill histograms: distance between original and duplicated cluster, DCA, phi, clusters
592 // used to study the DCA cut to be applied
593 LOGP(info, "--------------- getDCAClusterTrackMC");
594
595 o2::base::Propagator::MatCorrType matCorr = o2::base::Propagator::MatCorrType::USEMatCorrLUT;
596 o2::gpu::gpustd::array<float, 2> clusOriginalDCA, clusDuplicatedDCA;
597 auto propagator = o2::base::Propagator::Instance();
598
599 auto bz = o2::base::Propagator::Instance()->getNominalBz();
600 LOG(info) << ">>>>>>>>>>>> Magnetic field: " << bz;
601
602 unsigned int rofIndexTrack = 0;
603 unsigned int rofNEntriesTrack = 0;
604 unsigned int rofIndexClus = 0;
605 unsigned int rofNEntriesClus = 0;
606 int nLabels = 0;
607 unsigned int totClus = 0;
608
609 int duplicated = 0;
610
611 std::unordered_map<o2::MCCompLabel, std::vector<int>> label_vecClus[mClustersROFRecords.size()][NLAYERS]; // array of maps nRofs x Nlayers -> {label, vec(iClus)} where vec(iClus) are the clusters that share the same label
612
613 for (unsigned int iROF = 0; iROF < mTracksROFRecords.size(); iROF++) { // loop on ROFRecords array
614 rofIndexTrack = mTracksROFRecords[iROF].getFirstEntry();
615 rofNEntriesTrack = mTracksROFRecords[iROF].getNEntries();
616
617 rofIndexClus = mClustersROFRecords[iROF].getFirstEntry();
618 rofNEntriesClus = mClustersROFRecords[iROF].getNEntries();
619
620 for (unsigned int iTrack = rofIndexTrack; iTrack < rofIndexTrack + rofNEntriesTrack; iTrack++) { // loop on tracks per ROF
621 auto track = mTracks[iTrack];
622 o2::track::TrackParCov trackParCov = mTracks[iTrack];
623 int firstClus = track.getFirstClusterEntry(); // get the first cluster of the track
624 int ncl = track.getNumberOfClusters(); // get the number of clusters of the track
625
626 if (ncl < 7) {
627 continue;
628 }
629
630 float ip[2]; // IP from 0,0,0 and the track should be the deplacement of the primary vertex
631 track.getImpactParams(0, 0, 0, 0, ip);
632
633 // if (abs(ip[0])>0.001 ) continue; ///pv not in (0,0,0)
634
635 auto& tracklab = mTracksMCLabels[iTrack];
636 if (tracklab.isFake()) {
637 continue;
638 }
639
640 auto pt = trackParCov.getPt();
641 auto eta = trackParCov.getEta();
642
643 // if (pt < mPtCuts[0] || pt > mPtCuts[1]) {
644 // continue;
645 // }
646 // if (eta < mEtaCuts[0] || eta > mEtaCuts[1]) {
647 // continue;
648 // }
649
650 float phioriginal = 0;
651 float phiduplicated = 0;
652
653 for (int iclTrack = firstClus; iclTrack < firstClus + ncl; iclTrack++) { // loop on clusters associated to the track
654 auto& clusOriginal = mClusters[mInputITSidxs[iclTrack]];
655 auto clusOriginalPoint = mITSClustersArray[mInputITSidxs[iclTrack]]; // cluster spacepoint in the tracking system
656 auto staveOriginal = mGeometry->getStave(clusOriginal.getSensorID());
657 auto chipOriginal = mGeometry->getChipIdInStave(clusOriginal.getSensorID());
658
659 UShort_t rowOriginal = clusOriginal.getRow();
660 UShort_t colOriginal = clusOriginal.getCol();
661
662 auto layer = mGeometry->getLayer(clusOriginal.getSensorID());
663 if (layer >= NLAYERS) {
664 continue; // checking only selected layers
665 }
666 auto labsTrack = mClustersMCLCont->getLabels(mInputITSidxs[iclTrack]); // get labels of the cluster associated to the track
667
668 o2::math_utils::Point3D<float> clusOriginalPointTrack = {clusOriginalPoint.getX(), clusOriginalPoint.getY(), clusOriginalPoint.getZ()};
669 o2::math_utils::Point3D<float> clusOriginalPointGlob = mGeometry->getMatrixT2G(clusOriginal.getSensorID()) * clusOriginalPointTrack;
670
671 phioriginal = clusOriginalPointGlob.phi(); // * 180 / M_PI;
672
673 mPhiOriginal[layer]->Fill(phioriginal);
674 mPtOriginal[layer]->Fill(pt);
675 mEtaOriginal[layer]->Fill(eta);
676 m3DClusterPositions->Fill(clusOriginalPointGlob.x(), clusOriginalPointGlob.y(), clusOriginalPointGlob.z());
677 m2DClusterOriginalPositions->Fill(clusOriginalPointGlob.x(), clusOriginalPointGlob.y());
678
679 for (auto& labT : labsTrack) { // for each valid label iterate over ALL the clusters in the ROF to see if there are duplicates
680 if (labT != tracklab) {
681 continue;
682 }
683 nLabels++;
684 if (labT.isValid()) {
685 for (unsigned int iClus = rofIndexClus; iClus < rofIndexClus + rofNEntriesClus; iClus++) { // iteration over ALL the clusters in the ROF
686
687 auto clusDuplicated = mClusters[iClus];
688 auto clusDuplicatedPoint = mITSClustersArray[iClus];
689
690 auto layerClus = mGeometry->getLayer(clusDuplicated.getSensorID());
691 if (layerClus != layer) {
692 continue;
693 }
694
695 o2::math_utils::Point3D<float> clusDuplicatedPointTrack = {clusDuplicatedPoint.getX(), clusDuplicatedPoint.getY(), clusDuplicatedPoint.getZ()};
696 o2::math_utils::Point3D<float> clusDuplicatedPointGlob = mGeometry->getMatrixT2G(clusDuplicated.getSensorID()) * clusDuplicatedPointTrack;
697 // phiduplicated = std::atan2(clusDuplicatedPointGlob.y(), clusDuplicatedPointGlob.x()) * 180 / M_PI + 180;
698 phiduplicated = clusDuplicatedPointGlob.phi(); // * 180 / M_PI;
699
700 auto labsClus = mClustersMCLCont->getLabels(iClus); // ideally I can have more than one label per cluster
701 for (auto labC : labsClus) {
702 if (labC == labT) {
703 label_vecClus[iROF][layerClus][labT].push_back(iClus); // same cluster: label from the track = label from the cluster
704 // if a duplicate cluster is found, propagate the track to the duplicate cluster and compute the distance from the original cluster
705 // if (clusOriginalPointGlob != clusDuplicatedPointGlob) { /// check that the duplicated cluster is not the original one just counted twice
706 // if (clusDuplicated.getSensorID() != clusOriginal.getSensorID()) { /// check that the duplicated cluster is not the original one just counted twice
707
708 // applying constraints: the cluster should be on the same layer, should be on an adjacent stave and on the same or adjacent chip position
709 if (clusDuplicated.getSensorID() == clusOriginal.getSensorID()) {
710 continue;
711 }
712 auto layerDuplicated = mGeometry->getLayer(clusDuplicated.getSensorID());
713 if (layerDuplicated != layerClus) {
714 continue;
715 }
716 auto staveDuplicated = mGeometry->getStave(clusDuplicated.getSensorID());
717 if (abs(staveDuplicated - staveOriginal) != 1) {
718 continue;
719 }
720 auto chipDuplicated = mGeometry->getChipIdInStave(clusDuplicated.getSensorID());
721 if (abs(chipDuplicated - chipOriginal) > 1) {
722 continue;
723 }
724
725 duplicated++;
726
727 if (countDuplicated == 0) {
728 UShort_t rowDuplicated = clusDuplicated.getRow();
729 UShort_t colDuplicated = clusDuplicated.getCol();
730
731 chipRowDuplicated[layerDuplicated]->Fill(rowDuplicated);
732 chipRowOriginalIfDuplicated[layerDuplicated]->Fill(rowOriginal);
733
734 mDuplicated_layer[layerDuplicated]++; // This has to be incremented at the first call
735 mPtDuplicated[layerClus]->Fill(pt);
736 mEtaDuplicated[layerClus]->Fill(eta);
737 mPhiDuplicated[layerClus]->Fill(phiduplicated);
738 mZvsPhiDUplicated[layerClus]->Fill(clusDuplicatedPointGlob.Z(), phiduplicated);
739 mPhiOriginalIfDuplicated[layerClus]->Fill(phioriginal);
740 }
741
742 if (countDuplicated == 1) {
743 for (int ipt = 0; ipt < 3; ipt++) {
744 if (pt >= mrangesPt[ipt][0] && pt < mrangesPt[ipt][1]) {
745 mDuplicatedEta[layerDuplicated][ipt]->Fill(eta);
746 mDuplicatedPhi[layerDuplicated][ipt]->Fill(phiduplicated);
747 }
748 }
749 UShort_t rowDuplicated = clusDuplicated.getRow();
750 mDuplicatedRow[layerDuplicated]->Fill(rowOriginal);
751 mDuplicatedCol[layerDuplicated]->Fill(clusOriginal.getCol());
752 mDuplicatedZ[layerDuplicated]->Fill(clusOriginalPointGlob.Z());
753 mDuplicatedPt[layerDuplicated]->Fill(pt);
754 mDuplicatedPtEta[layerDuplicated]->Fill(pt, eta);
755 mDuplicatedPtPhi[layerDuplicated]->Fill(pt, phiduplicated);
756 mDuplicatedEtaPhi[layerDuplicated]->Fill(eta, phiduplicated);
757
758 mDuplicatedEtaAllPt[layerDuplicated]->Fill(eta);
759 mDuplicatedPhiAllPt[layerDuplicated]->Fill(phiduplicated);
760 mPt_EtaDupl[layerClus]->Fill(pt, eta);
761 }
762
763 m3DClusterPositions->Fill(clusDuplicatedPointGlob.x(), clusDuplicatedPointGlob.y(), clusDuplicatedPointGlob.z());
764 m2DClusterDuplicatedPositions->Fill(clusDuplicatedPointGlob.x(), clusDuplicatedPointGlob.y());
765
767
769 trackParCov.rotate(mGeometry->getSensorRefAlpha(clusOriginal.getSensorID()));
770 trackParCov.rotate(mGeometry->getSensorRefAlpha(clusOriginal.getSensorID()));
771 if (propagator->propagateToDCA(clusOriginalPointGlob, trackParCov, b, 2.f, matCorr, &clusOriginalDCA)) {
772 mDCAxyOriginal[layerClus]->Fill(clusOriginalDCA[0]);
773 mDCAzOriginal[layerClus]->Fill(clusOriginalDCA[1]);
774 }
776 trackParCov.rotate(mGeometry->getSensorRefAlpha(clusDuplicated.getSensorID()));
777 if (propagator->propagateToDCA(clusDuplicatedPointGlob, trackParCov, b, 2.f, matCorr, &clusDuplicatedDCA)) {
778 mDCAxyDuplicated->Fill(clusDuplicatedDCA[0]);
779 mDCAzDuplicated->Fill(clusDuplicatedDCA[1]);
780 mDCAxyDuplicated_layer[layerDuplicated]->Fill(clusDuplicatedDCA[0]);
781 mDCAzDuplicated_layer[layerDuplicated]->Fill(clusDuplicatedDCA[1]);
782 }
784 }
785 }
786 }
787 }
788 }
789 } // end loop on clusters
790 totClus += NLAYERS; // summing only the number of clusters in the considered layers. Since the imposition of 7-clusters tracks, if the track is valid should release as clusters as the number of considered layers
791 } // end loop on tracks per ROF
792 } // end loop on ROFRecords array
793 LOGP(info, "Total number of clusters: {} ", totClus);
794 LOGP(info, "total nLabels: {}", nLabels);
795 LOGP(info, "Number of duplicated clusters: {}", duplicated);
796
797 if (mVerboseOutput && mUseMC) {
798 // printing the duplicates
799 for (unsigned int iROF = 0; iROF < mClustersROFRecords.size(); iROF++) {
800 LOGP(info, "°°°°°°°°°°°°°°°°°°°°°°°° ROF {} °°°°°°°°°°°°°°°°°°°°°°°°", iROF);
801 for (unsigned int lay = 0; lay < NLAYERS; lay++) {
802 LOGP(info, "°°°°°°°°°°°°°°°°°°°°°°°° LAYER {} °°°°°°°°°°°°°°°°°°°°°°°°", lay);
803 for (auto& it : label_vecClus[iROF][lay]) {
804 if (it.second.size() <= 1) {
805 continue; // printing only duplicates
806 }
807 std::cout << " \n++++++++++++ Label: ";
808 auto label = it.first;
809 it.first.print();
810 for (auto iClus : it.second) {
811 auto name = mGeometry->getSymbolicName(mClusters[iClus].getSensorID());
812 auto chipid = mClusters[iClus].getChipID();
813 auto clus = mClusters[iClus];
814 auto clusPoint = mITSClustersArray[iClus];
815
816 o2::math_utils::Point3D<float> clusPointTrack = {clusPoint.getX(), clusPoint.getY(), clusPoint.getZ()};
817 o2::math_utils::Point3D<float> clusPointGlob = mGeometry->getMatrixT2G(clus.getSensorID()) * clusPointTrack;
818 std::cout << "ROF: " << iROF << ", iClus: " << iClus << " -> chip: " << chipid << " = " << name << std::endl;
819 LOGP(info, "LOCtrack: {} {} {}", clusPointTrack.x(), clusPointTrack.y(), clusPointTrack.z());
820 LOGP(info, "LOCglob {} {} {}", clusPointGlob.x(), clusPointGlob.y(), clusPointGlob.z());
821 }
822 }
823 }
824 }
825 }
826 return duplicated;
827}
828
830{
831 // count the effective number of duplicated cluster good matches after applying the pt eta and phi cuts on the track
832 // to check the applied cuts
833 LOGP(info, "--------------- countDuplicatedAfterCuts");
834
835 o2::base::Propagator::MatCorrType matCorr = o2::base::Propagator::MatCorrType::USEMatCorrLUT;
836 o2::gpu::gpustd::array<float, 2> clusOriginalDCA, clusDuplicatedDCA;
837 auto propagator = o2::base::Propagator::Instance();
838
839 unsigned int rofIndexTrack = 0;
840 unsigned int rofNEntriesTrack = 0;
841 unsigned int rofIndexClus = 0;
842 unsigned int rofNEntriesClus = 0;
843 int nLabels = 0;
844 unsigned int totClus = 0;
845
846 int duplicated[3] = {0};
847 int possibleduplicated[3] = {0};
848
849 std::cout << "Track candidates: " << std::endl;
850
851 std::unordered_map<o2::MCCompLabel, std::vector<int>> label_vecClus[mClustersROFRecords.size()][NLAYERS]; // array of maps nRofs x Nlayers -> {label, vec(iClus)} where vec(iClus) are the clusters that share the same label
852
853 for (unsigned int iROF = 0; iROF < mTracksROFRecords.size(); iROF++) { // loop on ROFRecords array
854 std::cout << "ROF number: " << iROF << std::endl;
855 rofIndexTrack = mTracksROFRecords[iROF].getFirstEntry();
856 rofNEntriesTrack = mTracksROFRecords[iROF].getNEntries();
857
858 rofIndexClus = mClustersROFRecords[iROF].getFirstEntry();
859 rofNEntriesClus = mClustersROFRecords[iROF].getNEntries();
860
861 for (unsigned int iTrack = rofIndexTrack; iTrack < rofIndexTrack + rofNEntriesTrack; iTrack++) { // loop on tracks per ROF
862
863 auto track = mTracks[iTrack];
864 o2::track::TrackParCov trackParCov = mTracks[iTrack];
865 int firstClus = track.getFirstClusterEntry(); // get the first cluster of the track
866 int ncl = track.getNumberOfClusters(); // get the number of clusters of the track
867
868 if (ncl < 7) {
869 continue;
870 }
871
872 auto& tracklab = mTracksMCLabels[iTrack];
873 if (tracklab.isFake()) {
874 continue;
875 }
876
877 auto eta = trackParCov.getEta();
878
879 // applying the cuts on the track - only eta
880
881 if (eta < mEtaCuts[0] || eta >= mEtaCuts[1]) {
882 continue;
883 }
884
885 float phi = -999.;
886 float phiOriginal = -999.;
887
888 for (int iclTrack = firstClus; iclTrack < firstClus + ncl; iclTrack++) { // loop on clusters associated to the track
889 auto& clusOriginal = mClusters[mInputITSidxs[iclTrack]];
890 auto clusOriginalPoint = mITSClustersArray[mInputITSidxs[iclTrack]]; // cluster spacepoint in the tracking system
891 auto layerOriginal = mGeometry->getLayer(clusOriginal.getSensorID());
892 auto staveOriginal = mGeometry->getStave(clusOriginal.getSensorID());
893 auto chipOriginal = mGeometry->getChipIdInStave(clusOriginal.getSensorID());
894
895 auto layer = mGeometry->getLayer(clusOriginal.getSensorID());
896 if (layer >= NLAYERS) {
897 continue; // checking only selected layers
898 }
899 auto labsTrack = mClustersMCLCont->getLabels(mInputITSidxs[iclTrack]); // get labels of the cluster associated to the track
900
901 o2::math_utils::Point3D<float> clusOriginalPointTrack = {clusOriginalPoint.getX(), clusOriginalPoint.getY(), clusOriginalPoint.getZ()};
902 o2::math_utils::Point3D<float> clusOriginalPointGlob = mGeometry->getMatrixT2G(clusOriginal.getSensorID()) * clusOriginalPointTrack;
903 phiOriginal = clusOriginalPointGlob.phi(); // * 180 / M_PI;
904
905 if (abs(clusOriginalPointGlob.y()) < 0.5) {
906 continue;
907 }
908
909 if (abs(clusOriginalPointGlob.z()) >= 10) {
910 continue;
911 }
912
913 if (clusOriginal.getRow() < 2 || (clusOriginal.getRow() > 15 && clusOriginal.getRow() < 496) || clusOriginal.getRow() > 509) {
914 continue;
915 }
916
917 if (clusOriginal.getCol() < 160 || clusOriginal.getCol() > 870) {
918 continue;
919 }
920
921 for (auto& labT : labsTrack) { // for each valid label iterate over ALL the clusters in the ROF to see if there are duplicates
922 if (labT != tracklab) {
923 continue;
924 }
925
926 if (labT.isValid()) {
927 for (unsigned int iClus = rofIndexClus; iClus < rofIndexClus + rofNEntriesClus; iClus++) { // iteration over ALL the clusters in the ROF
928
929 auto clusDuplicated = mClusters[iClus];
930 auto clusDuplicatedPoint = mITSClustersArray[iClus];
931
932 auto layerClus = mGeometry->getLayer(clusDuplicated.getSensorID());
933 if (layerClus != layer) {
934 continue;
935 }
936
937 o2::math_utils::Point3D<float> clusDuplicatedPointTrack = {clusDuplicatedPoint.getX(), clusDuplicatedPoint.getY(), clusDuplicatedPoint.getZ()};
938 o2::math_utils::Point3D<float> clusDuplicatedPointGlob = mGeometry->getMatrixT2G(clusDuplicated.getSensorID()) * clusDuplicatedPointTrack;
939 phi = clusDuplicatedPointGlob.phi(); // * 180 / M_PI;
940
941 auto labsClus = mClustersMCLCont->getLabels(iClus); // ideally I can have more than one label per cluster
942 for (auto labC : labsClus) {
943 if (labC == labT) {
944 label_vecClus[iROF][layerClus][labT].push_back(iClus); // same cluster: label from the track = label from the cluster
945 // if a duplicate cluster is found, propagate the track to the duplicate cluster and compute the distance from the original cluster
946 // if (clusOriginalPointGlob != clusDuplicatedPointGlob) { /// check that the duplicated cluster is not the original one just counted twice
947 // if (clusDuplicated.getSensorID() != clusOriginal.getSensorID()) { /// check that the duplicated cluster is not the original one just counted twice
948
949 // applying constraints: the cluster should be on the same layer, should be on an adjacent stave and on the same or adjacent chip position
950 if (clusDuplicated.getSensorID() == clusOriginal.getSensorID()) {
951 continue;
952 }
953 auto layerDuplicated = mGeometry->getLayer(clusDuplicated.getSensorID());
954 if (layerDuplicated != layerClus) {
955 continue;
956 }
957 auto staveDuplicated = mGeometry->getStave(clusDuplicated.getSensorID());
958 if (abs(staveDuplicated - staveOriginal) != 1) {
959 continue;
960 }
961 auto chipDuplicated = mGeometry->getChipIdInStave(clusDuplicated.getSensorID());
962 if (abs(chipDuplicated - chipOriginal) > 1) {
963 continue;
964 }
965
966 duplicated[layer]++;
967 std::cout << "Taken L" << layer << " # " << duplicated[layer] << " : eta, phi = " << eta << " , " << phiOriginal << " Label: " << std::endl;
968 labC.print();
969 }
970 }
971 }
972 }
973 }
974 } // end loop on clusters
975 totClus += ncl;
976 } // end loop on tracks per ROF
977 } // end loop on ROFRecords array
978
979 LOGP(info, "Total number of possible cluster duplicated in L0: {} ", possibleduplicated[0]);
980 LOGP(info, "Total number of possible cluster duplicated in L1: {} ", possibleduplicated[1]);
981 LOGP(info, "Total number of possible cluster duplicated in L2: {} ", possibleduplicated[2]);
982
983 LOGP(info, "Total number of cluster duplicated in L0: {} ", duplicated[0]);
984 LOGP(info, "Total number of cluster duplicated in L1: {} ", duplicated[1]);
985 LOGP(info, "Total number of cluster duplicated in L2: {} ", duplicated[2]);
986}
987
989{
991
992 LOGP(info, "--------------- studyDCAcutsMC");
993
994 int duplicated = getDCAClusterTrackMC(0);
995
996 double meanDCAxyDuplicated[NLAYERS] = {0};
997 double meanDCAzDuplicated[NLAYERS] = {0};
998 double sigmaDCAxyDuplicated[NLAYERS] = {0};
999 double sigmaDCAzDuplicated[NLAYERS] = {0};
1000
1001 std::ofstream ofs("dcaValues.csv", std::ofstream::out);
1002 ofs << "layer,dcaXY,dcaZ,sigmaDcaXY,sigmaDcaZ" << std::endl;
1003
1004 for (int l = 0; l < NLAYERS; l++) {
1005 meanDCAxyDuplicated[l] = mDCAxyDuplicated_layer[l]->GetMean();
1006 meanDCAzDuplicated[l] = mDCAzDuplicated_layer[l]->GetMean();
1007 sigmaDCAxyDuplicated[l] = mDCAxyDuplicated_layer[l]->GetRMS();
1008 sigmaDCAzDuplicated[l] = mDCAzDuplicated_layer[l]->GetRMS();
1009 ofs << l << "," << meanDCAxyDuplicated[l] << "," << meanDCAzDuplicated[l] << "," << sigmaDCAxyDuplicated[l] << "," << sigmaDCAzDuplicated[l] << std::endl;
1010 }
1011
1012 for (int l = 0; l < NLAYERS; l++) {
1013 LOGP(info, "meanDCAxyDuplicated L{}: {}, meanDCAzDuplicated: {}, sigmaDCAxyDuplicated: {}, sigmaDCAzDuplicated: {}", l, meanDCAxyDuplicated[l], meanDCAzDuplicated[l], sigmaDCAxyDuplicated[l], sigmaDCAzDuplicated[l]);
1014 }
1015 // now we have the DCA distribution:
1016 // ->iterate again over tracks and over duplicated clusters and find the matching ones basing on DCA cuts (1 sigma, 2 sigma,...)
1017 // then control if the matching ones according to the DCA matches have the same label
1018 // if yes, then we have a good match -> increase the good match counter
1019 // if not, keep it as a fake match -> increase the fake match counter
1020 // the efficiency of each one will be match counter / total of the duplicated clusters
1021 o2::base::Propagator::MatCorrType matCorr = o2::base::Propagator::MatCorrType::USEMatCorrLUT;
1022 o2::gpu::gpustd::array<float, 2> clusOriginalDCA, clusDuplicatedDCA;
1023 auto propagator = o2::base::Propagator::Instance();
1024
1025 unsigned int rofIndexTrack = 0;
1026 unsigned int rofNEntriesTrack = 0;
1027 unsigned int rofIndexClus = 0;
1028 unsigned int rofNEntriesClus = 0;
1029 int nLabels = 0;
1030 unsigned int totClus = 0;
1031
1032 unsigned int nDCAMatches[20] = {0};
1033 unsigned int nGoodMatches[20] = {0};
1034 unsigned int nFakeMatches[20] = {0};
1035
1036 unsigned int nGoodMatches_layer[NLAYERS][20] = {0};
1037 unsigned int nFakeMatches_layer[NLAYERS][20] = {0};
1038
1039 int nbPt = 75;
1040 double xbins[nbPt + 1], ptcutl = 0.05, ptcuth = 7.5;
1041 double a = std::log(ptcuth / ptcutl) / nbPt;
1042 for (int i = 0; i <= nbPt; i++) {
1043 xbins[i] = ptcutl * std::exp(i * a);
1044 }
1045
1046 for (unsigned int iROF = 0; iROF < mTracksROFRecords.size(); iROF++) { // loop on ROFRecords array
1047 rofIndexTrack = mTracksROFRecords[iROF].getFirstEntry();
1048 rofNEntriesTrack = mTracksROFRecords[iROF].getNEntries();
1049
1050 rofIndexClus = mClustersROFRecords[iROF].getFirstEntry();
1051 rofNEntriesClus = mClustersROFRecords[iROF].getNEntries();
1052
1053 for (unsigned int iTrack = rofIndexTrack; iTrack < rofIndexTrack + rofNEntriesTrack; iTrack++) { // loop on tracks per ROF
1054 auto track = mTracks[iTrack];
1055 o2::track::TrackParCov trackParCov = mTracks[iTrack];
1056 auto pt = trackParCov.getPt();
1057 auto eta = trackParCov.getEta();
1058
1059 float ip[2];
1060 track.getImpactParams(0, 0, 0, 0, ip);
1061
1062 float phi = -999.;
1063 float phiOriginal = -999.;
1064 int firstClus = track.getFirstClusterEntry(); // get the first cluster of the track
1065 int ncl = track.getNumberOfClusters(); // get the number of clusters of the track
1066
1067 if (ncl < 7) {
1068 continue;
1069 }
1070
1071 auto& tracklab = mTracksMCLabels[iTrack];
1072 if (tracklab.isFake()) {
1073 continue;
1074 }
1075
1076 if (mVerboseOutput) {
1077 LOGP(info, "--------- track Label: ");
1078 tracklab.print();
1079 }
1080
1081 for (int iclTrack = firstClus; iclTrack < firstClus + ncl; iclTrack++) { // loop on clusters associated to the track to extract layer, stave and chip to restrict the possible matches to be searched with the DCA cut
1082 auto& clusOriginal = mClusters[mInputITSidxs[iclTrack]];
1083 auto clusOriginalPoint = mITSClustersArray[mInputITSidxs[iclTrack]]; // cluster spacepoint in the tracking system
1084 auto layerOriginal = mGeometry->getLayer(clusOriginal.getSensorID());
1085 if (layerOriginal >= NLAYERS) {
1086 continue;
1087 }
1088 auto labsOriginal = mClustersMCLCont->getLabels(mInputITSidxs[iclTrack]); // get labels of the cluster associated to the track (original)
1089 auto staveOriginal = mGeometry->getStave(clusOriginal.getSensorID());
1090 auto chipOriginal = mGeometry->getChipIdInStave(clusOriginal.getSensorID());
1091
1092 o2::math_utils::Point3D<float> clusOriginalPointTrack = {clusOriginalPoint.getX(), clusOriginalPoint.getY(), clusOriginalPoint.getZ()};
1093 o2::math_utils::Point3D<float> clusOriginalPointGlob = mGeometry->getMatrixT2G(clusOriginal.getSensorID()) * clusOriginalPointTrack;
1094
1095 phiOriginal = clusOriginalPointGlob.phi(); // * 180 / M_PI;
1096
1097 for (auto& labT : labsOriginal) { // for each valid label iterate over ALL the clusters in the ROF to see if there are duplicates
1098 if (labT != tracklab) {
1099 continue;
1100 }
1101 if (!labT.isValid()) {
1102 continue;
1103 }
1104
1106 for (unsigned int iClus = rofIndexClus; iClus < rofIndexClus + rofNEntriesClus; iClus++) { // iteration over ALL the clusters in the ROF
1107 auto clusDuplicated = mClusters[iClus];
1109 if (clusDuplicated.getSensorID() == clusOriginal.getSensorID()) {
1110 continue;
1111 }
1112 auto layerDuplicated = mGeometry->getLayer(clusDuplicated.getSensorID());
1113 if (layerDuplicated != layerOriginal) {
1114 continue;
1115 }
1116 auto staveDuplicated = mGeometry->getStave(clusDuplicated.getSensorID());
1117 if (abs(staveDuplicated - staveOriginal) != 1) {
1118 continue;
1119 }
1120 auto chipDuplicated = mGeometry->getChipIdInStave(clusDuplicated.getSensorID());
1121 if (abs(chipDuplicated - chipOriginal) > 1) {
1122 continue;
1123 }
1124
1125 auto labsDuplicated = mClustersMCLCont->getLabels(iClus);
1126
1128 auto clusDuplicatedPoint = mITSClustersArray[iClus];
1129
1130 o2::math_utils::Point3D<float> clusDuplicatedPointTrack = {clusDuplicatedPoint.getX(), clusDuplicatedPoint.getY(), clusDuplicatedPoint.getZ()};
1131 o2::math_utils::Point3D<float> clusDuplicatedPointGlob = mGeometry->getMatrixT2G(clusDuplicated.getSensorID()) * clusDuplicatedPointTrack;
1132 phi = clusDuplicatedPointGlob.phi(); // * 180 / M_PI;
1133
1135 trackParCov.rotate(mGeometry->getSensorRefAlpha(clusDuplicated.getSensorID()));
1136 if (propagator->propagateToDCA(clusDuplicatedPointGlob, trackParCov, b, 2.f, matCorr, &clusDuplicatedDCA)) { // check if the propagation fails
1137 if (mVerboseOutput) {
1138 LOGP(info, "Propagation ok");
1139 }
1141 for (int i = 0; i < 20; i++) {
1142 if (abs(dcaXY[layerDuplicated] - clusDuplicatedDCA[0]) < (i + 1) * sigmaDcaXY[layerDuplicated] && abs(dcaZ[layerDuplicated] - clusDuplicatedDCA[1]) < (i + 1) * sigmaDcaZ[layerDuplicated]) { // check if the DCA is within the cut i*sigma
1143
1144 if (mVerboseOutput) {
1145 LOGP(info, "Check DCA ok: {} < {}; {} < {}", abs(meanDCAxyDuplicated[layerDuplicated] - clusDuplicatedDCA[0]), (i + 1) * sigmaDCAxyDuplicated[layerDuplicated], abs(meanDCAzDuplicated[layerDuplicated] - clusDuplicatedDCA[1]), (i + 1) * sigmaDCAzDuplicated[layerDuplicated]);
1146 }
1147 nDCAMatches[i]++;
1148 bool isGoodMatch = false;
1149
1150 for (auto labD : labsDuplicated) { // at this point the track has been matched with a duplicated cluster based on the DCA cut. Now we check if the matching is good ore not based on the label
1151 if (mVerboseOutput) {
1152 LOGP(info, "tracklab, labD:");
1153 tracklab.print();
1154 labD.print();
1155 }
1156 if (labD == tracklab) {
1157 isGoodMatch = true;
1158 continue;
1159 }
1160 }
1161
1162 if (isGoodMatch) {
1163 nGoodMatches[i]++;
1164 nGoodMatches_layer[layerDuplicated][i]++;
1165 mnGoodMatchesPt_layer[layerDuplicated]->Fill(pt, i);
1166 mnGoodMatchesEta_layer[layerDuplicated]->Fill(eta, i);
1167 mnGoodMatchesPhi_layer[layerDuplicated]->Fill(phi, i);
1168 mnGoodMatchesPhiOriginal_layer[layerDuplicated]->Fill(phiOriginal, i);
1169 } else {
1170
1171 nFakeMatches[i]++;
1172 nFakeMatches_layer[layerDuplicated][i]++;
1173 mnFakeMatchesPt_layer[layerDuplicated]->Fill(pt, i);
1174 mnFakeMatchesEta_layer[layerDuplicated]->Fill(eta, i);
1175 mnFakeMatchesPhi_layer[layerDuplicated]->Fill(phi, i);
1176 }
1177 } else if (mVerboseOutput) {
1178 LOGP(info, "Check DCA failed");
1179 }
1180 }
1181 } else if (mVerboseOutput) {
1182 LOGP(info, "Propagation failed");
1183 }
1184 } // end loop on all the clusters in the rof
1185 }
1186 } // end loop on clusters associated to the track
1187 } // end loop on tracks per ROF
1188 } // end loop on ROFRecords array
1189
1190 for (int i = 0; i < 20; i++) {
1191 LOGP(info, "Cut: {} sigma -> number of duplicated clusters: {} nDCAMatches: {} nGoodMatches: {} nFakeMatches: {}", i + 1, duplicated, nDCAMatches[i], nGoodMatches[i], nFakeMatches[i]);
1192 mEfficiencyGoodMatch->SetBinContent(i + 1, nGoodMatches[i]);
1193 mEfficiencyFakeMatch->SetBinContent(i + 1, nFakeMatches[i]);
1194 mEfficiencyTotal->SetBinContent(i + 1, double(nGoodMatches[i] + nFakeMatches[i]));
1195
1196 for (int l = 0; l < NLAYERS; l++) {
1197 mEfficiencyGoodMatch_layer[l]->SetBinContent(i + 1, nGoodMatches_layer[l][i]);
1198 mEfficiencyFakeMatch_layer[l]->SetBinContent(i + 1, nFakeMatches_layer[l][i]);
1199 mEfficiencyTotal_layer[l]->SetBinContent(i + 1, double(nGoodMatches_layer[l][i] + nFakeMatches_layer[l][i]));
1200
1201 for (int ipt = 0; ipt < mPtDuplicated[l]->GetNbinsX(); ipt++) {
1202 if (mPtDuplicated[l]->GetBinContent(ipt + 1) != 0) {
1203 mEfficiencyGoodMatchPt_layer[l]->SetBinContent(ipt + 1, i + 1, mnGoodMatchesPt_layer[l]->GetBinContent(ipt + 1, i + 1) / mPtDuplicated[l]->GetBinContent(ipt + 1));
1204 }
1205 mEfficiencyFakeMatchPt_layer[l]->SetBinContent(ipt + 1, i + 1, mnFakeMatchesPt_layer[l]->GetBinContent(ipt + 1, i + 1) / mPtDuplicated[l]->GetBinContent(ipt + 1));
1206 }
1207
1208 for (int ieta = 0; ieta < mEtaDuplicated[l]->GetNbinsX(); ieta++) {
1209 if (mEtaDuplicated[l]->GetBinContent(ieta + 1) != 0) {
1210 mEfficiencyGoodMatchEta_layer[l]->SetBinContent(ieta + 1, i + 1, mnGoodMatchesEta_layer[l]->GetBinContent(ieta + 1, i + 1) / mEtaDuplicated[l]->GetBinContent(ieta + 1));
1211 }
1212 mEfficiencyFakeMatchEta_layer[l]->SetBinContent(ieta + 1, i + 1, mnFakeMatchesEta_layer[l]->GetBinContent(ieta + 1, i + 1) / mEtaDuplicated[l]->GetBinContent(ieta + 1));
1213 }
1214
1215 for (int iphi = 0; iphi < mPhiDuplicated[l]->GetNbinsX(); iphi++) {
1216 if (mPhiDuplicated[l]->GetBinContent(iphi + 1) != 0) {
1217 mEfficiencyGoodMatchPhi_layer[l]->SetBinContent(iphi + 1, i + 1, mnGoodMatchesPhi_layer[l]->GetBinContent(iphi + 1, i + 1) / mPhiDuplicated[l]->GetBinContent(iphi + 1));
1218 }
1219 mEfficiencyFakeMatchPhi_layer[l]->SetBinContent(iphi + 1, i + 1, mnFakeMatchesPhi_layer[l]->GetBinContent(iphi + 1, i + 1) / mPhiDuplicated[l]->GetBinContent(iphi + 1));
1220 }
1221
1222 for (int iphi = 0; iphi < mPhiOriginalIfDuplicated[l]->GetNbinsX(); iphi++) {
1223 if (mPhiOriginalIfDuplicated[l]->GetBinContent(iphi + 1) != 0) {
1224 mEfficiencyGoodMatchPhiOriginal_layer[l]->SetBinContent(iphi + 1, i + 1, mnGoodMatchesPhiOriginal_layer[l]->GetBinContent(iphi + 1, i + 1) / mPhiOriginalIfDuplicated[l]->GetBinContent(iphi + 1));
1225 }
1226 }
1227 }
1228 }
1229 for (int i = 0; i < NLAYERS; i++) {
1230 std::cout << "+++++++++ Duplicated in layer L" << i << ": " << mDuplicated_layer[i] << std::endl;
1231 }
1232
1233 for (int l = 0; l < NLAYERS; l++) {
1234 mEfficiencyGoodMatch_layer[l]->Scale(1. / double(mDuplicated_layer[l]), "b");
1235 mEfficiencyFakeMatch_layer[l]->Scale(1. / double(mDuplicated_layer[l]), "b");
1236 mEfficiencyTotal_layer[l]->Scale(1. / double(mDuplicated_layer[l]), "b");
1237 }
1238
1239 mEfficiencyGoodMatch->Scale(1. / double(duplicated), "b");
1240 mEfficiencyFakeMatch->Scale(1. / double(duplicated), "b");
1241 mEfficiencyTotal->Scale(1. / double(duplicated), "b");
1242
1243 mOutFile->mkdir("EffVsDCA2D/");
1244 mOutFile->cd("EffVsDCA2D/");
1245 for (int l = 0; l < NLAYERS; l++) {
1246 mEfficiencyGoodMatchPt_layer[l]->GetZaxis()->SetRangeUser(0, 1);
1247 mEfficiencyGoodMatchPt_layer[l]->Write();
1248 mEfficiencyGoodMatchEta_layer[l]->GetZaxis()->SetRangeUser(0, 1);
1249 mEfficiencyGoodMatchEta_layer[l]->Write();
1250 mEfficiencyGoodMatchPhi_layer[l]->GetZaxis()->SetRangeUser(0, 1);
1251 mEfficiencyGoodMatchPhi_layer[l]->Write();
1252 mEfficiencyGoodMatchPhiOriginal_layer[l]->GetZaxis()->SetRangeUser(0, 1);
1253 mEfficiencyGoodMatchPhiOriginal_layer[l]->Write();
1254 mEfficiencyFakeMatchPt_layer[l]->GetZaxis()->SetRangeUser(0, 1);
1255 mEfficiencyFakeMatchPt_layer[l]->Write();
1256 mEfficiencyFakeMatchEta_layer[l]->GetZaxis()->SetRangeUser(0, 1);
1257 mEfficiencyFakeMatchEta_layer[l]->Write();
1258 mEfficiencyFakeMatchPhi_layer[l]->GetZaxis()->SetRangeUser(0, 1);
1259 mEfficiencyFakeMatchPhi_layer[l]->Write();
1260 }
1261
1262 mOutFile->mkdir("Efficiency/");
1263 mOutFile->cd("Efficiency/");
1264 mEfficiencyGoodMatch->Write();
1265 mEfficiencyFakeMatch->Write();
1266 mEfficiencyTotal->Write();
1267 for (int l = 0; l < NLAYERS; l++) {
1268
1269 mEfficiencyGoodMatch_layer[l]->Write();
1270 mEfficiencyFakeMatch_layer[l]->Write();
1271 mEfficiencyTotal_layer[l]->Write();
1272
1273 mEfficiencyGoodMatch_layer[l]->GetYaxis()->SetRangeUser(-0.1, 1.1);
1274 mEfficiencyFakeMatch_layer[l]->GetYaxis()->SetRangeUser(-0.1, 1.1);
1275 mEfficiencyTotal_layer[l]->GetYaxis()->SetRangeUser(-0.1, 1.1);
1276 }
1277
1278 mEfficiencyGoodMatch->GetYaxis()->SetRangeUser(-0.1, 1.1);
1279 mEfficiencyFakeMatch->GetYaxis()->SetRangeUser(-0.1, 1.1);
1280 mEfficiencyTotal->GetYaxis()->SetRangeUser(-0.1, 1.1);
1281
1282 TCanvas c;
1283 c.SetName("EffVsDCA_allLayers");
1284 auto leg = std::make_unique<TLegend>(0.75, 0.45, 0.89, 0.65);
1285 leg->AddEntry(mEfficiencyGoodMatch.get(), "#frac{# good matches}{# tot duplicated clusters}", "p");
1286 leg->AddEntry(mEfficiencyFakeMatch.get(), "#frac{# fake matches}{# tot duplicated clusters}", "p");
1287 leg->AddEntry(mEfficiencyTotal.get(), "#frac{# tot matches}{# tot duplicated clusters}", "p");
1288
1289 mEfficiencyGoodMatch->Draw("P l E1_NOSTAT PLC PMC ");
1290 mEfficiencyFakeMatch->Draw("same P l E1_NOSTAT PLC PMC");
1291 mEfficiencyTotal->Draw("same P l E1_NOSTAT PLC PMC");
1292 leg->Draw("same");
1293 c.Write();
1294
1295 TCanvas cc[NLAYERS];
1296 for (int l = 0; l < NLAYERS; l++) {
1297 cc[l].cd();
1298 cc[l].SetName(Form("EffVsDCA_layer_L%d", l));
1299
1300 auto leg = std::make_unique<TLegend>(0.75, 0.45, 0.89, 0.65);
1301 leg->AddEntry(mEfficiencyGoodMatch_layer[l].get(), "#frac{# good matches}{# tot duplicated clusters}", "p");
1302 leg->AddEntry(mEfficiencyFakeMatch_layer[l].get(), "#frac{# fake matches}{# tot duplicated clusters}", "p");
1303 leg->AddEntry(mEfficiencyTotal_layer[l].get(), "#frac{# tot matches}{# tot duplicated clusters}", "p");
1304
1305 mEfficiencyGoodMatch_layer[l]->SetLineColor(kBlue + 3);
1306 mEfficiencyGoodMatch_layer[l]->SetMarkerColor(kBlue + 3);
1307 mEfficiencyGoodMatch_layer[l]->Draw("P l E1_NOSTAT");
1308 mEfficiencyFakeMatch_layer[l]->SetLineColor(kAzure + 7);
1309 mEfficiencyFakeMatch_layer[l]->SetMarkerColor(kAzure + 7);
1310 mEfficiencyFakeMatch_layer[l]->Draw("same P l E1_NOSTAT");
1311 mEfficiencyTotal_layer[l]->SetLineColor(kGreen + 1);
1312 mEfficiencyTotal_layer[l]->SetMarkerColor(kGreen + 1);
1313 mEfficiencyTotal_layer[l]->Draw("same P l E1_NOSTAT");
1314 leg->Draw("same");
1315 cc[l].Write();
1316 }
1317}
1318
1320{
1322 // study to find a good selection method for the duplicated cluster, to be used for non-MC data
1323 // iterate over tracks an associated clusters, and find the closer cluster that is not the original one applying cuts on staveID and chipID
1324 // fix the DCA < 10 sigma, then compute the efficiency for each bin of pt, eta and phi and also in the rows
1325
1326 LOGP(info, "--------------- studyClusterSelection");
1327
1328 int duplicated = getDCAClusterTrackMC(1);
1329
1330 std::cout << "duplicated: " << duplicated << std::endl;
1331
1332 double meanDCAxyDuplicated[NLAYERS] = {0};
1333 double meanDCAzDuplicated[NLAYERS] = {0};
1334 double sigmaDCAxyDuplicated[NLAYERS] = {0};
1335 double sigmaDCAzDuplicated[NLAYERS] = {0};
1336
1337 for (int l = 0; l < NLAYERS; l++) {
1338 meanDCAxyDuplicated[l] = mDCAxyDuplicated_layer[l]->GetMean();
1339 meanDCAzDuplicated[l] = mDCAzDuplicated_layer[l]->GetMean();
1340 sigmaDCAxyDuplicated[l] = mDCAxyDuplicated_layer[l]->GetRMS();
1341 sigmaDCAzDuplicated[l] = mDCAzDuplicated_layer[l]->GetRMS();
1342 }
1343
1344 for (int l = 0; l < NLAYERS; l++) {
1345 LOGP(info, "meanDCAxyDuplicated L{}: {}, meanDCAzDuplicated: {}, sigmaDCAxyDuplicated: {}, sigmaDCAzDuplicated: {}", l, meanDCAxyDuplicated[l], meanDCAzDuplicated[l], sigmaDCAxyDuplicated[l], sigmaDCAzDuplicated[l]);
1346 }
1347
1348 o2::base::Propagator::MatCorrType matCorr = o2::base::Propagator::MatCorrType::USEMatCorrLUT;
1349 o2::gpu::gpustd::array<float, 2> clusOriginalDCA, clusDuplicatedDCA;
1350 auto propagator = o2::base::Propagator::Instance();
1351
1352 unsigned int rofIndexTrack = 0;
1353 unsigned int rofNEntriesTrack = 0;
1354 unsigned int rofIndexClus = 0;
1355 unsigned int rofNEntriesClus = 0;
1356 int nLabels = 0;
1357 unsigned int totClus = 0;
1358
1359 unsigned int nDCAMatches[15] = {0};
1360 unsigned int nGoodMatches[15] = {0};
1361 unsigned int nFakeMatches[15] = {0};
1362
1363 std::map<std::tuple<int, double, o2::MCCompLabel>, bool> clusterMatchesPtEta[100][100] = {};
1364
1365 for (unsigned int iROF = 0; iROF < mTracksROFRecords.size(); iROF++) { // loop on ROFRecords array
1366 rofIndexTrack = mTracksROFRecords[iROF].getFirstEntry();
1367 rofNEntriesTrack = mTracksROFRecords[iROF].getNEntries();
1368
1369 rofIndexClus = mClustersROFRecords[iROF].getFirstEntry();
1370 rofNEntriesClus = mClustersROFRecords[iROF].getNEntries();
1371
1373 for (unsigned int iTrack = rofIndexTrack; iTrack < rofIndexTrack + rofNEntriesTrack; iTrack++) { // loop on tracks per ROF
1374 auto track = mTracks[iTrack];
1375 o2::track::TrackParCov trackParCov = mTracks[iTrack];
1376
1378 float ip[2];
1379 track.getImpactParams(0, 0, 0, 0, ip);
1380
1381 int firstClus = track.getFirstClusterEntry(); // get the first cluster of the track
1382 int ncl = track.getNumberOfClusters(); // get the number of clusters of the track
1383
1384 if (ncl < 7) {
1385 continue;
1386 }
1387
1388 auto& tracklab = mTracksMCLabels[iTrack];
1389 if (tracklab.isFake()) {
1390 continue;
1391 }
1392
1393 auto pt = trackParCov.getPt();
1394 auto eta = trackParCov.getEta();
1395
1396 float phi = -999.;
1397 float phiOriginal = -999.;
1398 float phiDuplicated = -999.;
1399 UShort_t row = -999;
1400
1401 if (mVerboseOutput) {
1402 LOGP(info, "--------- track Label: ");
1403 tracklab.print();
1404 }
1405 for (int iclTrack = firstClus; iclTrack < firstClus + ncl; iclTrack++) { // loop on clusters associated to the track to extract layer, stave and chip to restrict the possible matches to be searched with the DCA cut
1406 auto& clusOriginal = mClusters[mInputITSidxs[iclTrack]];
1407 auto layerOriginal = mGeometry->getLayer(clusOriginal.getSensorID());
1408 if (layerOriginal >= NLAYERS) {
1409 continue;
1410 }
1411
1412 IPOriginalxy[layerOriginal]->Fill(ip[0]);
1413 IPOriginalz[layerOriginal]->Fill(ip[1]);
1414
1415 UShort_t rowOriginal = clusOriginal.getRow();
1416
1417 auto clusOriginalPoint = mITSClustersArray[mInputITSidxs[iclTrack]];
1418 o2::math_utils::Point3D<float> clusOriginalPointTrack = {clusOriginalPoint.getX(), clusOriginalPoint.getY(), clusOriginalPoint.getZ()};
1419 o2::math_utils::Point3D<float> clusOriginalPointGlob = mGeometry->getMatrixT2G(clusOriginal.getSensorID()) * clusOriginalPointTrack;
1420
1421 auto phiOriginal = clusOriginalPointGlob.phi(); // * 180 / M_PI;
1422
1423 auto labsOriginal = mClustersMCLCont->getLabels(mInputITSidxs[iclTrack]); // get labels of the cluster associated to the track (original)
1424 auto staveOriginal = mGeometry->getStave(clusOriginal.getSensorID());
1425 auto chipOriginal = mGeometry->getChipIdInStave(clusOriginal.getSensorID());
1426
1427 std::tuple<int, double, gsl::span<const o2::MCCompLabel>> clusID_rDCA_label = {0, 999., gsl::span<const o2::MCCompLabel>()}; // inizializing tuple with dummy values
1428
1429 bool adjacentFound = 0;
1431 for (unsigned int iClus = rofIndexClus; iClus < rofIndexClus + rofNEntriesClus; iClus++) { // iteration over ALL the clusters in the ROF
1432 auto clusDuplicated = mClusters[iClus];
1433
1435 if (clusDuplicated.getSensorID() == clusOriginal.getSensorID()) {
1436 continue;
1437 }
1438 auto layerDuplicated = mGeometry->getLayer(clusDuplicated.getSensorID());
1439 if (layerDuplicated != layerOriginal) {
1440 continue;
1441 }
1442 auto staveDuplicated = mGeometry->getStave(clusDuplicated.getSensorID());
1443 if (abs(staveDuplicated - staveOriginal) != 1) {
1444 continue;
1445 }
1446 auto chipDuplicated = mGeometry->getChipIdInStave(clusDuplicated.getSensorID());
1447 if (abs(chipDuplicated - chipOriginal) > 1) {
1448 continue;
1449 }
1450
1451 auto labsDuplicated = mClustersMCLCont->getLabels(iClus);
1452
1454 auto clusDuplicatedPoint = mITSClustersArray[iClus];
1455
1456 o2::math_utils::Point3D<float> clusDuplicatedPointTrack = {clusDuplicatedPoint.getX(), clusDuplicatedPoint.getY(), clusDuplicatedPoint.getZ()};
1457 o2::math_utils::Point3D<float> clusDuplicatedPointGlob = mGeometry->getMatrixT2G(clusDuplicated.getSensorID()) * clusDuplicatedPointTrack;
1458
1459 auto phiDuplicated = clusDuplicatedPointGlob.phi(); // * 180 / M_PI;
1460
1462 trackParCov.rotate(mGeometry->getSensorRefAlpha(clusDuplicated.getSensorID()));
1463 if (!propagator->propagateToDCA(clusDuplicatedPointGlob, trackParCov, b, 2.f, matCorr, &clusDuplicatedDCA)) { // check if the propagation fails
1464 continue;
1465 }
1466
1467 // Imposing that the distance between the original cluster and the duplicated one is less than x sigma
1468 if (!(clusDuplicatedDCA[0] > mDCACutsXY[layerDuplicated][0] && clusDuplicatedDCA[0] < mDCACutsXY[layerDuplicated][1] && clusDuplicatedDCA[1] > mDCACutsZ[layerDuplicated][0] && clusDuplicatedDCA[1] < mDCACutsZ[layerDuplicated][1])) {
1469 continue;
1470 }
1471
1472 if (mVerboseOutput) {
1473 LOGP(info, "Propagation ok");
1474 }
1475 double rDCA = std::hypot(clusDuplicatedDCA[0], clusDuplicatedDCA[1]);
1476
1477 // taking the closest cluster within x sigma
1478 if (rDCA < std::get<1>(clusID_rDCA_label)) { // updating the closest cluster
1479 clusID_rDCA_label = {iClus, rDCA, labsDuplicated};
1480 phi = phiDuplicated;
1481 row = rowOriginal;
1482 }
1483 adjacentFound = 1;
1484
1485 } // end loop on all the clusters in the rof
1486
1487 // here clusID_rDCA_label is updated with the closest cluster to the track other than the original one
1488 // checking if it is a good or fake match looking at the labels
1489
1490 if (!adjacentFound) {
1491 continue;
1492 }
1493
1494 bool isGood = false;
1495 for (auto lab : std::get<2>(clusID_rDCA_label)) {
1496 if (lab == tracklab) {
1497 isGood = true;
1498
1499 mNGoodMatchesPt[layerOriginal]->Fill(pt);
1500 mNGoodMatchesRow[layerOriginal]->Fill(row);
1501 mNGoodMatchesCol[layerOriginal]->Fill(clusOriginal.getCol());
1502 mNGoodMatchesZ[layerOriginal]->Fill(clusOriginalPointGlob.Z());
1503 mNGoodMatchesPtEta[layerOriginal]->Fill(pt, eta);
1504 mNGoodMatchesPtPhi[layerOriginal]->Fill(pt, phi);
1505 mNGoodMatchesEtaPhi[layerOriginal]->Fill(eta, phi);
1506
1507 mNGoodMatchesEtaAllPt[layerOriginal]->Fill(eta);
1508 mNGoodMatchesPhiAllPt[layerOriginal]->Fill(phi);
1509 for (int ipt = 0; ipt < 3; ipt++) {
1510 if (pt >= mrangesPt[ipt][0] && pt < mrangesPt[ipt][1]) {
1511 mNGoodMatchesEta[layerOriginal][ipt]->Fill(eta);
1512 mNGoodMatchesPhi[layerOriginal][ipt]->Fill(phi);
1513 }
1514 }
1515
1516 break;
1517 }
1518 }
1519 if (!isGood) {
1520
1521 mNFakeMatchesPt[layerOriginal]->Fill(pt);
1522 mNFakeMatchesRow[layerOriginal]->Fill(row);
1523 mNFakeMatchesCol[layerOriginal]->Fill(clusOriginal.getCol());
1524 mNFakeMatchesZ[layerOriginal]->Fill(clusOriginalPointGlob.Z());
1525 mNFakeMatchesPtEta[layerOriginal]->Fill(pt, eta);
1526 mNFakeMatchesPtPhi[layerOriginal]->Fill(pt, phi);
1527 mNFakeMatchesEtaPhi[layerOriginal]->Fill(eta, phi);
1528 mNFakeMatchesEtaAllPt[layerOriginal]->Fill(eta);
1529 mNFakeMatchesPhiAllPt[layerOriginal]->Fill(phi);
1530
1531 for (int ipt = 0; ipt < 3; ipt++) {
1532 if (pt >= mrangesPt[ipt][0] && pt < mrangesPt[ipt][1]) {
1533 mNFakeMatchesEta[layerOriginal][ipt]->Fill(eta);
1534 mNFakeMatchesPhi[layerOriginal][ipt]->Fill(phi);
1535 }
1536 }
1537 }
1538 } // end loop on clusters associated to the track
1539 } // end loop on tracks per ROF
1540 } // end loop on ROFRecords array
1541
1542 mOutFile->mkdir("EfficiencyCuts/");
1543 mOutFile->cd("EfficiencyCuts/");
1544
1545 std::cout << "Calculating efficiency..." << std::endl;
1546 std::unique_ptr<TH1D> axpt = std::make_unique<TH1D>("axpt", "", 1, 0.05, 7.5);
1547 std::unique_ptr<TH1D> axRow = std::make_unique<TH1D>("axRow", "", 1, -0.5, 511.5);
1548 std::unique_ptr<TH1D> axCol = std::make_unique<TH1D>("axRow", "", 1, -0.5, 1023.5);
1549 std::unique_ptr<TH1D> axZ = std::make_unique<TH1D>("axZ", "", 1, -15, 15);
1550 std::unique_ptr<TH2D> axptetaGood = std::make_unique<TH2D>("axptetaGood", "", 1, 0.05, 7.5, 1, -2, 2);
1551 std::unique_ptr<TH2D> axptetaFake = std::make_unique<TH2D>("axptetaFake", "", 1, 0.05, 7.5, 1, -2, 2);
1552 std::unique_ptr<TH2D> axptphiGood = std::make_unique<TH2D>("axptphiGood", "", 1, 0.05, 7.5, 1, -3.2, 3.2);
1553 std::unique_ptr<TH2D> axptphiFake = std::make_unique<TH2D>("axptphiFake", "", 1, 0.05, 7.5, 1, -3.2, 3.2);
1554 std::unique_ptr<TH2D> axetaphiGood = std::make_unique<TH2D>("axetaphiGood", "", 1, -2, 2, 1, -3.2, 3.2);
1555 std::unique_ptr<TH2D> axetaphiFake = std::make_unique<TH2D>("axetaphiFake", "", 1, -2, 2, 1, -3.2, 3.2);
1556 std::unique_ptr<TH1D> axetaAllPt = std::make_unique<TH1D>("axetaAllPt", "", 1, -2, 2);
1557 std::unique_ptr<TH1D> axeta[NLAYERS];
1558 std::unique_ptr<TH1D> axphi[NLAYERS];
1559 for (int ipt = 0; ipt < 3; ipt++) {
1560 axeta[ipt] = std::make_unique<TH1D>(Form("axeta%d", ipt), Form("axeta%d", ipt), 1, -2, 2);
1561 axphi[ipt] = std::make_unique<TH1D>(Form("axphi%d", ipt), Form("axphi%d", ipt), 1, -3.2, 3.2);
1562 }
1563 std::unique_ptr<TH1D> axphiAllPt = std::make_unique<TH1D>("axphi", "", 1, -3.2, 3.2);
1564
1565 std::unique_ptr<TCanvas> effPt[NLAYERS];
1566 std::unique_ptr<TCanvas> effRow[NLAYERS];
1567 std::unique_ptr<TCanvas> effCol[NLAYERS];
1568 std::unique_ptr<TCanvas> effZ[NLAYERS];
1569 std::unique_ptr<TCanvas> effPtEta[NLAYERS][2];
1570 std::unique_ptr<TCanvas> effPtPhi[NLAYERS][2];
1571 std::unique_ptr<TCanvas> effEtaPhi[NLAYERS][2];
1572 std::unique_ptr<TCanvas> effEtaAllPt[NLAYERS];
1573 std::unique_ptr<TCanvas> effEta[NLAYERS][3];
1574 std::unique_ptr<TCanvas> effPhiAllPt[NLAYERS];
1575 std::unique_ptr<TCanvas> effPhi[NLAYERS][3];
1576
1578 for (int l = 0; l < 3; l++) {
1579 if (mVerboseOutput) {
1580 std::cout << "Pt L" << l << "\n\n";
1581 }
1582
1583 // Pt
1584 effPt[l] = std::make_unique<TCanvas>(Form("effPt_L%d", l));
1585
1586 mEffPtGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesPt[l], *mDuplicatedPt[l]);
1587 stileEfficiencyGraph(mEffPtGood[l], Form("mEffPtGood_L%d", l), Form("L%d;#it{p}_{T} (GeV/#it{c});Efficiency", l), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1588
1589 for (int ibin = 1; ibin <= mNFakeMatchesPt[l]->GetNbinsX(); ibin++) {
1590 if (mNFakeMatchesPt[l]->GetBinContent(ibin) > mDuplicatedPt[l]->GetBinContent(ibin)) {
1591 std::cout << "--- Pt: Npass = " << mNFakeMatchesPt[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedPt[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1592 mNFakeMatchesPt[l]->SetBinContent(ibin, mDuplicatedPt[l]->GetBinContent(ibin));
1593 }
1594 }
1595 mEffPtFake[l] = std::make_unique<TEfficiency>(*mNFakeMatchesPt[l], *mDuplicatedPt[l]);
1596 stileEfficiencyGraph(mEffPtFake[l], Form("mEffPtFake_L%d", l), Form("L%d;#it{p}_{T} (GeV/#it{c});Efficiency", l), false, kFullDiamond, 1, kRed + 1, kRed + 1);
1597
1598 axpt->SetTitle(Form("L%d;#it{p}_{T} (GeV/#it{c});Efficiency", l));
1599 axpt->GetYaxis()->SetRangeUser(-0.1, 1.1);
1600 axpt->GetXaxis()->SetRangeUser(0.05, 7.5);
1601 axpt->Draw();
1602 mEffPtGood[l]->Draw("same p");
1603 mEffPtFake[l]->Draw("same p");
1604
1605 auto legpt = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
1606 legpt->AddEntry(mEffPtGood[l].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
1607 legpt->AddEntry(mEffPtFake[l].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
1608 legpt->Draw("same");
1609 effPt[l]->Write();
1610
1611 // PtEtaGood
1612 effPtEta[l][0] = std::make_unique<TCanvas>(Form("effPtEtaGood_L%d", l));
1613
1614 mEffPtEtaGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesPtEta[l], *mDuplicatedPtEta[l]);
1615 stileEfficiencyGraph(mEffPtEtaGood[l], Form("mEffPtEtaGood_L%d", l), Form("L%d;#it{p}_{T} (GeV/#it{c});#eta;Efficiency", l), true);
1616
1617 axptetaGood->SetTitle(Form("L%d;#it{p}_{T} (GeV/#it{c});#eta;Efficiency", l));
1618 axptetaGood->GetZaxis()->SetRangeUser(-0.1, 1.1);
1619 axptetaGood->GetYaxis()->SetRangeUser(-2., 2.);
1620 axptetaGood->GetXaxis()->SetRangeUser(0.05, 7.5);
1621 axptetaGood->Draw();
1622 mEffPtEtaGood[l]->Draw("same colz");
1623 effPtEta[l][0]->Update();
1624 effPtEta[l][0]->Write();
1625
1626 if (mVerboseOutput) {
1627 std::cout << "Underflow (bin 0,0): " << mNFakeMatchesPtEta[l]->GetBinContent(0, 0) << " " << mDuplicatedPtEta[l]->GetBinContent(0, 0) << std::endl;
1628 std::cout << "Overflow (bin nbinsx,nbinsy): " << mNFakeMatchesPtEta[l]->GetNbinsX() << " " << mNFakeMatchesPtEta[l]->GetNbinsY() << " -> " << mNFakeMatchesPtEta[l]->GetBinContent(mNFakeMatchesPtEta[l]->GetNbinsX(), mNFakeMatchesPtEta[l]->GetNbinsY()) << " " << mDuplicatedPtEta[l]->GetBinContent(mNFakeMatchesPtEta[l]->GetNbinsX(), mNFakeMatchesPtEta[l]->GetNbinsY()) << std::endl;
1629 }
1630
1631 for (int ibin = 1; ibin <= mNFakeMatchesPtEta[l]->GetNbinsX(); ibin++) {
1632 for (int jbin = 1; jbin <= mNFakeMatchesPtEta[l]->GetNbinsY(); jbin++) {
1633 if (mNFakeMatchesPtEta[l]->GetBinContent(ibin, jbin) > mDuplicatedPtEta[l]->GetBinContent(ibin, jbin)) {
1634 if (mVerboseOutput) {
1635 std::cout << "--- PtEta fakematches : Npass = " << mNFakeMatchesPtEta[l]->GetBinContent(ibin, jbin) << ", Nall = " << mDuplicatedPtEta[l]->GetBinContent(ibin, jbin) << " for ibin = " << ibin << ", jbin = " << jbin << std::endl;
1636 }
1637 mNFakeMatchesPtEta[l]->SetBinContent(ibin, jbin, mDuplicatedPtEta[l]->GetBinContent(ibin, jbin));
1638 }
1639 }
1640 }
1641
1642 // Row
1643 effRow[l] = std::make_unique<TCanvas>(Form("effRow_L%d", l));
1644
1645 for (int ibin = 1; ibin <= mNGoodMatchesRow[l]->GetNbinsX(); ibin++) {
1646 std::cout << "--- Good Row: Npass = " << mNGoodMatchesRow[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedRow[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1647 }
1648
1649 mEffRowGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesRow[l], *mDuplicatedRow[l]);
1650 stileEfficiencyGraph(mEffRowGood[l], Form("mEffRowGood_L%d", l), Form("L%d;Row;Efficiency", l), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1651
1652 for (int ibin = 1; ibin <= mNFakeMatchesRow[l]->GetNbinsX(); ibin++) {
1653 if (mNFakeMatchesRow[l]->GetBinContent(ibin) > mDuplicatedRow[l]->GetBinContent(ibin)) {
1654 std::cout << "--- Row: Npass = " << mNFakeMatchesRow[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedRow[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1655 mNFakeMatchesRow[l]->SetBinContent(ibin, mDuplicatedRow[l]->GetBinContent(ibin));
1656 }
1657 }
1658 mEffRowFake[l] = std::make_unique<TEfficiency>(*mNFakeMatchesRow[l], *mDuplicatedRow[l]);
1659 stileEfficiencyGraph(mEffRowFake[l], Form("mEffRowFake_L%d", l), Form("L%d;Row;Efficiency", l), false, kFullDiamond, 1, kRed + 1, kRed + 1);
1660
1661 axRow->SetTitle(Form("L%d;Row;Efficiency", l));
1662 axRow->GetYaxis()->SetRangeUser(-0.1, 1.1);
1663 axRow->GetXaxis()->SetRangeUser(0, 512);
1664 axRow->Draw();
1665 mEffRowGood[l]->Draw("same p");
1666 mEffRowFake[l]->Draw("same p");
1667
1668 auto legRow = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
1669 legRow->AddEntry(mEffRowGood[l].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
1670 legRow->AddEntry(mEffRowFake[l].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
1671 legRow->Draw("same");
1672 effRow[l]->Write();
1673
1674 // Col
1675 effCol[l] = std::make_unique<TCanvas>(Form("effCol_L%d", l));
1676
1677 for (int ibin = 1; ibin <= mNGoodMatchesCol[l]->GetNbinsX(); ibin++) {
1678 std::cout << "--- Good Col: Npass = " << mNGoodMatchesCol[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedCol[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1679 }
1680
1681 mEffColGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesCol[l], *mDuplicatedCol[l]);
1682 stileEfficiencyGraph(mEffColGood[l], Form("mEffColGood_L%d", l), Form("L%d;Col;Efficiency", l), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1683
1684 for (int ibin = 1; ibin <= mNFakeMatchesCol[l]->GetNbinsX(); ibin++) {
1685 if (mNFakeMatchesCol[l]->GetBinContent(ibin) > mDuplicatedCol[l]->GetBinContent(ibin)) {
1686 std::cout << "--- Col: Npass = " << mNFakeMatchesCol[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedCol[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1687 mNFakeMatchesCol[l]->SetBinContent(ibin, mDuplicatedCol[l]->GetBinContent(ibin));
1688 }
1689 }
1690 mEffColFake[l] = std::make_unique<TEfficiency>(*mNFakeMatchesCol[l], *mDuplicatedCol[l]);
1691 stileEfficiencyGraph(mEffColFake[l], Form("mEffColFake_L%d", l), Form("L%d;Col;Efficiency", l), false, kFullDiamond, 1, kRed + 1, kRed + 1);
1692
1693 axCol->SetTitle(Form("L%d;Col;Efficiency", l));
1694 axCol->GetYaxis()->SetRangeUser(-0.1, 1.1);
1695 axCol->GetXaxis()->SetRangeUser(0, 1024);
1696 axCol->Draw();
1697 mEffColGood[l]->Draw("same p");
1698 mEffColFake[l]->Draw("same p");
1699
1700 auto legCol = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
1701 legCol->AddEntry(mEffColGood[l].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
1702 legCol->AddEntry(mEffColFake[l].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
1703 legCol->Draw("same");
1704 effCol[l]->Write();
1705
1706 // Z
1707 effZ[l] = std::make_unique<TCanvas>(Form("effZ_L%d", l));
1708
1709 for (int ibin = 1; ibin <= mNGoodMatchesZ[l]->GetNbinsX(); ibin++) {
1710 std::cout << "--- Good Z: Npass = " << mNGoodMatchesZ[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedZ[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1711 }
1712
1713 mEffZGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesZ[l], *mDuplicatedZ[l]);
1714 stileEfficiencyGraph(mEffZGood[l], Form("mEffZGood_L%d", l), Form("L%d;Z;Efficiency", l), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1715
1716 for (int ibin = 1; ibin <= mNFakeMatchesZ[l]->GetNbinsX(); ibin++) {
1717 if (mNFakeMatchesZ[l]->GetBinContent(ibin) > mDuplicatedZ[l]->GetBinContent(ibin)) {
1718 std::cout << "--- Z: Npass = " << mNFakeMatchesZ[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedZ[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1719 mNFakeMatchesZ[l]->SetBinContent(ibin, mDuplicatedZ[l]->GetBinContent(ibin));
1720 }
1721 }
1722 mEffZFake[l] = std::make_unique<TEfficiency>(*mNFakeMatchesZ[l], *mDuplicatedZ[l]);
1723 stileEfficiencyGraph(mEffZFake[l], Form("mEffZFake_L%d", l), Form("L%d;Z;Efficiency", l), false, kFullDiamond, 1, kRed + 1, kRed + 1);
1724
1725 axZ->SetTitle(Form("L%d;Z;Efficiency", l));
1726 axZ->GetYaxis()->SetRangeUser(-0.1, 1.1);
1727 axZ->GetXaxis()->SetRangeUser(0, 512);
1728 axZ->Draw();
1729 mEffZGood[l]->Draw("same p");
1730 mEffZFake[l]->Draw("same p");
1731
1732 auto legZ = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
1733 legZ->AddEntry(mEffZGood[l].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
1734 legZ->AddEntry(mEffZFake[l].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
1735 legZ->Draw("same");
1736 effZ[l]->Write();
1737
1738 // PtEtaGood
1739 effPtEta[l][0] = std::make_unique<TCanvas>(Form("effPtEtaGood_L%d", l));
1740
1741 mEffPtEtaGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesPtEta[l], *mDuplicatedPtEta[l]);
1742 stileEfficiencyGraph(mEffPtEtaGood[l], Form("mEffPtEtaGood_L%d", l), Form("L%d;#it{p}_{T} (GeV/#it{c});#eta;Efficiency", l), true);
1743
1744 axptetaGood->SetTitle(Form("L%d;#it{p}_{T} (GeV/#it{c});#eta;Efficiency", l));
1745 axptetaGood->GetZaxis()->SetRangeUser(-0.1, 1.1);
1746 axptetaGood->GetYaxis()->SetRangeUser(-2., 2.);
1747 axptetaGood->GetXaxis()->SetRangeUser(0.05, 7.5);
1748 axptetaGood->Draw();
1749 mEffPtEtaGood[l]->Draw("same colz");
1750 effPtEta[l][0]->Update();
1751 effPtEta[l][0]->Write();
1752
1753 if (mVerboseOutput) {
1754 std::cout << "Underflow (bin 0,0): " << mNFakeMatchesPtEta[l]->GetBinContent(0, 0) << " " << mDuplicatedPtEta[l]->GetBinContent(0, 0) << std::endl;
1755 std::cout << "Overflow (bin nbinsx,nbinsy): " << mNFakeMatchesPtEta[l]->GetNbinsX() << " " << mNFakeMatchesPtEta[l]->GetNbinsY() << " -> " << mNFakeMatchesPtEta[l]->GetBinContent(mNFakeMatchesPtEta[l]->GetNbinsX(), mNFakeMatchesPtEta[l]->GetNbinsY()) << " " << mDuplicatedPtEta[l]->GetBinContent(mNFakeMatchesPtEta[l]->GetNbinsX(), mNFakeMatchesPtEta[l]->GetNbinsY()) << std::endl;
1756 }
1757
1758 for (int ibin = 1; ibin <= mNFakeMatchesPtEta[l]->GetNbinsX(); ibin++) {
1759 for (int jbin = 1; jbin <= mNFakeMatchesPtEta[l]->GetNbinsY(); jbin++) {
1760 if (mNFakeMatchesPtEta[l]->GetBinContent(ibin, jbin) > mDuplicatedPtEta[l]->GetBinContent(ibin, jbin)) {
1761 if (mVerboseOutput) {
1762 std::cout << "--- PtEta fakematches : Npass = " << mNFakeMatchesPtEta[l]->GetBinContent(ibin, jbin) << ", Nall = " << mDuplicatedPtEta[l]->GetBinContent(ibin, jbin) << " for ibin = " << ibin << ", jbin = " << jbin << std::endl;
1763 }
1764 mNFakeMatchesPtEta[l]->SetBinContent(ibin, jbin, mDuplicatedPtEta[l]->GetBinContent(ibin, jbin));
1765 }
1766 }
1767 }
1768
1769 // PtEtaFake
1770 effPtEta[l][1] = std::make_unique<TCanvas>(Form("effPtEtaFake_L%d", l));
1771
1772 mEffPtEtaFake[l] = std::make_unique<TEfficiency>(*mNFakeMatchesPtEta[l], *mDuplicatedPtEta[l]);
1773 stileEfficiencyGraph(mEffPtEtaFake[l], Form("mEffPtEtaFake_L%d", l), Form("L%d;#it{p}_{T} (GeV/#it{c});#eta;Efficiency", l), true);
1774 axptetaFake->SetTitle(Form("L%d;#it{p}_{T} (GeV/#it{c});#eta;Efficiency", l));
1775 axptetaFake->GetZaxis()->SetRangeUser(-0.1, 1.1);
1776 axptetaFake->GetYaxis()->SetRangeUser(-2., 2.);
1777 axptetaFake->GetXaxis()->SetRangeUser(0.05, 7.5);
1778 axptetaFake->Draw();
1779 mEffPtEtaFake[l]->Draw("same colz");
1780 effPtEta[l][1]->Update();
1781 effPtEta[l][1]->Write();
1782
1783 // PtPhiGood
1784 effPtPhi[l][0] = std::make_unique<TCanvas>(Form("effPtPhiGood_L%d", l));
1785
1786 mEffPtPhiGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesPtPhi[l], *mDuplicatedPtPhi[l]);
1787 stileEfficiencyGraph(mEffPtPhiGood[l], Form("mEffPtPhiGood_L%d", l), Form("L%d;#it{p}_{T} (GeV/#it{c});#phi (rad);Efficiency", l), true);
1788
1789 axptphiGood->SetTitle(Form("L%d;#it{p}_{T} (GeV/#it{c});#phi (rad);Efficiency", l));
1790 axptphiGood->GetZaxis()->SetRangeUser(-0.1, 1.1);
1791 axptphiGood->GetYaxis()->SetRangeUser(-3.2, 3.2);
1792 axptphiGood->GetXaxis()->SetRangeUser(0.05, 7.5);
1793 axptphiGood->Draw();
1794 mEffPtPhiGood[l]->Draw("same colz");
1795 effPtPhi[l][0]->Update();
1796 effPtPhi[l][0]->Write();
1797
1798 for (int ibin = 1; ibin <= mNFakeMatchesPtPhi[l]->GetNbinsX(); ibin++) {
1799 for (int jbin = 1; jbin <= mNFakeMatchesPtPhi[l]->GetNbinsY(); jbin++) {
1800 if (mNFakeMatchesPtPhi[l]->GetBinContent(ibin, jbin) > mDuplicatedPtPhi[l]->GetBinContent(ibin, jbin)) {
1801 if (mVerboseOutput) {
1802 std::cout << "--- Pt: Npass = " << mNFakeMatchesPtPhi[l]->GetBinContent(ibin, jbin) << ", Nall = " << mDuplicatedPtPhi[l]->GetBinContent(ibin, jbin) << " for ibin = " << ibin << ", jbin = " << jbin << std::endl;
1803 }
1804 mNFakeMatchesPtPhi[l]->SetBinContent(ibin, jbin, mDuplicatedPtPhi[l]->GetBinContent(ibin, jbin));
1805 }
1806 }
1807 }
1808
1809 // PtPhiFake
1810 effPtPhi[l][1] = std::make_unique<TCanvas>(Form("effPtPhiFake_L%d", l));
1811
1812 mEffPtPhiFake[l] = std::make_unique<TEfficiency>(*mNFakeMatchesPtPhi[l], *mDuplicatedPtPhi[l]);
1813 stileEfficiencyGraph(mEffPtPhiFake[l], Form("mEffPtPhiFake_L%d", l), Form("L%d;#it{p}_{T} (GeV/#it{c});#phi (rad);Efficiency", l), true);
1814 axptphiFake->SetTitle(Form("L%d;#it{p}_{T} (GeV/#it{c});#phi (rad);Efficiency", l));
1815 axptphiFake->GetZaxis()->SetRangeUser(-0.1, 1.1);
1816 axptphiFake->GetYaxis()->SetRangeUser(-3.2, 3.2);
1817 axptphiFake->GetXaxis()->SetRangeUser(0.05, 7.5);
1818 axptphiFake->Draw();
1819 mEffPtPhiFake[l]->Draw("same colz");
1820 effPtPhi[l][1]->Update();
1821 effPtPhi[l][1]->Write();
1822
1823 // EtaPhiGood
1824 effEtaPhi[l][0] = std::make_unique<TCanvas>(Form("effEtaPhiGood_L%d", l));
1825
1826 mEffEtaPhiGood[l] = std::make_unique<TEfficiency>(*mNGoodMatchesEtaPhi[l], *mDuplicatedEtaPhi[l]);
1827 stileEfficiencyGraph(mEffEtaPhiGood[l], Form("mEffEtaPhiGood_L%d", l), Form("L%d;#eta;#phi (rad);Efficiency", l), true);
1828
1829 axetaphiGood->SetTitle(Form("L%d;#eta;#phi (rad);Efficiency", l));
1830 axetaphiGood->GetZaxis()->SetRangeUser(-0.1, 1.1);
1831 axetaphiGood->GetYaxis()->SetRangeUser(-3.2, 3.2);
1832 axetaphiGood->GetXaxis()->SetRangeUser(-2, 2);
1833 axetaphiGood->Draw();
1834 mEffEtaPhiGood[l]->Draw("same colz");
1835 effEtaPhi[l][0]->Update();
1836 effEtaPhi[l][0]->Write();
1837
1838 for (int ibin = 1; ibin <= mNFakeMatchesEtaPhi[l]->GetNbinsX(); ibin++) {
1839 for (int jbin = 1; jbin <= mNFakeMatchesEtaPhi[l]->GetNbinsY(); jbin++) {
1840 if (mNFakeMatchesEtaPhi[l]->GetBinContent(ibin, jbin) > mDuplicatedEtaPhi[l]->GetBinContent(ibin, jbin)) {
1841 if (mVerboseOutput) {
1842 std::cout << "--- Eta: Npass = " << mNFakeMatchesEtaPhi[l]->GetBinContent(ibin, jbin) << ", Nall = " << mDuplicatedEtaPhi[l]->GetBinContent(ibin, jbin) << " for ibin = " << ibin << ", jbin = " << jbin << std::endl;
1843 }
1844 mNFakeMatchesEtaPhi[l]->SetBinContent(ibin, jbin, mDuplicatedEtaPhi[l]->GetBinContent(ibin, jbin));
1845 }
1846 }
1847 }
1848
1849 // EtaPhiFake
1850 effEtaPhi[l][1] = std::make_unique<TCanvas>(Form("effEtaPhiFake_L%d", l));
1851
1852 mEffEtaPhiFake[l] = std::make_unique<TEfficiency>(*mNFakeMatchesEtaPhi[l], *mDuplicatedEtaPhi[l]);
1853 stileEfficiencyGraph(mEffEtaPhiFake[l], Form("mEffEtaPhiFake_L%d", l), Form("L%d;#eta;#phi (rad);Efficiency", l), true);
1854 axetaphiFake->SetTitle(Form("L%d;#eta;#phi (rad);Efficiency", l));
1855 axetaphiFake->GetZaxis()->SetRangeUser(-0.1, 1.1);
1856 axetaphiFake->GetYaxis()->SetRangeUser(-3.2, 3.2);
1857 axetaphiFake->GetXaxis()->SetRangeUser(-2, 2);
1858 axetaphiFake->Draw();
1859 mEffEtaPhiFake[l]->Draw("same colz");
1860 effEtaPhi[l][1]->Update();
1861 effEtaPhi[l][1]->Write();
1862
1863 // EtaAllPt
1864 if (mVerboseOutput) {
1865 std::cout << "Eta L" << l << "\n\n";
1866 }
1867
1868 effEtaAllPt[l] = std::make_unique<TCanvas>(Form("effEtaAllPt_L%d", l));
1869
1870 mEffEtaGoodAllPt[l] = std::make_unique<TEfficiency>(*mNGoodMatchesEtaAllPt[l], *mDuplicatedEtaAllPt[l]);
1871 stileEfficiencyGraph(mEffEtaGoodAllPt[l], Form("mEffEtaGoodAllPt_L%d", l), Form("L%d;#eta;Efficiency", l), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1872
1873 for (int ibin = 1; ibin <= mNFakeMatchesEtaAllPt[l]->GetNbinsX(); ibin++) {
1874 if (mNFakeMatchesEtaAllPt[l]->GetBinContent(ibin) > mDuplicatedEtaAllPt[l]->GetBinContent(ibin)) {
1875 if (mVerboseOutput) {
1876 std::cout << "--- EtaAllPt: Npass = " << mNFakeMatchesEtaAllPt[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedEtaAllPt[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1877 }
1878 mNFakeMatchesEtaAllPt[l]->SetBinContent(ibin, mDuplicatedEtaAllPt[l]->GetBinContent(ibin));
1879 }
1880 }
1881 mEffEtaFakeAllPt[l] = std::make_unique<TEfficiency>(*mNFakeMatchesEtaAllPt[l], *mDuplicatedEtaAllPt[l]);
1882 stileEfficiencyGraph(mEffEtaFakeAllPt[l], Form("mEffEtaFakeAllPt_L%d", l), Form("L%d;#eta;Efficiency", l), false, kFullDiamond, 1, kRed + 1, kRed + 1);
1883
1884 axetaAllPt->SetTitle(Form("L%d;#eta;Efficiency", l));
1885 axetaAllPt->GetYaxis()->SetRangeUser(-0.1, 1.1);
1886
1887 axetaAllPt->Draw();
1888 mEffEtaGoodAllPt[l]->Draw("same p");
1889 mEffEtaFakeAllPt[l]->Draw("same p");
1890
1891 auto legEta = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
1892 legEta->AddEntry(mEffEtaGoodAllPt[l].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
1893 legEta->AddEntry(mEffEtaFakeAllPt[l].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
1894 legEta->Draw("same");
1895 effEtaAllPt[l]->Write();
1896
1898 for (int ipt = 0; ipt < 3; ipt++) {
1899 // eta
1900 effEta[l][ipt] = std::make_unique<TCanvas>(Form("effEta_L%d_pt%d", l, ipt));
1901
1902 mEffEtaGood[l][ipt] = std::make_unique<TEfficiency>(*mNGoodMatchesEta[l][ipt], *mDuplicatedEta[l][ipt]);
1903 stileEfficiencyGraph(mEffEtaGood[l][ipt], Form("mEffEtaGood_L%d_pt%d", l, ipt), Form("L%d %.1f #leq #it{p}_{T} < %.1f GeV/#it{c};#eta;Efficiency", l, mrangesPt[ipt][0], mrangesPt[ipt][1]), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1904
1905 for (int ibin = 1; ibin <= mNFakeMatchesEta[l][ipt]->GetNbinsX(); ibin++) {
1906 if (mNFakeMatchesEta[l][ipt]->GetBinContent(ibin) > mDuplicatedEta[l][ipt]->GetBinContent(ibin)) {
1907 if (mVerboseOutput) {
1908 std::cout << "--- Eta : Npass = " << mNFakeMatchesEta[l][ipt]->GetBinContent(ibin) << ", Nall = " << mDuplicatedEta[l][ipt]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1909 }
1910 mNFakeMatchesEta[l][ipt]->SetBinContent(ibin, mDuplicatedEta[l][ipt]->GetBinContent(ibin));
1911 }
1912 }
1913
1914 mEffEtaFake[l][ipt] = std::make_unique<TEfficiency>(*mNFakeMatchesEta[l][ipt], *mDuplicatedEta[l][ipt]);
1915 stileEfficiencyGraph(mEffEtaFake[l][ipt], Form("mEffEtaFake_L%d_pt%d", l, ipt), Form("L%d %.1f #leq #it{p}_{T} < %.1f GeV/#it{c};#eta;Efficiency", l, mrangesPt[ipt][0], mrangesPt[ipt][1]), false, kFullDiamond, 1, kRed + 1, kRed + 1);
1916
1917 axeta[ipt]->SetTitle(Form("L%d %.1f #leq #it{p}_{T} < %.1f GeV/#it{c};#eta;Efficiency", l, mrangesPt[ipt][0], mrangesPt[ipt][1]));
1918 axeta[ipt]->GetYaxis()->SetRangeUser(-0.1, 1.1);
1919
1920 axeta[ipt]->Draw();
1921 mEffEtaGood[l][ipt]->Draw("same p");
1922 mEffEtaFake[l][ipt]->Draw("same p");
1923
1924 auto legEta = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
1925 legEta->AddEntry(mEffEtaGood[l][ipt].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
1926 legEta->AddEntry(mEffEtaFake[l][ipt].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
1927 legEta->Draw("same");
1928 effEta[l][ipt]->Write();
1929
1930 // phi
1931 effPhi[l][ipt] = std::make_unique<TCanvas>(Form("effPhi_L%d_pt%d", l, ipt));
1932
1933 for (int ibin = 1; ibin <= mNGoodMatchesPhi[l][ipt]->GetNbinsX(); ibin++) {
1934 if (mNGoodMatchesPhi[l][ipt]->GetBinContent(ibin) > mDuplicatedPhi[l][ipt]->GetBinContent(ibin)) {
1935 if (mVerboseOutput) {
1936 std::cout << "--- Phi L: Npass = " << mNGoodMatchesPhi[l][ipt]->GetBinContent(ibin) << ", Nall = " << mDuplicatedPhi[l][ipt]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1937 }
1938 mNGoodMatchesPhi[l][ipt]->SetBinContent(ibin, 0);
1939 }
1940 }
1941
1942 mEffPhiGood[l][ipt] = std::make_unique<TEfficiency>(*mNGoodMatchesPhi[l][ipt], *mDuplicatedPhi[l][ipt]);
1943 stileEfficiencyGraph(mEffPhiGood[l][ipt], Form("mEffPhiGood_L%d_pt%d", l, ipt), Form("L%d %.1f #leq #it{p}_{T} < %.1f GeV/#it{c};#phi (rad);Efficiency", l, mrangesPt[ipt][0], mrangesPt[ipt][1]), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1944
1945 for (int ibin = 1; ibin <= mNFakeMatchesPhi[l][ipt]->GetNbinsX(); ibin++) {
1946 if (mNFakeMatchesPhi[l][ipt]->GetBinContent(ibin) > mDuplicatedPhi[l][ipt]->GetBinContent(ibin)) {
1947 if (mVerboseOutput) {
1948 std::cout << "--- Phi L: Npass = " << mNFakeMatchesPhi[l][ipt]->GetBinContent(ibin) << ", Nall = " << mDuplicatedPhi[l][ipt]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1949 }
1950 mNFakeMatchesPhi[l][ipt]->SetBinContent(ibin, mDuplicatedPhi[l][ipt]->GetBinContent(ibin));
1951 }
1952 }
1953
1954 mEffPhiFake[l][ipt] = std::make_unique<TEfficiency>(*mNFakeMatchesPhi[l][ipt], *mDuplicatedPhi[l][ipt]);
1955 stileEfficiencyGraph(mEffPhiFake[l][ipt], Form("mEffPhiFake_L%d_pt%d", l, ipt), Form("L%d %.1f #leq #it{p}_{T} < %.1f GeV/#it{c};#phi (rad);Efficiency", l, mrangesPt[ipt][0], mrangesPt[ipt][1]), false, kFullDiamond, 1, kRed + 1, kRed + 1);
1956
1957 axphi[ipt]->SetTitle(Form("L%d %.1f #leq #it{p}_{T} < %.1f GeV/#it{c};#phi (rad);Efficiency", l, mrangesPt[ipt][0], mrangesPt[ipt][1]));
1958 axphi[ipt]->GetYaxis()->SetRangeUser(-0.1, 1.1);
1959
1960 axphi[ipt]->Draw();
1961 mEffPhiGood[l][ipt]->Draw("same p");
1962 mEffPhiFake[l][ipt]->Draw("same p");
1963
1964 auto legPhi = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
1965 legPhi->AddEntry(mEffPhiGood[l][ipt].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
1966 legPhi->AddEntry(mEffPhiFake[l][ipt].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
1967 legPhi->Draw("same");
1968 effPhi[l][ipt]->Write();
1969 }
1970
1971 // PhiAllPt
1972 if (mVerboseOutput) {
1973 std::cout << "Phi L" << l << "\n\n";
1974 }
1975
1976 effPhiAllPt[l] = std::make_unique<TCanvas>(Form("effPhiAllPt_L%d", l));
1977
1978 for (int ibin = 1; ibin <= mNGoodMatchesPhiAllPt[l]->GetNbinsX(); ibin++) {
1979 if (mNGoodMatchesPhiAllPt[l]->GetBinContent(ibin) > mDuplicatedPhiAllPt[l]->GetBinContent(ibin)) {
1980 if (mVerboseOutput) {
1981 std::cout << "--- phi all good Npass = " << mNGoodMatchesPhiAllPt[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedPhiAllPt[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1982 }
1983 mNGoodMatchesPhiAllPt[l]->SetBinContent(ibin, 0);
1984 }
1985 }
1986
1987 mEffPhiGoodAllPt[l] = std::make_unique<TEfficiency>(*mNGoodMatchesPhiAllPt[l], *mDuplicatedPhiAllPt[l]);
1988 stileEfficiencyGraph(mEffPhiGoodAllPt[l], Form("mEffPhiGoodAllPt_L%d", l), Form("L%d;#phi;Efficiency", l), false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
1989
1990 for (int ibin = 1; ibin <= mNFakeMatchesPhiAllPt[l]->GetNbinsX(); ibin++) {
1991 if (mNFakeMatchesPhiAllPt[l]->GetBinContent(ibin) > mDuplicatedPhiAllPt[l]->GetBinContent(ibin)) {
1992 if (mVerboseOutput) {
1993 std::cout << "--- phi all fake Npass = " << mNFakeMatchesPhiAllPt[l]->GetBinContent(ibin) << ", Nall = " << mDuplicatedPhiAllPt[l]->GetBinContent(ibin) << " for ibin = " << ibin << std::endl;
1994 }
1995 mNFakeMatchesPhiAllPt[l]->SetBinContent(ibin, mDuplicatedPhiAllPt[l]->GetBinContent(ibin));
1996 }
1997 }
1998 mEffPhiFakeAllPt[l] = std::make_unique<TEfficiency>(*mNFakeMatchesPhiAllPt[l], *mDuplicatedPhiAllPt[l]);
1999 stileEfficiencyGraph(mEffPhiFakeAllPt[l], Form("mEffPhiFakeAllPt_L%d", l), Form("L%d;#phi;Efficiency", l), false, kFullDiamond, 1, kRed + 1, kRed + 1);
2000
2001 axphiAllPt->SetTitle(Form("L%d;#phi;Efficiency", l));
2002 axphiAllPt->GetYaxis()->SetRangeUser(-0.1, 1.1);
2003 axphiAllPt->Draw();
2004 mEffPhiGoodAllPt[l]->Draw("same p");
2005 mEffPhiFakeAllPt[l]->Draw("same p");
2006
2007 auto legPhi = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
2008 legPhi->AddEntry(mEffPhiGoodAllPt[l].get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
2009 legPhi->AddEntry(mEffPhiFakeAllPt[l].get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
2010 legPhi->Draw("same");
2011 effPhiAllPt[l]->Write();
2012 }
2013
2015 std::unique_ptr<TCanvas> effRowAll = std::make_unique<TCanvas>("effRowAll");
2016 auto numRowGoodAll = std::unique_ptr<TH1D>((TH1D*)mNGoodMatchesRow[0]->Clone("numRowGoodAll"));
2017 numRowGoodAll->Add(mNGoodMatchesRow[1].get());
2018 numRowGoodAll->Add(mNGoodMatchesRow[2].get());
2019 numRowGoodAll->Write();
2020 auto numRowFakeAll = std::unique_ptr<TH1D>((TH1D*)mNFakeMatchesRow[0]->Clone("numRowFakeAll"));
2021 numRowFakeAll->Add(mNFakeMatchesRow[1].get());
2022 numRowFakeAll->Add(mNFakeMatchesRow[2].get());
2023 numRowFakeAll->Write();
2024 auto denRowAll = std::unique_ptr<TH1D>((TH1D*)mDuplicatedRow[0]->Clone("denRowAll"));
2025 denRowAll->Add(mDuplicatedRow[1].get());
2026 denRowAll->Add(mDuplicatedRow[2].get());
2027 denRowAll->Write();
2028
2029 std::unique_ptr<TEfficiency> mEffRowGoodAll = std::make_unique<TEfficiency>(*numRowGoodAll, *denRowAll);
2030 stileEfficiencyGraph(mEffRowGoodAll, "mEffRowGoodAll", "L0 + L1 + L2;Row;Efficiency", false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
2031 std::unique_ptr<TEfficiency> mEffRowFakeAll = std::make_unique<TEfficiency>(*numRowFakeAll, *denRowAll);
2032 stileEfficiencyGraph(mEffRowFakeAll, "mEffRowFakeAll", "L0 + L1 + L2;Row;Efficiency", false, kFullDiamond, 1, kRed + 1, kRed + 1);
2033 axRow->SetTitle("L0 + L1 + L2;Row;Efficiency");
2034 axRow->GetYaxis()->SetRangeUser(-0.1, 1.1);
2035 axRow->Draw();
2036 mEffRowGoodAll->Draw("same p");
2037 mEffRowFakeAll->Draw("same p");
2038
2039 auto legRow = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
2040 legRow->AddEntry(mEffRowGoodAll.get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
2041 legRow->AddEntry(mEffRowFakeAll.get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
2042 legRow->Draw("same");
2043 effRowAll->Write();
2044
2046 std::unique_ptr<TCanvas> effColAll = std::make_unique<TCanvas>("effColAll");
2047 auto numColGoodAll = std::unique_ptr<TH1D>((TH1D*)mNGoodMatchesCol[0]->Clone("numColGoodAll"));
2048 numColGoodAll->Add(mNGoodMatchesCol[1].get());
2049 numColGoodAll->Add(mNGoodMatchesCol[2].get());
2050 numColGoodAll->Write();
2051 auto numColFakeAll = std::unique_ptr<TH1D>((TH1D*)mNFakeMatchesCol[0]->Clone("numColFakeAll"));
2052 numColFakeAll->Add(mNFakeMatchesCol[1].get());
2053 numColFakeAll->Add(mNFakeMatchesCol[2].get());
2054 numColFakeAll->Write();
2055 auto denColAll = std::unique_ptr<TH1D>((TH1D*)mDuplicatedCol[0]->Clone("denColAll"));
2056 denColAll->Add(mDuplicatedCol[1].get());
2057 denColAll->Add(mDuplicatedCol[2].get());
2058 denColAll->Write();
2059
2060 std::unique_ptr<TEfficiency> mEffColGoodAll = std::make_unique<TEfficiency>(*numColGoodAll, *denColAll);
2061 stileEfficiencyGraph(mEffColGoodAll, "mEffColGoodAll", "L0 + L1 + L2;Column;Efficiency", false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
2062 std::unique_ptr<TEfficiency> mEffColFakeAll = std::make_unique<TEfficiency>(*numColFakeAll, *denColAll);
2063 stileEfficiencyGraph(mEffColFakeAll, "mEffColFakeAll", "L0 + L1 + L2;Column;Efficiency", false, kFullDiamond, 1, kRed + 1, kRed + 1);
2064 axCol->SetTitle("L0 + L1 + L2;Col;Efficiency");
2065 axCol->GetYaxis()->SetRangeUser(-0.1, 1.1);
2066 axCol->Draw();
2067 mEffColGoodAll->Draw("same p");
2068 mEffColFakeAll->Draw("same p");
2069
2070 auto legCol = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
2071 legCol->AddEntry(mEffColGoodAll.get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
2072 legCol->AddEntry(mEffColFakeAll.get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
2073 legCol->Draw("same");
2074 effColAll->Write();
2075
2077 std::unique_ptr<TCanvas> effZAll = std::make_unique<TCanvas>("effZAll");
2078 auto numZGoodAll = std::unique_ptr<TH1D>((TH1D*)mNGoodMatchesZ[0]->Clone("numZGoodAll"));
2079 numZGoodAll->Add(mNGoodMatchesZ[1].get());
2080 numZGoodAll->Add(mNGoodMatchesZ[2].get());
2081 numZGoodAll->Write();
2082 auto numZFakeAll = std::unique_ptr<TH1D>((TH1D*)mNFakeMatchesZ[0]->Clone("numZFakeAll"));
2083 numZFakeAll->Add(mNFakeMatchesZ[1].get());
2084 numZFakeAll->Add(mNFakeMatchesZ[2].get());
2085 numZFakeAll->Write();
2086 auto denZAll = std::unique_ptr<TH1D>((TH1D*)mDuplicatedZ[0]->Clone("denZAll"));
2087 denZAll->Add(mDuplicatedZ[1].get());
2088 denZAll->Add(mDuplicatedZ[2].get());
2089 denZAll->Write();
2090
2091 std::unique_ptr<TEfficiency> mEffZGoodAll = std::make_unique<TEfficiency>(*numZGoodAll, *denZAll);
2092 stileEfficiencyGraph(mEffZGoodAll, "mEffZGoodAll", "L0 + L1 + L2;Z;Efficiency", false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
2093 std::unique_ptr<TEfficiency> mEffZFakeAll = std::make_unique<TEfficiency>(*numZFakeAll, *denZAll);
2094 stileEfficiencyGraph(mEffZFakeAll, "mEffZFakeAll", "L0 + L1 + L2;Z;Efficiency", false, kFullDiamond, 1, kRed + 1, kRed + 1);
2095 axZ->SetTitle("L0 + L1 + L2;Z;Efficiency");
2096 axZ->GetYaxis()->SetRangeUser(-0.1, 1.1);
2097 axZ->Draw();
2098 mEffZGoodAll->Draw("same p");
2099 mEffZFakeAll->Draw("same p");
2100
2101 auto legZ = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
2102 legZ->AddEntry(mEffZGoodAll.get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
2103 legZ->AddEntry(mEffZFakeAll.get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
2104 legZ->Draw("same");
2105 effZAll->Write();
2106
2108 std::unique_ptr<TCanvas> effEtaAll = std::make_unique<TCanvas>("effEtaAll");
2109 auto numEtaGoodAll = std::unique_ptr<TH1D>((TH1D*)mNGoodMatchesEtaAllPt[0]->Clone("numEtaGoodAll"));
2110 numEtaGoodAll->Add(mNGoodMatchesEtaAllPt[1].get());
2111 numEtaGoodAll->Add(mNGoodMatchesEtaAllPt[2].get());
2112 numEtaGoodAll->Write();
2113 auto numEtaFakeAll = std::unique_ptr<TH1D>((TH1D*)mNFakeMatchesEtaAllPt[0]->Clone("numEtaFakeAll"));
2114 numEtaFakeAll->Add(mNFakeMatchesEtaAllPt[1].get());
2115 numEtaFakeAll->Add(mNFakeMatchesEtaAllPt[2].get());
2116 numEtaFakeAll->Write();
2117 auto denEtaAll = std::unique_ptr<TH1D>((TH1D*)mDuplicatedEtaAllPt[0]->Clone("denEtaAll"));
2118 denEtaAll->Add(mDuplicatedEtaAllPt[1].get());
2119 denEtaAll->Add(mDuplicatedEtaAllPt[2].get());
2120 denEtaAll->Write();
2121
2122 std::unique_ptr<TEfficiency> mEffEtaGoodAll = std::make_unique<TEfficiency>(*numEtaGoodAll, *denEtaAll);
2123 stileEfficiencyGraph(mEffEtaGoodAll, "mEffEtaGoodAll", "L0 + L1 + L2;#Eta;Efficiency", false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
2124 std::unique_ptr<TEfficiency> mEffEtaFakeAll = std::make_unique<TEfficiency>(*numEtaFakeAll, *denEtaAll);
2125 stileEfficiencyGraph(mEffEtaFakeAll, "mEffEtaFakeAll", "L0 + L1 + L2;#Eta;Efficiency", false, kFullDiamond, 1, kRed + 1, kRed + 1);
2126 axetaAllPt->SetTitle("L0 + L1 + L2;Eta;Efficiency");
2127 axetaAllPt->GetYaxis()->SetRangeUser(-0.1, 1.1);
2128 axetaAllPt->Draw();
2129 mEffEtaGoodAll->Draw("same p");
2130 mEffEtaFakeAll->Draw("same p");
2131
2132 auto legEta = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
2133 legEta->AddEntry(mEffEtaGoodAll.get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
2134 legEta->AddEntry(mEffEtaFakeAll.get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
2135 legEta->Draw("same");
2136 effEtaAll->Write();
2137
2139 std::unique_ptr<TCanvas> effPhiAll = std::make_unique<TCanvas>("effPhiAll");
2140 auto numPhiGoodAll = std::unique_ptr<TH1D>((TH1D*)mNGoodMatchesPhiAllPt[0]->Clone("numPhiGoodAll"));
2141 numPhiGoodAll->Add(mNGoodMatchesPhiAllPt[1].get());
2142 numPhiGoodAll->Add(mNGoodMatchesPhiAllPt[2].get());
2143 numPhiGoodAll->Write();
2144 auto numPhiFakeAll = std::unique_ptr<TH1D>((TH1D*)mNFakeMatchesPhiAllPt[0]->Clone("numPhiFakeAll"));
2145 numPhiFakeAll->Add(mNFakeMatchesPhiAllPt[1].get());
2146 numPhiFakeAll->Add(mNFakeMatchesPhiAllPt[2].get());
2147 numPhiFakeAll->Write();
2148 auto denPhiAll = std::unique_ptr<TH1D>((TH1D*)mDuplicatedPhiAllPt[0]->Clone("denPhiAll"));
2149 denPhiAll->Add(mDuplicatedPhiAllPt[1].get());
2150 denPhiAll->Add(mDuplicatedPhiAllPt[2].get());
2151 denPhiAll->Write();
2152
2153 std::unique_ptr<TEfficiency> mEffPhiGoodAll = std::make_unique<TEfficiency>(*numPhiGoodAll, *denPhiAll);
2154 stileEfficiencyGraph(mEffPhiGoodAll, "mEffPhiGoodAll", "L0 + L1 + L2;#Phi (rad);Efficiency", false, kFullDiamond, 1, kGreen + 3, kGreen + 3);
2155 std::unique_ptr<TEfficiency> mEffPhiFakeAll = std::make_unique<TEfficiency>(*numPhiFakeAll, *denPhiAll);
2156 stileEfficiencyGraph(mEffPhiFakeAll, "mEffPhiFakeAll", "L0 + L1 + L2;#Phi (rad);Efficiency", false, kFullDiamond, 1, kRed + 1, kRed + 1);
2157 axphiAllPt->SetTitle("L0 + L1 + L2;Phi;Efficiency");
2158 axphiAllPt->GetYaxis()->SetRangeUser(-0.1, 1.1);
2159 axphiAllPt->Draw();
2160 mEffPhiGoodAll->Draw("same p");
2161 mEffPhiFakeAll->Draw("same p");
2162
2163 auto legPhi = std::make_unique<TLegend>(0.70, 0.15, 0.89, 0.35);
2164 legPhi->AddEntry(mEffPhiGoodAll.get(), "#frac{# good matches}{# tot duplicated clusters}", "pl");
2165 legPhi->AddEntry(mEffPhiFakeAll.get(), "#frac{# fake matches}{# tot duplicated clusters}", "pl");
2166 legPhi->Draw("same");
2167 effPhiAll->Write();
2168}
2169
2171{
2172 // Extract the efficiency for the IB, exploiting the staves overlaps and the duplicated clusters for the tracks passing through the overlaps
2173 // The denominator for the efficiency calculation will be the number of tracks per layer fulfilling some cuts (eta, z, row, col)
2174 // The numerator will be the number of duplicated clusters for the tracks passing through the overlaps
2175
2176 LOGP(info, "getEfficiency()");
2177
2178 o2::base::Propagator::MatCorrType matCorr = o2::base::Propagator::MatCorrType::USEMatCorrLUT;
2179 o2::gpu::gpustd::array<float, 2> clusOriginalDCA, clusDuplicatedDCA;
2180 auto propagator = o2::base::Propagator::Instance();
2181
2182 unsigned int rofIndexTrack = 0;
2183 unsigned int rofNEntriesTrack = 0;
2184 unsigned int rofIndexClus = 0;
2185 unsigned int rofNEntriesClus = 0;
2186
2187 int nbPt = 75;
2188 double xbins[nbPt + 1], ptcutl = 0.05, ptcuth = 7.5;
2189 double a = std::log(ptcuth / ptcutl) / nbPt;
2190 for (int i = 0; i <= nbPt; i++) {
2191 xbins[i] = ptcutl * std::exp(i * a);
2192 }
2193
2194 int totNClusters;
2195 int nDuplClusters;
2196
2197 for (unsigned int iROF = 0; iROF < mTracksROFRecords.size(); iROF++) { // loop on ROFRecords array
2198
2199 rofIndexTrack = mTracksROFRecords[iROF].getFirstEntry();
2200 rofNEntriesTrack = mTracksROFRecords[iROF].getNEntries();
2201
2202 rofIndexClus = mClustersROFRecords[iROF].getFirstEntry();
2203 rofNEntriesClus = mClustersROFRecords[iROF].getNEntries();
2204
2206 for (unsigned int iTrack = rofIndexTrack; iTrack < rofIndexTrack + rofNEntriesTrack; iTrack++) { // loop on tracks per ROF
2207 auto track = mTracks[iTrack];
2208 o2::track::TrackParCov trackParCov = mTracks[iTrack];
2209
2210 auto pt = trackParCov.getPt(); // Always 0.6 GeV/c for B = 0 T
2211 auto eta = trackParCov.getEta();
2212 float phi = -999.;
2213 float phiOriginal = -999.;
2214
2215 float chi2 = track.getChi2();
2216
2217 float ip[2];
2218 track.getImpactParams(0, 0, 0, 0, ip);
2219
2220 // float phiTrack = trackParCov.getPhi(); // * 180 / M_PI;
2221
2222 // applying the cuts on the track - only eta
2223 if (eta < mEtaCuts[0] || eta >= mEtaCuts[1]) {
2224 continue;
2225 }
2226
2227 int firstClus = track.getFirstClusterEntry(); // get the first cluster of the track
2228 int ncl = track.getNumberOfClusters(); // get the number of clusters of the track
2229
2231 if (ncl < 7) {
2232 continue;
2233 }
2234
2235 o2::MCCompLabel tracklab;
2236 if (isMC) {
2237 tracklab = mTracksMCLabels[iTrack];
2238 if (tracklab.isFake()) {
2239 continue;
2240 }
2241 }
2242
2243 if (mVerboseOutput && isMC) {
2244 LOGP(info, "track Label: ");
2245 tracklab.print();
2246 }
2247
2248 for (int iclTrack = firstClus; iclTrack < firstClus + ncl; iclTrack++) { // loop on clusters associated to the track to extract layer, stave and chip to restrict the possible matches to be searched with the DCA cut
2249 auto& clusOriginal = mClusters[mInputITSidxs[iclTrack]];
2250 auto clusOriginalPoint = mITSClustersArray[mInputITSidxs[iclTrack]];
2251 auto layerOriginal = mGeometry->getLayer(clusOriginal.getSensorID());
2252
2253 UShort_t rowOriginal = clusOriginal.getRow();
2254 UShort_t colOriginal = clusOriginal.getCol();
2255
2257 if (clusOriginal.getChipID() >= 0 && clusOriginal.getChipID() <= 8) {
2258 l0_00->Fill(clusOriginal.getCol() + (1024 * (clusOriginal.getChipID() % 9)), clusOriginal.getRow());
2259 }
2260 if (clusOriginal.getChipID() >= 252 && clusOriginal.getChipID() <= 260) {
2261 l1_15->Fill(clusOriginal.getCol() + (1024 * (clusOriginal.getChipID() % 9)), clusOriginal.getRow());
2262 }
2263 if (clusOriginal.getChipID() >= 423 && clusOriginal.getChipID() <= 431) {
2264 l2_19->Fill(clusOriginal.getCol() + (1024 * (clusOriginal.getChipID() % 9)), clusOriginal.getRow());
2265 }
2266
2268 if (layerOriginal >= NLAYERS) {
2269 continue;
2270 }
2271
2272 chipmap->Fill(clusOriginal.getCol(), clusOriginal.getRow());
2273
2274 IPOriginalxy[layerOriginal]->Fill(ip[0]);
2275 IPOriginalz[layerOriginal]->Fill(ip[1]);
2276
2278 o2::math_utils::Point3D<float> clusOriginalPointTrack = {clusOriginalPoint.getX(), clusOriginalPoint.getY(), clusOriginalPoint.getZ()};
2279 o2::math_utils::Point3D<float> clusOriginalPointGlob = mGeometry->getMatrixT2G(clusOriginal.getSensorID()) * clusOriginalPointTrack;
2280 phiOriginal = clusOriginalPointGlob.phi(); // * 180 / M_PI;
2281
2282 if (abs(clusOriginalPointGlob.y()) < 0.5) {
2283 continue;
2284 }
2285
2286 if (abs(clusOriginalPointGlob.z()) >= 10) {
2287 continue;
2288 }
2289
2290 if (rowOriginal < 2 || (rowOriginal > 15 && rowOriginal < 496) || rowOriginal > 509) {
2291 continue;
2292 }
2293
2294 if (mUseMC) {
2295 if (std::find(mExcludedChipMC.begin(), mExcludedChipMC.end(), clusOriginal.getChipID()) != mExcludedChipMC.end()) {
2296 continue;
2297 }
2298 }
2299
2300 if (clusOriginal.getCol() < 160 || clusOriginal.getCol() > 870) {
2301 continue;
2302 }
2303
2305 m2DClusterOriginalPositions->Fill(clusOriginalPointGlob.x(), clusOriginalPointGlob.y());
2306 m3DClusterPositions->Fill(clusOriginalPointGlob.x(), clusOriginalPointGlob.y(), clusOriginalPointGlob.z());
2307 chi2trackAccepted->Fill(chi2);
2308 denPt[layerOriginal]->Fill(pt);
2309 denPhi[layerOriginal]->Fill(phiOriginal);
2310 denEta[layerOriginal]->Fill(eta);
2311 denRow[layerOriginal]->Fill(rowOriginal);
2312 denCol[layerOriginal]->Fill(clusOriginal.getCol());
2313 denZ[layerOriginal]->Fill(clusOriginalPointGlob.z());
2314 nTracksSelected[layerOriginal]++;
2315 mDenColEta[layerOriginal]->Fill(clusOriginal.getCol(), eta);
2316 mDenRowPhi[layerOriginal]->Fill(clusOriginal.getRow(), clusOriginalPointGlob.z());
2317 mDenRowCol[layerOriginal]->Fill(clusOriginal.getRow(), clusOriginal.getCol());
2318 denLayers->Fill(layerOriginal);
2319
2321 gsl::span<const o2::MCCompLabel> labsOriginal = {};
2322 if (isMC) {
2323 labsOriginal = mClustersMCLCont->getLabels(mInputITSidxs[iclTrack]); // get labels of the cluster associated to the track (original)
2324 }
2325
2326 auto staveOriginal = mGeometry->getStave(clusOriginal.getSensorID());
2327 auto chipOriginal = mGeometry->getChipIdInStave(clusOriginal.getSensorID());
2328
2329 std::tuple<int, double, gsl::span<const o2::MCCompLabel>> clusID_rDCA_label = {0, 999., gsl::span<const o2::MCCompLabel>()}; // inizializing tuple with dummy values (if data, ignore the third value)
2330
2331 bool adjacentFound = 0;
2332 float phiDuplicated = -999.;
2333 float ptDuplicated = -999.;
2334 float etaDuplicated = -999.;
2335 float clusZ = -999.;
2336
2337 o2::itsmft::CompClusterExt clusDuplicatedSelected = o2::itsmft::CompClusterExt();
2338
2340 for (unsigned int iClus = rofIndexClus; iClus < rofIndexClus + rofNEntriesClus; iClus++) { // iteration over ALL the clusters in the ROF
2341 auto clusDuplicated = mClusters[iClus];
2342 auto clusDuplicatedPoint = mITSClustersArray[iClus];
2343
2344 o2::math_utils::Point3D<float> clusDuplicatedPointTrack = {clusDuplicatedPoint.getX(), clusDuplicatedPoint.getY(), clusDuplicatedPoint.getZ()};
2345 o2::math_utils::Point3D<float> clusDuplicatedPointGlob = mGeometry->getMatrixT2G(clusDuplicated.getSensorID()) * clusDuplicatedPointTrack;
2346 phi = clusDuplicatedPointGlob.phi(); // * 180 / M_PI;
2347
2349 if (clusDuplicated.getSensorID() == clusOriginal.getSensorID()) {
2350 continue;
2351 }
2352 auto layerDuplicated = mGeometry->getLayer(clusDuplicated.getSensorID());
2353 if (layerDuplicated != layerOriginal) {
2354 continue;
2355 }
2356 auto staveDuplicated = mGeometry->getStave(clusDuplicated.getSensorID());
2357 if (abs(staveDuplicated - staveOriginal) != 1) {
2358 continue;
2359 }
2360 auto chipDuplicated = mGeometry->getChipIdInStave(clusDuplicated.getSensorID());
2361 if (abs(chipDuplicated - chipOriginal) > 1) {
2362 continue;
2363 }
2364
2365 gsl::span<const o2::MCCompLabel> labsDuplicated = {};
2366 if (isMC) {
2367 labsDuplicated = mClustersMCLCont->getLabels(iClus);
2368 }
2369
2372 trackParCov.rotate(mGeometry->getSensorRefAlpha(clusDuplicated.getSensorID()));
2373 if (!propagator->propagateToDCA(clusDuplicatedPointGlob, trackParCov, b, 2.f, matCorr, &clusDuplicatedDCA)) { // check if the propagation fails
2374 continue;
2375 }
2376
2377 DCAxyData[layerDuplicated]->Fill(clusDuplicatedDCA[0]);
2378 DCAzData[layerDuplicated]->Fill(clusDuplicatedDCA[1]);
2379
2380 // Imposing that the distance between the duplicated cluster and the track is less than x sigma
2381 if (!(clusDuplicatedDCA[0] > mDCACutsXY[layerDuplicated][0] && clusDuplicatedDCA[0] < mDCACutsXY[layerDuplicated][1] && clusDuplicatedDCA[1] > mDCACutsZ[layerDuplicated][0] && clusDuplicatedDCA[1] < mDCACutsZ[layerDuplicated][1])) {
2382 DCAxyRejected[layerDuplicated]->Fill(clusDuplicatedDCA[0]);
2383 DCAzRejected[layerDuplicated]->Fill(clusDuplicatedDCA[1]);
2384 continue;
2385 }
2386
2387 m2DClusterDuplicatedPositions->Fill(clusDuplicatedPointGlob.x(), clusDuplicatedPointGlob.y());
2388 m3DDuplicatedClusterPositions->Fill(clusDuplicatedPointGlob.x(), clusDuplicatedPointGlob.y(), clusDuplicatedPointGlob.z());
2389
2390 if (mVerboseOutput) {
2391 LOGP(info, "Propagation ok");
2392 }
2393 double rDCA = std::hypot(clusDuplicatedDCA[0], clusDuplicatedDCA[1]);
2394
2395 // taking the closest cluster within x sigma
2396 if (rDCA < std::get<1>(clusID_rDCA_label)) { // updating the closest cluster
2397 if (isMC) {
2398 clusID_rDCA_label = {iClus, rDCA, labsDuplicated};
2399 } else {
2400 clusID_rDCA_label = {iClus, rDCA, gsl::span<const o2::MCCompLabel>()};
2401 }
2402 phiDuplicated = phiOriginal;
2403 ptDuplicated = pt;
2404 etaDuplicated = eta;
2405 clusZ = clusOriginalPointGlob.z();
2406 clusDuplicatedSelected = clusDuplicated;
2407 }
2408 adjacentFound = 1;
2409 } // end loop on all the clusters in the rof -> at this point we have the information on the closest cluster (if there is one)
2410
2411 // here clusID_rDCA_label is updated with the closest cluster to the track other than the original one
2412
2413 if (!adjacentFound) {
2414 radiusNotFound[layerOriginal]->Fill(sqrt(clusOriginalPointGlob.x() * clusOriginalPointGlob.x() + clusOriginalPointGlob.y() * clusOriginalPointGlob.y()));
2415 colNotFound[layerOriginal]->Fill(clusOriginal.getCol() + (1024 * (clusOriginal.getChipID() % 9)));
2416 rowNotFound[layerOriginal]->Fill(rowOriginal);
2417 zNotFound[layerOriginal]->Fill(clusOriginalPointGlob.z());
2418 phiNotFound[layerOriginal]->Fill(phiOriginal);
2419 continue;
2420 }
2421
2422 chipOrigVsOverlap->Fill(clusOriginal.getChipID() % 9, clusDuplicatedSelected.getChipID() % 9);
2423 mChipFound->Fill(clusOriginal.getChipID());
2424 zFound[layerOriginal]->Fill(clusOriginalPointGlob.z());
2425 radiusFound[layerOriginal]->Fill(sqrt(clusOriginalPointGlob.x() * clusOriginalPointGlob.x() + clusOriginalPointGlob.y() * clusOriginalPointGlob.y()));
2426 colFoundOriginalVsDuplicated[layerOriginal]->Fill(clusOriginal.getCol() + (1024 * (clusOriginal.getChipID() % 9)), clusDuplicatedSelected.getCol() + (1024 * (clusDuplicatedSelected.getChipID() % 9)));
2427 colFoundOriginal[layerOriginal]->Fill(clusOriginal.getCol() + (1024 * (clusOriginal.getChipID() % 9)));
2428 m2DClusterFoundPositions->Fill(clusOriginalPointGlob.x(), clusOriginalPointGlob.y());
2429 phiFound[layerOriginal]->Fill(phiOriginal);
2430 rowFound[layerOriginal]->Fill(rowOriginal);
2431 nDuplClusters++;
2432 nDuplicatedClusters[layerOriginal]++;
2433 numPt[layerOriginal]->Fill(pt);
2434 numPhi[layerOriginal]->Fill(phiDuplicated);
2435 numEta[layerOriginal]->Fill(etaDuplicated);
2436 numRow[layerOriginal]->Fill(rowOriginal);
2437 numCol[layerOriginal]->Fill(clusOriginal.getCol());
2438 numZ[layerOriginal]->Fill(clusOriginalPointGlob.z());
2439 mZvsPhiDUplicated[layerOriginal]->Fill(clusZ, phiDuplicated);
2440 mNumColEta[layerOriginal]->Fill(clusOriginal.getCol(), eta);
2441 mNumRowPhi[layerOriginal]->Fill(clusOriginal.getRow(), clusOriginalPointGlob.z());
2442 mNumRowCol[layerOriginal]->Fill(clusOriginal.getRow(), clusOriginal.getCol());
2443 numLayers->Fill(layerOriginal);
2444
2445 // checking if it is a good or fake match looking at the labels (only if isMC)
2446 if (isMC) {
2447 bool isGood = false;
2448 for (auto lab : std::get<2>(clusID_rDCA_label)) {
2449 if (lab == tracklab) {
2450 isGood = true;
2451 numPtGood[layerOriginal]->Fill(ptDuplicated);
2452 numPhiGood[layerOriginal]->Fill(phiDuplicated);
2453 numEtaGood[layerOriginal]->Fill(etaDuplicated);
2454 numRowGood[layerOriginal]->Fill(rowOriginal);
2455 numColGood[layerOriginal]->Fill(clusOriginal.getCol());
2456 numZGood[layerOriginal]->Fill(clusOriginalPointGlob.z());
2457 numGoodLayers->Fill(layerOriginal);
2458 continue;
2459 }
2460 }
2461 if (!isGood) {
2462 numPtFake[layerOriginal]->Fill(ptDuplicated);
2463 numPhiFake[layerOriginal]->Fill(phiDuplicated);
2464 numEtaFake[layerOriginal]->Fill(etaDuplicated);
2465 numRowFake[layerOriginal]->Fill(rowOriginal);
2466 numColFake[layerOriginal]->Fill(clusOriginal.getCol());
2467 numZFake[layerOriginal]->Fill(clusOriginalPointGlob.z());
2468 numFakeLayers->Fill(layerOriginal);
2469 }
2470 }
2471 } // end loop on clusters associated to the track
2472 totNClusters += NLAYERS;
2473 } // end loop on tracks per ROF
2474 } // end loop on ROFRecords array
2475
2476 std::cout << " Num of duplicated clusters L0: " << nDuplicatedClusters[0] << " N tracks selected: " << nTracksSelected[0] << std::endl;
2477 std::cout << " Num of duplicated clusters L1: " << nDuplicatedClusters[1] << " N tracks selected: " << nTracksSelected[1] << std::endl;
2478 std::cout << " Num of duplicated clusters L2: " << nDuplicatedClusters[2] << " N tracks selected: " << nTracksSelected[2] << std::endl;
2479
2480 std::cout << " --------- N total clusters: " << totNClusters << std::endl;
2481 std::cout << " --------- N duplicated clusters: " << nDuplClusters << std::endl;
2482}
2483
2485{
2486 LOGP(info, "--------------- process");
2487
2489
2490 if (mUseMC) {
2491 // getDCAClusterTrackMC();
2493 // studyClusterSelectionMC();
2494 // countDuplicatedAfterCuts();
2495 getEfficiency(mUseMC);
2496 } else {
2497 getEfficiency(mUseMC);
2498 }
2499
2500 LOGP(info, "** Found in {} rofs:\n\t- {} clusters\n\t",
2501 mClustersROFRecords.size(), mClusters.size());
2502
2503 if (mUseMC) {
2504 LOGP(info, "mClusters size: {}, mClustersROFRecords size: {}, mClustersMCLCont size: {}, mClustersconverted size: {} ", mClusters.size(), mClustersROFRecords.size(), mClustersMCLCont->getNElements(), mITSClustersArray.size());
2505 LOGP(info, "mTracks size: {}, mTracksROFRecords size: {}, mTracksMCLabels size: {}", mTracks.size(), mTracksROFRecords.size(), mTracksMCLabels.size());
2506 } else {
2507 LOGP(info, "mClusters size: {}, mClustersROFRecords size: {}, mClustersconverted size: {} ", mClusters.size(), mClustersROFRecords.size(), mITSClustersArray.size());
2508 LOGP(info, "mTracks size: {}, mTracksROFRecords size: {}", mTracks.size(), mTracksROFRecords.size());
2509 }
2510}
2511
2512void EfficiencyStudy::updateTimeDependentParams(ProcessingContext& pc)
2513{
2514 static bool initOnceDone = false;
2516 if (!initOnceDone) { // this params need to be queried only once
2517 initOnceDone = true;
2518 mGeometry = GeometryTGeo::Instance();
2520 }
2521}
2522
2524{
2525 LOGP(info, "--------------- endOfStream");
2526
2527 mOutFile->mkdir("EfficiencyFinal/");
2528 mOutFile->mkdir("DCAFinal/");
2529 mOutFile->mkdir("NotFoundChecks/");
2530
2531 mOutFile->mkdir("DCA/");
2532 mOutFile->mkdir("Pt_Eta_Phi/");
2533
2534 if (mUseMC) {
2535
2536 mOutFile->cd("DCA");
2537 mDCAxyDuplicated->Write();
2538 mDCAzDuplicated->Write();
2539 for (int i = 0; i < NLAYERS; i++) {
2540 mDCAxyDuplicated_layer[i]->Write();
2541 mDCAzDuplicated_layer[i]->Write();
2542
2543 mDCAxyOriginal[i]->Write();
2544 mDCAzOriginal[i]->Write();
2545 }
2546
2547 mOutFile->cd("Pt_Eta_Phi/");
2548 for (int i = 0; i < NLAYERS; i++) {
2549 mDuplicatedPhiAllPt[i]->Write();
2550 mPtDuplicated[i]->Write();
2551 mEtaDuplicated[i]->Write();
2552 mPhiDuplicated[i]->Write();
2553 mPhiOriginalIfDuplicated[i]->Write();
2554 mDuplicatedPt[i]->Write();
2555 mDuplicatedPtEta[i]->Write();
2556 mDuplicatedPtPhi[i]->Write();
2557 mDuplicatedEtaPhi[i]->Write();
2558 mDuplicatedEtaAllPt[i]->Write();
2559 mDuplicatedRow[i]->Write();
2560 mDuplicatedCol[i]->Write();
2561 mDuplicatedZ[i]->Write();
2562
2563 for (int p = 0; p < 3; p++) {
2564 mDuplicatedEta[i][p]->Write();
2565 mDuplicatedPhi[i][p]->Write();
2566 }
2567 mPt_EtaDupl[i]->Write();
2568 }
2569 }
2570
2571 mOutFile->cd("Pt_Eta_Phi/");
2572 for (int i = 0; i < NLAYERS; i++) {
2573 IPOriginalxy[i]->Write();
2574 IPOriginalz[i]->Write();
2575 mPhiOriginal[i]->Write();
2576 mPtOriginal[i]->Write();
2577 mEtaOriginal[i]->Write();
2578 mZvsPhiDUplicated[i]->Write();
2579 chipRowDuplicated[i]->Write();
2580 chipRowOriginalIfDuplicated[i]->Write();
2581 }
2582
2583 mOutFile->mkdir("chi2");
2584 mOutFile->cd("chi2/");
2585
2586 chi2trackAccepted->Write();
2587
2588 mOutFile->cd("EfficiencyFinal/");
2589 TList listNum;
2590 TList listDen;
2591 auto numPhiAll = std::unique_ptr<TH1D>((TH1D*)numPhi[0]->Clone("numPhiAll"));
2592 auto denPhiAll = std::unique_ptr<TH1D>((TH1D*)denPhi[0]->Clone("denPhiAll"));
2593
2594 TList listNumColEta;
2595 TList listDenColEta;
2596 auto numColEtaAll = std::unique_ptr<TH1D>((TH1D*)mNumColEta[0]->Clone("numColEtaAll"));
2597 auto denColEtaAll = std::unique_ptr<TH1D>((TH1D*)mDenColEta[0]->Clone("denColEtaAll"));
2598
2599 TList listNumRowPhi;
2600 TList listDenRowPhi;
2601 auto numRowPhiAll = std::unique_ptr<TH1D>((TH1D*)mNumRowPhi[0]->Clone("numRowPhiAll"));
2602 auto denRowPhiAll = std::unique_ptr<TH1D>((TH1D*)mDenRowPhi[0]->Clone("denRowPhiAll"));
2603
2604 TList listNumRowCol;
2605 TList listDenRowCol;
2606 auto numRowColAll = std::unique_ptr<TH1D>((TH1D*)mNumRowCol[0]->Clone("numRowColAll"));
2607 auto denRowColAll = std::unique_ptr<TH1D>((TH1D*)mDenRowCol[0]->Clone("denRowColAll"));
2608
2609 std::unique_ptr<TEfficiency> effLayers = std::make_unique<TEfficiency>(*numLayers, *denLayers);
2610 effLayers->SetName("effLayers");
2611 effLayers->SetTitle("; ;Efficiency");
2612 std::unique_ptr<TEfficiency> effLayersGood = std::make_unique<TEfficiency>(*numGoodLayers, *denLayers);
2613 effLayersGood->SetName("effLayersGood");
2614 effLayersGood->SetTitle("; ;Efficiency Good Matches");
2615 std::unique_ptr<TEfficiency> effLayersFake = std::make_unique<TEfficiency>(*numFakeLayers, *denLayers);
2616 effLayersFake->SetName("effLayersFake");
2617 effLayersFake->SetTitle("; ;Efficiency Fake Matches");
2618 effLayers->Write();
2619 effLayersGood->Write();
2620 effLayersFake->Write();
2621 denLayers->Write();
2622 numLayers->Write();
2623 numGoodLayers->Write();
2624 numFakeLayers->Write();
2625
2626 for (int l = 0; l < NLAYERS; l++) {
2627
2628 std::unique_ptr<TEfficiency> effPt = std::make_unique<TEfficiency>(*numPt[l], *denPt[l]);
2629 effPt->SetName(Form("effPt_layer%d", l));
2630 effPt->SetTitle(Form("L%d;p_{T} (GeV/c);Efficiency", l));
2631 std::unique_ptr<TEfficiency> effPtGood = std::make_unique<TEfficiency>(*numPtGood[l], *denPt[l]);
2632 effPtGood->SetName(Form("effPtGood_layer%d", l));
2633 effPtGood->SetTitle(Form("L%d;p_{T} (GeV/c);Efficiency Good Matches", l));
2634 std::unique_ptr<TEfficiency> effPtFake = std::make_unique<TEfficiency>(*numPtFake[l], *denPt[l]);
2635 effPtFake->SetName(Form("effPtFake_layer%d", l));
2636 effPtFake->SetTitle(Form("L%d;p_{T} (GeV/c);Efficiency Fake Matches", l));
2637 effPt->Write();
2638 effPtGood->Write();
2639 effPtFake->Write();
2640
2641 std::unique_ptr<TEfficiency> effPhi = std::make_unique<TEfficiency>(*numPhi[l], *denPhi[l]);
2642 effPhi->SetName(Form("effPhi_layer%d", l));
2643 effPhi->SetTitle(Form("L%d;#phi;Efficiency", l));
2644 std::unique_ptr<TEfficiency> effPhiGood = std::make_unique<TEfficiency>(*numPhiGood[l], *denPhi[l]);
2645 effPhiGood->SetName(Form("effPhiGood_layer%d", l));
2646 effPhiGood->SetTitle(Form("L%d;#phi;Efficiency Good Matches", l));
2647 std::unique_ptr<TEfficiency> effPhiFake = std::make_unique<TEfficiency>(*numPhiFake[l], *denPhi[l]);
2648 effPhiFake->SetName(Form("effPhiFake_layer%d", l));
2649 effPhiFake->SetTitle(Form("L%d;#phi;Efficiency Fake Matches", l));
2650 effPhi->Write();
2651 effPhiGood->Write();
2652 effPhiFake->Write();
2653 listNum.Add(numPhi[l].get());
2654 listDen.Add(denPhi[l].get());
2655
2656 std::unique_ptr<TEfficiency> effEta = std::make_unique<TEfficiency>(*numEta[l], *denEta[l]);
2657 effEta->SetName(Form("effEta_layer%d", l));
2658 effEta->SetTitle(Form("L%d;#eta;Efficiency", l));
2659 std::unique_ptr<TEfficiency> effEtaGood = std::make_unique<TEfficiency>(*numEtaGood[l], *denEta[l]);
2660 effEtaGood->SetName(Form("effEtaGood_layer%d", l));
2661 effEtaGood->SetTitle(Form("L%d;#eta;Efficiency Good Matches", l));
2662 std::unique_ptr<TEfficiency> effEtaFake = std::make_unique<TEfficiency>(*numEtaFake[l], *denEta[l]);
2663 effEtaFake->SetName(Form("effEtaFake_layer%d", l));
2664 effEtaFake->SetTitle(Form("L%d;#eta;Efficiency Fake Matches", l));
2665 effEta->Write();
2666 effEtaGood->Write();
2667 effEtaFake->Write();
2668
2669 std::unique_ptr<TEfficiency> effRow = std::make_unique<TEfficiency>(*numRow[l], *denRow[l]);
2670 effRow->SetName(Form("effRow_layer%d", l));
2671 effRow->SetTitle(Form("L%d;#Row;Efficiency", l));
2672 std::unique_ptr<TEfficiency> effRowGood = std::make_unique<TEfficiency>(*numRowGood[l], *denRow[l]);
2673 effRowGood->SetName(Form("effRowGood_layer%d", l));
2674 effRowGood->SetTitle(Form("L%d;#Row;Efficiency Good Matches", l));
2675 std::unique_ptr<TEfficiency> effRowFake = std::make_unique<TEfficiency>(*numRowFake[l], *denRow[l]);
2676 effRowFake->SetName(Form("effRowFake_layer%d", l));
2677 effRowFake->SetTitle(Form("L%d;#Row;Efficiency Fake Matches", l));
2678 effRow->Write();
2679 effRowGood->Write();
2680 effRowFake->Write();
2681
2682 std::unique_ptr<TEfficiency> effCol = std::make_unique<TEfficiency>(*numCol[l], *denCol[l]);
2683 effCol->SetName(Form("effCol_layer%d", l));
2684 effCol->SetTitle(Form("L%d;#Col;Efficiency", l));
2685 std::unique_ptr<TEfficiency> effColGood = std::make_unique<TEfficiency>(*numColGood[l], *denCol[l]);
2686 effColGood->SetName(Form("effColGood_layer%d", l));
2687 effColGood->SetTitle(Form("L%d;#Col;Efficiency Good Matches", l));
2688 std::unique_ptr<TEfficiency> effColFake = std::make_unique<TEfficiency>(*numColFake[l], *denCol[l]);
2689 effColFake->SetName(Form("effColFake_layer%d", l));
2690 effColFake->SetTitle(Form("L%d;#Col;Efficiency Fake Matches", l));
2691 effCol->Write();
2692 effColGood->Write();
2693 effColFake->Write();
2694
2695 std::unique_ptr<TEfficiency> effZ = std::make_unique<TEfficiency>(*numZ[l], *denZ[l]);
2696 effZ->SetName(Form("effZ_layer%d", l));
2697 effZ->SetTitle(Form("L%d;#Z (cm);Efficiency", l));
2698 std::unique_ptr<TEfficiency> effZGood = std::make_unique<TEfficiency>(*numZGood[l], *denZ[l]);
2699 effZGood->SetName(Form("effZGood_layer%d", l));
2700 effZGood->SetTitle(Form("L%d;#Z (cm);Efficiency Good Matches", l));
2701 std::unique_ptr<TEfficiency> effZFake = std::make_unique<TEfficiency>(*numZFake[l], *denZ[l]);
2702 effZFake->SetName(Form("effZFake_layer%d", l));
2703 effZFake->SetTitle(Form("L%d;#Z (cm);Efficiency Fake Matches", l));
2704 effZ->Write();
2705 effZGood->Write();
2706 effZFake->Write();
2707
2708 std::unique_ptr<TEfficiency> effColEta = std::make_unique<TEfficiency>(*mNumColEta[l], *mDenColEta[l]);
2709 effColEta->SetName(Form("effColEta_layer%d", l));
2710 effColEta->SetTitle(Form("L%d;Column;#eta", l));
2711 effColEta->Write();
2712
2713 listNumColEta.Add(mNumColEta[l].get());
2714 listDenColEta.Add(mDenColEta[l].get());
2715
2716 std::unique_ptr<TEfficiency> effRowPhi = std::make_unique<TEfficiency>(*mNumRowPhi[l], *mDenRowPhi[l]);
2717 effRowPhi->SetName(Form("effRowPhi_layer%d", l));
2718 effRowPhi->SetTitle(Form("L%d;Column;#eta", l));
2719 effRowPhi->Write();
2720
2721 listNumRowPhi.Add(mNumRowPhi[l].get());
2722 listDenRowPhi.Add(mDenRowPhi[l].get());
2723
2724 std::unique_ptr<TEfficiency> effRowCol = std::make_unique<TEfficiency>(*mNumRowCol[l], *mDenRowCol[l]);
2725 effRowCol->SetName(Form("effRowCol_layer%d", l));
2726 effRowCol->SetTitle(Form("L%d;Column;#eta", l));
2727 effRowCol->Write();
2728
2729 listNumRowCol.Add(mNumRowCol[l].get());
2730 listDenRowCol.Add(mDenRowCol[l].get());
2731
2732 mNumRowCol[l]->Write();
2733 mDenRowCol[l]->Write();
2734 mNumRowPhi[l]->Write();
2735 mDenRowPhi[l]->Write();
2736 mNumColEta[l]->Write();
2737 mDenColEta[l]->Write();
2738 numPhi[l]->Write();
2739 denPhi[l]->Write();
2740 numPt[l]->Write();
2741 denPt[l]->Write();
2742 numEta[l]->Write();
2743 denEta[l]->Write();
2744 numRow[l]->Write();
2745 denRow[l]->Write();
2746 numCol[l]->Write();
2747 denCol[l]->Write();
2748 numZ[l]->Write();
2749 denZ[l]->Write();
2750 }
2751 numPhiAll->Merge(&listNum);
2752 denPhiAll->Merge(&listDen);
2753
2754 numColEtaAll->Merge(&listNumColEta);
2755 denColEtaAll->Merge(&listDenColEta);
2756
2757 numRowPhiAll->Merge(&listNumRowPhi);
2758 denRowPhiAll->Merge(&listDenRowPhi);
2759
2760 numRowColAll->Merge(&listNumRowCol);
2761 denRowColAll->Merge(&listDenRowCol);
2762
2763 std::unique_ptr<TEfficiency> effPhiAll = std::make_unique<TEfficiency>(*numPhiAll, *denPhiAll);
2764 effPhiAll->SetName("effPhi_AllLayers");
2765 effPhiAll->SetTitle("L0 + L1 + L2;#phi;Efficiency");
2766 effPhiAll->Write();
2767 numPhiAll->Write();
2768 denPhiAll->Write();
2769
2770 std::unique_ptr<TEfficiency> effColEtaAll = std::make_unique<TEfficiency>(*numColEtaAll, *denColEtaAll);
2771 effColEtaAll->SetName("effColEta_AllLayers");
2772 effColEtaAll->SetTitle("L0 + L1 + L2;Column;#eta");
2773 effColEtaAll->Write();
2774 numColEtaAll->Write();
2775 denColEtaAll->Write();
2776
2777 std::unique_ptr<TEfficiency> effRowPhiAll = std::make_unique<TEfficiency>(*numRowPhiAll, *denRowPhiAll);
2778 effRowPhiAll->SetName("effRowPhi_AllLayers");
2779 effRowPhiAll->SetTitle("L0 + L1 + L2;Column;#eta");
2780 effRowPhiAll->Write();
2781 numRowPhiAll->Write();
2782 denRowPhiAll->Write();
2783
2784 std::unique_ptr<TEfficiency> effRowColAll = std::make_unique<TEfficiency>(*numRowColAll, *denRowColAll);
2785 effRowColAll->SetName("effRowCol_AllLayers");
2786 effRowColAll->SetTitle("L0 + L1 + L2;Column;#eta");
2787 effRowColAll->Write();
2788 numRowColAll->Write();
2789 denRowColAll->Write();
2790
2791 mOutFile->cd("DCAFinal/");
2792
2793 for (int l = 0; l < NLAYERS; l++) {
2794 DCAxyData[l]->Write();
2795 DCAzData[l]->Write();
2796 DCAxyRejected[l]->Write();
2797 DCAzRejected[l]->Write();
2798 }
2799
2800 mOutFile->cd("NotFoundChecks/");
2801
2802 for (int l = 0; l < NLAYERS; l++) {
2803 phiFound[l]->Write();
2804 phiNotFound[l]->Write();
2805 rowFound[l]->Write();
2806 rowNotFound[l]->Write();
2807 zFound[l]->Write();
2808 zNotFound[l]->Write();
2809 radiusFound[l]->Write();
2810 radiusNotFound[l]->Write();
2811 colFoundOriginalVsDuplicated[l]->Write();
2812 colFoundOriginal[l]->Write();
2813 colNotFound[l]->Write();
2814 }
2815 mChipFound->Write();
2816 mChipNotFound->Write();
2817 m2DClusterFoundPositions->Write();
2818 l0_00->Write();
2819 l1_15->Write();
2820 l2_19->Write();
2821 chipOrigVsOverlap->Write();
2822 chipmap->SetContour(100);
2823 chipmap->Write();
2824
2825 mOutFile->Close();
2826}
2827
2829{
2830 std::cout << "-------- finaliseCCDB" << std::endl;
2831 if (o2::base::GRPGeomHelper::instance().finaliseCCDB(matcher, obj)) {
2832 return;
2833 }
2834 if (matcher == ConcreteDataMatcher("ITS", "CLUSDICT", 0)) {
2836 return;
2837 }
2838}
2839
2840DataProcessorSpec getEfficiencyStudy(mask_t srcTracksMask, mask_t srcClustersMask, bool useMC, std::shared_ptr<o2::steer::MCKinematicsReader> kineReader)
2841{
2842 std::vector<OutputSpec> outputs;
2843 auto dataRequest = std::make_shared<DataRequest>();
2844 dataRequest->requestTracks(srcTracksMask, useMC);
2845 dataRequest->requestClusters(srcClustersMask, useMC);
2846
2847 auto ggRequest = std::make_shared<o2::base::GRPGeomRequest>(false, // orbitResetTime
2848 true, // GRPECS=true
2849 false, // GRPLHCIF
2850 true, // GRPMagField
2851 true, // askMatLUT
2853 dataRequest->inputs,
2854 true);
2855 return DataProcessorSpec{
2856 "its-efficiency-study",
2857 dataRequest->inputs,
2858 outputs,
2859 AlgorithmSpec{adaptFromTask<EfficiencyStudy>(dataRequest, srcTracksMask, useMC, kineReader, ggRequest)},
2860 Options{}};
2861}
2862
2863} // namespace o2::its::study
Definition of the ITSMFT compact cluster.
Wrapper container for different reconstructed object types.
Definition of the ClusterTopology class.
int32_t i
uint8_t leg
Helper for geometry and GRP related CCDB requests.
Definition of the GeometryTGeo class.
#define NLAYERS
Definition of the ITSMFT ROFrame (trigger) record.
Definition of the MCTrack class.
uint32_t j
Definition RawData.h:0
uint32_t c
Definition RawData.h:2
Definition of the ITS track.
bool isFake() const
Definition MCCompLabel.h:78
void print() const
void checkUpdates(o2::framework::ProcessingContext &pc)
static GRPGeomHelper & instance()
void setRequest(std::shared_ptr< GRPGeomRequest > req)
GPUd() value_type estimateLTFast(o2 static GPUd() float estimateLTIncrement(const o2 PropagatorImpl * Instance(bool uninitialized=false)
Definition Propagator.h:143
gsl::span< TruthElement > getLabels(uint32_t dataindex)
const Mat3D & getMatrixT2G(int sensID) const
const char * getSymbolicName(int index) const
int getLayer(int index) const
Get chip layer, from 0.
float getSensorRefAlpha(int isn) const
int getChipIdInStave(int index) const
Get chip number within stave, from 0.
static GeometryTGeo * Instance()
void fillMatrixCache(int mask) override
int getStave(int index) const
Get chip stave, from 0.
void setClusterDictionary(const o2::itsmft::TopologyDictionary *d)
void finaliseCCDB(ConcreteDataMatcher &, void *) final
int getDCAClusterTrackMC(int countDuplicated)
void run(ProcessingContext &) final
void stileEfficiencyGraph(std::unique_ptr< TEfficiency > &eff, const char *name, const char *title, bool bidimensional, const int markerStyle, const double markersize, const int markercolor, const int linercolor)
void init(InitContext &) final
void initialiseRun(o2::globaltracking::RecoContainer &)
void process(o2::globaltracking::RecoContainer &)
EfficiencyStudy(std::shared_ptr< DataRequest > dr, mask_t src, bool useMC, std::shared_ptr< o2::steer::MCKinematicsReader > kineReader, std::shared_ptr< o2::base::GRPGeomRequest > gr)
void endOfStream(EndOfStreamContext &) final
This is invoked whenever we have an EndOfStream event.
UShort_t getChipID() const
UShort_t getCol() const
Definition CompCluster.h:58
GLenum src
Definition glcorearb.h:1767
GLuint const GLchar * name
Definition glcorearb.h:781
GLboolean GLboolean GLboolean b
Definition glcorearb.h:1233
GLuint GLsizei const GLchar * label
Definition glcorearb.h:2519
GLenum GLuint GLint GLint layer
Definition glcorearb.h:1310
GLboolean GLboolean GLboolean GLboolean a
Definition glcorearb.h:1233
Defining PrimaryVertex explicitly as messageable.
Definition TFIDInfo.h:20
std::vector< ConfigParamSpec > Options
std::array< T, N > array
auto get(const std::byte *buffer, size_t=0)
Definition DataHeader.h:454
void convertCompactClusters(gsl::span< const itsmft::CompClusterExt > clusters, gsl::span< const unsigned char >::iterator &pattIt, std::vector< o2::BaseCluster< float > > &output, const itsmft::TopologyDictionary *dict)
convert compact clusters to 3D spacepoints
Definition IOUtils.cxx:49
float mEtaCuts[2]
Definition Efficiency.h:31
float sigmaDcaXY[3]
Definition Efficiency.h:43
float dcaZ[3]
Definition Efficiency.h:42
float mDCACutsZ[3][2]
Definition Efficiency.h:49
float sigmaDcaZ[3]
Definition Efficiency.h:44
float mDCACutsXY[3][2]
Definition Efficiency.h:48
o2::framework::DataProcessorSpec getEfficiencyStudy(mask_t srcTracksMask, mask_t srcClustersMask, bool useMC, std::shared_ptr< o2::steer::MCKinematicsReader > kineReader)
std::vector< int > mExcludedChipMC
excluding bad chips in MC that are not present in data: to be checked based on the anchoring
Definition Efficiency.h:52
float dcaXY[3]
no cut for B=0
Definition Efficiency.h:41
TrackParCovF TrackParCov
Definition Track.h:33
a couple of static helper functions to create timestamp values for CCDB queries or override obsolete ...
Defining DataPointCompositeObject explicitly as copiable.
void collectData(o2::framework::ProcessingContext &pc, const DataRequest &request)
static constexpr int L2G
Definition Cartesian.h:54
static constexpr int T2L
Definition Cartesian.h:55
static constexpr int T2GRot
Definition Cartesian.h:57
static constexpr int T2G
Definition Cartesian.h:56
std::vector< o2::mch::ChannelCode > cc
LOG(info)<< "Compressed in "<< sw.CpuTime()<< " s"
std::vector< int > row